概率统计正态总体的参数检验_第1页
概率统计正态总体的参数检验_第2页
概率统计正态总体的参数检验_第3页
概率统计正态总体的参数检验_第4页
概率统计正态总体的参数检验_第5页
已阅读5页,还剩37页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

概率统计正态总体的参数检验1第一页,共四十二页,2022年,8月28日P(拒绝H0|H0为真)所以本检验的拒绝域为0:U检验法2第二页,共四十二页,2022年,8月28日0000

<

0

>

0U检验法

(2已知)原假设

H0备择假设

H1检验统计量及其H0为真时的分布拒绝域U检验法3第三页,共四十二页,2022年,8月28日0000

<

0

>

0T检验法

(2未知)原假设H0备择假设

H1检验统计量及其H0为真时的分布拒绝域T检验法4第四页,共四十二页,2022年,8月28日例1某厂生产小型马达,说明书上写着:这种小型马达在正常负载下平均消耗电流不会超过0.8安培.现随机抽取16台马达试验,求得平均消耗电流为0.92安培,消耗电流的标准差为0.32安培.假设马达所消耗的电流服从正态分布,取显著性水平为=0.05,问根据这个样本,能否否定厂方的断言?解

根据题意待检假设可设为例15第五页,共四十二页,2022年,8月28日

H0:0.8;

H1:>0.8

未知,故选检验统计量:查表得t0.05(15)=1.753,故拒绝域为现故接受原假设,即不能否定厂方断言.6第六页,共四十二页,2022年,8月28日解二

H0:

0.8;

H1:<0.8

选用统计量:查表得t0.05(15)=1.753,故拒绝域现故接受原假设,即否定厂方断言.7第七页,共四十二页,2022年,8月28日

由例1可见:对问题的提法不同(把哪个假设作为原假设),统计检验的结果也会不同.

上述两种解法的立场不同,因此得到不同的结论.第一种假设是不轻易否定厂方的结论;第二种假设是不轻易相信厂方的结论.8第八页,共四十二页,2022年,8月28日由于假设检验是控制犯第一类错误的概率,使得拒绝原假设H0的决策变得比较慎重,也就是H0得到特别的保护.因而,通常把有把握的,经验的结论作为原假设,或者尽量使后果严重的错误成为第一类错误.9第九页,共四十二页,2022年,8月28日2022>022<022022=02202原假设

H0备择假设

H1检验统计量及其在H0为真时的分布拒绝域

检验法(

已知)(2)关于2的检验X2检验法10第十页,共四十二页,2022年,8月28日2022>022<022022=02202原假设

H0备择假设

H1检验统计量及其在H0为真时的分布拒绝域(

未知)11第十一页,共四十二页,2022年,8月28日

例2

某汽车配件厂在新工艺下对加工好的25个活塞的直径进行测量,得样本方差S2=0.00066.已知老工艺生产的活塞直径的方差为0.00040.问进一步改革的方向应如何?(P.244例6)

解一般进行工艺改革时,若指标的方差显著增大,则改革需朝相反方向进行以减少方差;若方差变化不显著,则需试行别的改革方案.例212第十二页,共四十二页,2022年,8月28日设测量值需考察改革后活塞直径的方差是否不大于改革前的方差?故待检验假设可设为:

H0:2

0.00040;

H1:2

>0.00040.

此时可采用效果相同的单边假设检验

H0:2

=0.00040;H1:2>0.00040.

13第十三页,共四十二页,2022年,8月28日取统计量拒绝域0:落在0内,故拒绝H0.即改革后的方差显著大于改革前,因此下一步的改革应朝相反方向进行.14第十四页,共四十二页,2022年,8月28日设X~N(1

1

2),Y~

N(2

2

2)两样本X,Y相互独立,样本(X1,X2,…,Xn),(Y1,Y2,…,Ym)

样本值(x1,x2,…,xn),(y1,y2,…,ym)显著性水平两个正态总体两个总体15第十五页,共四十二页,2022年,8月28日1–2

=(12,22已知)(1)关于均值差1–

2

的检验1–2

1–2

1–2

<

1–2>

1–2

原假设

H0备择假设

H1检验统计量及其在H0为真时的分布拒绝域1–2

检16第十六页,共四十二页,2022年,8月28日1–2

=1–2

1–2

1–2

<

1–2>

1–2

其中12,

22未知12=

22原假设

H0备择假设

H1检验统计量及其在H0为真时的分布拒绝域17第十七页,共四十二页,2022年,8月28日

12=

22

12

22

12

22

12>

22

12

22

12<

22(2)关于方差比

12

/

22的检验1,

2均未知原假设

H0备择假设

H1检验统计量及其在H0为真时的分布拒绝域

12

/

22检18第十八页,共四十二页,2022年,8月28日例3杜鹃总是把蛋生在别的鸟巢中,现从两种鸟巢中得到杜鹃蛋24个.其中9个来自一种鸟巢,15个来自另一种鸟巢,测得杜鹃蛋的长度(mm)如下:m=1519.820.020.320.820.920.921.021.021.021.221.522.022.022.122.3n=921.221.621.922.022.022.222.822.923.2例319第十九页,共四十二页,2022年,8月28日试判别两个样本均值的差异是仅由随机因素造成的还是与来自不同的鸟巢有关().解

H0:1=

2

H1:1

2

取统计量20第二十页,共四十二页,2022年,8月28日拒绝域0:统计量值.落在0内,拒绝H0即蛋的长度与不同鸟巢有关.21第二十一页,共四十二页,2022年,8月28日例4假设机器A和B都生产钢管,要检验A和B生产的钢管内径的稳定程度.设它们生产的钢管内径分别为X和Y,且都服从正态分布X~N(1,

12),Y~N(2,

22)例4现从机器A和B生产的钢管中各抽出18根和13根,测得

s12=0.34,s22=0.29,22第二十二页,共四十二页,2022年,8月28日设两样本相互独立.问是否能认为两台机器生产的钢管内径的稳定程度相同?(取=0.1)解设H0:

12=

22;H1:

12

22

查表得F0.05(17,12)=2.59,F0.95(17,12)=23第二十三页,共四十二页,2022年,8月28日拒绝域为:或由给定值算得:落在拒绝域外,故接受原假设,即认为内径的稳定程度相同.24第二十四页,共四十二页,2022年,8月28日接受域置信区间假设检验区间估计统计量枢轴量对偶关系同一函数假设检验与区间估计的联系25第二十五页,共四十二页,2022年,8月28日

假设检验与置信区间对照接受域置信区间检验统计量及其在H0为真时的分布枢轴量及其分布

00(2

已知)(2

已知)原假设

H0备择假设

H1待估参数26第二十六页,共四十二页,2022年,8月28日接受域置信区间检验统计量及其在H0为真时的分布枢轴量及其分布原假设

H0备择假设

H1待估参数

0

0(

2未知)(

2未知)27第二十七页,共四十二页,2022年,8月28日接受域置信区间检验统计量及其在H0为真时的分布枢轴量及其分布原假设

H0备择假设

H1待估参数2022=022(未知)(未知)28第二十八页,共四十二页,2022年,8月28日例5新设计的某种化学天平,其测量误差服从正态分布,现要求99.7%的测量误差不超过0.1mg,即要求30.1.现拿它与标准天平相比,得10个误差数据,其样本方差s2=0.0009.解一H0:1/30;H1:1/30例5试问在=0.05的水平上能否认为满足设计要求?29第二十九页,共四十二页,2022年,8月28日拒绝域:未知,故选检验统计量现故接受原假设,即认为满足设计要求.30第三十页,共四十二页,2022年,8月28日解二2的单侧置信区间为H0中的满足设计要求.则H0成立,从而接受原假设,即认为31第三十一页,共四十二页,2022年,8月28日样本容量的选取

虽然当样本容量n固定时,我们不能同时控制犯两类错误的概率,但可以适当选取n的值,使犯取伪错误的概率控制在预先给定的限度内.样本容量n满足如下公式:单边检验双边检验容量选取32第三十二页,共四十二页,2022年,8月28日右边检验左边检验双边检验其中U检验法中的计算公式33第三十三页,共四十二页,2022年,8月28日例6详见教材P.255例12例6~7例7(产品质量抽检方案)设有一大批产品其质量指标,以小者为佳.对要实行的验收方案厂方要求:对高质量的产品能客户要求:对低质量产品能以高概率为客户所接受;以高概率被拒绝.34第三十四页,共四十二页,2022年,8月28日问应怎样安排抽样方案.设解在显著性水平下进行检验

H0:

0;

H1:

0

由拒绝域为:035第三十五页,共四十二页,2022年,8月28日取可安排容量为121的一次性抽样.当样本均值时,客户拒绝购买该批产品;则购买该

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论