江苏省南通市一中学2022-2023学年九年级数学第一学期期末教学质量检测试题含解析_第1页
江苏省南通市一中学2022-2023学年九年级数学第一学期期末教学质量检测试题含解析_第2页
江苏省南通市一中学2022-2023学年九年级数学第一学期期末教学质量检测试题含解析_第3页
江苏省南通市一中学2022-2023学年九年级数学第一学期期末教学质量检测试题含解析_第4页
江苏省南通市一中学2022-2023学年九年级数学第一学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,PA、PB是⊙O切线,A、B为切点,点C在⊙O上,且∠ACB=55°,则∠APB等于()A.55° B.70° C.110° D.125°2.二次函数的图象如图所示,若关于的一元二次方程有实数根,则的最大值为()A.-7 B.7 C.-10 D.103.已知抛物线y=x2+3向左平移2个单位,那么平移后的抛物线表达式是()A.y=(x+2)2+3B.y=(x﹣2)2+3C.y=x2+1D.y=x2+54.若整数使关于的不等式组至少有4个整数解,且使关于的分式方程有整数解,那么所有满足条件的的和是()A. B. C. D.5.为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域,设正八边形与其内部小正方形的边长都为a,则阴影部分的面积为()A.2a2 B.3a2 C.4a2 D.5a26.抛物线的顶点坐标是()A.(0,-1) B.(-1,1) C.(-1,0) D.(1,0)7.如图,AB是的直径,点C,D是圆上两点,且=28°,则=()A.56° B.118° C.124° D.152°8.若反比例函数的图象经过,则这个函数的图象一定过()A. B. C. D.9.下列函数中,y关于x的二次函数是()A.y=ax2+bx+c B.y=x(x﹣1)C.y= D.y=(x﹣1)2﹣x210.如图,将△ABC放在每个小正方形的边长为1的网格中,点A,B,C均在格点上,则tanC的值是()A.2 B. C.1 D.11.cos60°的值等于()A. B. C. D.12.在如图所示的象棋盘(各个小正方形的边长均相等)中,根据“马走日”的规则,“马”应落在下列哪个位置处,能使“马”、“车”、“炮”所在位置的格点构成的三角形与“帅”、“相”,“兵”所在位置的格点构成的三角形相似()A.①处 B.②处 C.③处 D.④处二、填空题(每题4分,共24分)13.正六边形的中心角等于______度.14.二次函数y=2x2﹣5kx﹣3的图象经过点M(﹣2,10),则k=_____.15.一个不透明的袋子中装有黑、白小球各两个,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是白球的概率为_______.16.若m+=3,则m2+=_____.17.已知二次函数(a是常数,a≠0),当自变量x分别取-6、-4时,对应的函数值分别为y1、y2,那么y1、y2的大小关系是:y1__y2(填“>”、“<”或“=”).18.如果3a=4b(a、b都不等于零),那么a+bb=_____三、解答题(共78分)19.(8分)如图1,在Rt△ABC中,∠B=90°,BC=2AB=8,点D,E分别是边BC,AC的中点,连接DE,将△EDC绕点C按顺时针方向旋转,记旋转角为α.(1)问题发现①当时,;②当时,(2)拓展探究试判断:当0°≤α<360°时,的大小有无变化?请仅就图2的情况给出证明.(3)问题解决当△EDC旋转至A、D、E三点共线时,直接写出线段BD的长.20.(8分)在边长为1的小正方形网格中,的顶点均在格点上,将绕点逆时针旋转,得到,请画出.21.(8分)在平面直角坐标系中的两个图形与,给出如下定义:为图形上任意一点,为图形上任意一点,如果两点间的距离有最小值,那么称这个最小值为图形间的“和睦距离”,记作,若图形有公共点,则.(1)如图(1),,,⊙的半径为2,则,;(2)如图(2),已知的一边在轴上,在上,且,,.①是内一点,若、分别且⊙于E、F,且,判断与⊙的位置关系,并求出点的坐标;②若以为半径,①中的为圆心的⊙,有,,直接写出的取值范围.22.(10分)一个不透明的盒子中装有2枚黑色的棋子和1枚白色的棋子,每枚棋子除了颜色外其余均相同.从盒中随机摸出一枚棋子,记下颜色后放回并搅匀,再从盒子中随机摸出一枚棋子,记下颜色,用画树状图(或列表)的方法,求两次摸出的棋子颜色不同的概率.23.(10分)如图,以矩形ABCD的边CD为直径作⊙O,点E是AB的中点,连接CE交⊙O于点F,连接AF并延长交BC于点H.(1)若连接AO,试判断四边形AECO的形状,并说明理由;(2)求证:AH是⊙O的切线;(3)若AB=6,CH=2,则AH的长为.24.(10分)如图,已知二次函数的图象与轴交于点、,与轴交于点,直线交二次函数图象的对称轴于点,若点C为的中点.(1)求的值;(2)若二次函数图象上有一点,使得,求点的坐标;(3)对于(2)中的点,在二次函数图象上是否存在点,使得∽?若存在,求出点的坐标;若不存在,请说明理由.25.(12分)如图,的直径为,点在上,点,分别在,的延长线上,,垂足为,.(1)求证:是的切线;(2)若,,求的长.26.为弘扬遵义红色文化,传承红色文化精神,某校准备组织学生开展研学活动.经了解,有A.遵义会议会址、B.苟坝会议会址、C.娄山关红军战斗遗址、D.四渡赤水纪念馆共四个可选择的研学基地.现随机抽取部分学生对基地的选择进行调查,每人必须且只能选择一个基地.根据调查结果绘制如下不完整的条形统计图和扇形统计图.(1)统计图中______,______;(2)若该校有1500名学生,请估计选择基地的学生人数;(3)某班在选择基地的6名学生中有4名男同学和2名女同学,需从中随机选出2名同学担任“小导游”,请用树状图或列举法求这2名同学恰好是一男一女的概率.

参考答案一、选择题(每题4分,共48分)1、B【分析】根据圆周角定理构造它所对的弧所对的圆心角,即连接OA,OB,求得∠AOB=110°,再根据切线的性质以及四边形的内角和定理即可求解.【详解】解:连接OA,OB,∵PA,PB是⊙O的切线,∴PA⊥OA,PB⊥OB,∵∠ACB=55°,∴∠AOB=110°,∴∠APB=360°−90°−90°−110°=70°.故选B.【点睛】本题考查了多边形的内角和定理,切线的性质,圆周角定理的应用,关键是求出∠AOB的度数.2、B【分析】把一元二次方程根的个数问题,转化为二次函数的图象与直线y=-m的图象的交点问题,然后结合图形即可解答.【详解】解:将变形可得:∵关于的一元二次方程有实数根,∴二次函数的图象与直线y=-m的图象有交点如下图所示,易得当-m≥-7,二次函数的图象与直线y=-m的图象有交点解得:m≤7故的最大值为7故选B.【点睛】此题考查的是二次函数和一元二次方程的关系,掌握将一元二次方程根的情况转化为二次函数图象与直线图象之间的交点问题和数形结合的数学思想是解决此题的关键.3、A【解析】结合向左平移的法则,即可得到答案.【详解】解:将抛物线y=x2+3向左平移2个单位可得y=(x+2)2+3,故选A.【点睛】此类题目主要考查二次函数图象的平移规律,解题的关键是要搞清已知函数解析式确定平移后的函数解析式,还是已知平移后的解析式求原函数解析式,然后根据图象平移规律“左加右减、上加下减“进行解答.4、A【分析】根据不等式组求出a的范围,然后再根据分式方程求出a的取值范围,综合考虑确定a的值,再求和即可.【详解】解不等式组得:∵至少有4个整数解∴,解得分式方程去分母得解得:∵分式方程有整数解,a为整数∴、、、∴、、、、、、、∵,∴又∵∴或满足条件的的和是-13,故选A.【点睛】本题考查了不等式组与分式方程,解题的关键是解分式方程时需要舍去增根的情况.5、A【分析】正多边形和圆,等腰直角三角形的性质,正方形的性质.图案中间的阴影部分是正方形,面积是,由于原来地砖更换成正八边形,四周一个阴影部分是对角线为的正方形的一半,它的面积用对角线积的一半【详解】解:.故选A.6、C【解析】用配方法将抛物线的一般式转化为顶点式,可确定顶点坐标.解答:解:∵y=x2+2x+1=(x+1)2,∴抛物线顶点坐标为(-1,0),故选C.7、C【分析】根据一条弧所对的圆周角是它所对的圆心角的一半可得∠BOC的度数,再根据补角性质求解.【详解】∵∠CDB=28°,∴∠COB=2∠CDB=2×28°=56°,∴∠AOC=180°-∠COB=180°-56°=124°.故选:C【点睛】本题考查圆周角定理,根据定理得出两角之间的数量关系是解答此题的关键.8、A【分析】通过已知条件求出,即函数解析式为,然后将选项逐个代入验证即可得.【详解】由题意将代入函数解析式得,解得,故函数解析式为,将每个选项代入函数解析式可得,只有选项A的符合,故答案为A.【点睛】本题考查了已知函数图象经过某点,利用代入法求系数,再根据函数解析式分析是否经过所给的点.9、B【分析】判断一个函数是不是二次函数,在关系式是整式的前提下,如果把关系式化简整理(去括号、合并同类项)后,能写成y=ax2+bx+c(a,b,c为常数,a≠0)的形式,那么这个函数就是二次函数,否则就不是.【详解】A.当a=0时,y=ax2+bx+c=bx+c,不是二次函数,故不符合题意;B.y=x(x﹣1)=x2-x,是二次函数,故符合题意;C.的自变量在分母中,不是二次函数,故不符合题意;D.y=(x﹣1)2﹣x2=-2x+1,不是二次函数,故不符合题意;故选B.【点睛】本题考查了二次函数的定义,一般地,形如y=ax2+bx+c(a,b,c为常数,a≠0)的函数叫做二次函数,据此求解即可.10、B【分析】在直角三角形ACD中,根据正切的意义可求解.【详解】如图:在RtACD中,tanC.故选B.【点睛】本题考查了锐角三角比的意义.将角转化到直角三角形中是解答的关键.11、A【解析】试题分析:因为cos60°=,所以选:A.考点:特殊角的三角比值.12、B【分析】确定“帅”、“相”、“兵”所在位置的格点构成的三角形的三边的长,然后利用相似三角形的对应边的比相等确定第三个顶点的位置即可.【详解】帅”、“相”、“兵”所在位置的格点构成的三角形的三边的长分别为;“车”、“炮”之间的距离为1,“炮”②之间的距离为,“车”②之间的距离为2,∵∴马应该落在②的位置,故选B【点睛】本题考查了相似三角形的知识,解题的关键是利用勾股定理求得三角形的各边的长,难度不大.二、填空题(每题4分,共24分)13、60°【分析】根据正n边形中心角的公式直接求解即可.【详解】解:正六边形的圆心角等于一个周角,即为,正六边形有6个中心角,所以每个中心角=故答案为:60°【点睛】本题考查正六边形,解答本题的关键是掌握正六边形的性质,熟悉正六边形的中心角的概念14、.【分析】点M(﹣2,10),代入二次函数y=2x2﹣5kx﹣3即可求出k的值.【详解】把点M(﹣2,10),代入二次函数y=2x2﹣5kx﹣3得,8+10k﹣3=10,解得,k=,故答案为:.【点睛】本题考查求二次函数解析式的系数,解题的关键是将图象上的点坐标代入函数解析式.15、【解析】试题分析:列表得:

黑1

黑2

白1

白2

黑1

黑1黑1

黑1黑2

黑1白1

黑1白2

黑2

黑2黑1

黑2黑2

黑2白1

黑2白2

白1

白1黑1

白1黑2

白1白1

白1白2

白2

白2黑1

白2黑2

白2白1

白2白2

共有16种等可能结果总数,其中两次摸出是白球有4种.∴P(两次摸出是白球)=.考点:概率.16、7【解析】分析:把已知等式两边平方,利用完全平方公式化简,即可求出答案.详解:把m+=3两边平方得:(m+)2=m2++2=9,则m2+=7,故答案为:7点睛:此题考查了分式的混合运算,以及完全平方公式,熟练掌握运算法则及公式是解本题的关键.17、>【分析】先求出抛物线的对称轴为,由,则当,y随x的增大而减小,即可判断两个函数值的大小.【详解】解:∵二次函数(a是常数,a≠0),∴抛物线的对称轴为:,∵,∴当,y随x的增大而减小,∵,∴;故答案为:.【点睛】本题考查了二次函数的性质,解题的关键是熟练掌握二次函数的性质进行解题.18、7【解析】直接利用已知把a,b用同一未知数表示,进而计算得出答案.【详解】∵3a=4b(a、b都不等于零),∴设a=4x,则b=3x,那么a+ba故答案为:73【点睛】此题主要考查了比例的性质,正确表示出a,b的值是解题关键.三、解答题(共78分)19、(1)①,②.(2)无变化;理由参见解析.(3),.【分析】(1)①当α=0°时,在Rt△ABC中,由勾股定理,求出AC的值是多少;然后根据点D、E分别是边BC、AC的中点,分别求出AE、BD的大小,即可求出的值是多少.②α=180°时,可得AB∥DE,然后根据,求出的值是多少即可.(2)首先判断出∠ECA=∠DCB,再根据,判断出△ECA∽△DCB,即可求出的值是多少,进而判断出的大小没有变化即可.(3)根据题意,分两种情况:①点A,D,E所在的直线和BC平行时;②点A,D,E所在的直线和BC相交时;然后分类讨论,求出线段BD的长各是多少即可.【详解】(1)①当α=0°时,∵Rt△ABC中,∠B=90°,∴AC=,∵点D、E分别是边BC、AC的中点,∴,BD=8÷2=4,∴.②如图1,,当α=180°时,可得AB∥DE,∵,∴(2)如图2,,当0°≤α<360°时,的大小没有变化,∵∠ECD=∠ACB,∴∠ECA=∠DCB,又∵,∴△ECA∽△DCB,∴.(3)①如图3,,∵AC=4,CD=4,CD⊥AD,∴AD=∵AD=BC,AB=DC,∠B=90°,∴四边形ABCD是矩形,∴BD=AC=.②如图4,连接BD,过点D作AC的垂线交AC于点Q,过点B作AC的垂线交AC于点P,,∵AC=,CD=4,CD⊥AD,∴AD=,∵点D、E分别是边BC、AC的中点,∴DE==2,∴AE=AD-DE=8-2=6,由(2),可得,∴BD=.综上所述,BD的长为或.20、见解析【分析】根据题意(将绕点逆时针旋转即可画出图形;【详解】解:如图所示,即为所求.【点睛】此题考查了旋转变换.注意抓住旋转中心与旋转方向是关键.21、(1)2,;(2)①是⊙的切线,;②或.【分析】(1)根据图形M,N间的“和睦距离”的定义结合已知条件求解即可.(2)①连接DF,DE,作DH⊥AB于H.设OC=x.首先证明∠CBO=30,再证明DH=DE即可证明是⊙的切线,再求出OE,DE的长即可求出点D的坐标.②根据,得到不等式组解决问题即可.【详解】(1)∵A(0,1),C(3,4),⊙C的半径为2,∴d(C,⊙C)=2,d(O,⊙C)=AC−2=,故答案为2;;(2)①连接,作于.设.∵,∴,解得,∴,∴,,∵是⊙的切线,∴平分,∴,∴,∵,∴,∴,∴是⊙的切线.∵,设,∵,∴,∴,,∴,∴,②∵∴B(0,)∴BD=由,,得解得或故答案为:或.【点睛】本题属于圆综合题,考查了图形M,N间的“和睦距离”,解直角三角形的应用,切线的判定和性质,不等式组等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考压轴题.22、.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的棋子颜色不同的情况,再利用概率公式即可求得答案.【详解】画树状图得:

∵共有9种等可能的结果,两次摸出的棋子颜色不同的有4种情况,

∴两次摸出的棋子颜色不同的概率为:.23、(1)详见解析;(2)详见解析;(3)【分析】(1)根据矩形的性质得到AE∥OC,AE=OC即可证明;(2)根据平行四边形的性质得到∠AOD=∠OCF,∠AOF=∠OFC,再根据等腰三角形的性质得到∠OCF=∠OFC.故可得∠AOD=∠AOF,利用SAS证明△AOD≌△AOF,由ADO=90°得到AH⊥OF,即可证明;(3)根据切线长定理可得AD=AF,CH=FH=2,设AD=x,则AF=x,AH=x+2,BH=x-2,再利用在Rt△ABH中,AH2=AB2+BH2,代入即可求x,即可得到AH的长.【详解】(1)解:连接AO,四边形AECO是平行四边形.∵四边形ABCD是矩形,∴AB∥CD,AB=CD.∵E是AB的中点,∴AE=AB.∵CD是⊙O的直径,∴OC=CD.∴AE∥OC,AE=OC.∴四边形AECO为平行四边形.(2)证明:由(1)得,四边形AECO为平行四边形,∴AO∥EC∴∠AOD=∠OCF,∠AOF=∠OFC.∵OF=OC∴∠OCF=∠OFC.∴∠AOD=∠AOF.∵在△AOD和△AOF中,AO=AO,∠AOD=∠AOF,OD=OF∴△AOD≌△AOF.∴∠ADO=∠AFO.∵四边形ABCD是矩形,∴∠ADO=90°.∴∠AFO=90°,即AH⊥OF.∵点F在⊙O上,∴AH是⊙O的切线.(3)∵HC、FH为圆O的切线,AD、AF是圆O的切线∴AD=AF,CH=FH=2,设AD=x,则AF=x,AH=x+2,BH=x-2,在Rt△ABH中,AH2=AB2+BH2,即(x+2)2=62+(x-2)2,解得x=∴AH=+2=.【点睛】此题主要考查直线与圆的关系,解题法的关键是熟知切线的判定定理与性质,及勾股定理的运用.24、(1);(2)或;(3)不存在,理由见解析.【分析】(1)设对称轴与轴交于点,如图1,易求出抛物线的对称轴,可得OE的长,然后根据平行线分线段成比例定理可得OA的长,进而可得点A的坐标,再把点A的坐标代入抛物线解析式即可求出m的值;(2)设点Q的横坐标为n,当点在轴上方时,过点Q作QH⊥x轴于点H,利用可得关于n的方程,解方程即可求出n的值,进而可得点Q坐标;当点在轴下方时,注意到,所以点与点关于直线对称,由此可得点Q坐标;(3)当点为x轴上方的点时,若存在点P,可先求出直线BQ的解析式,由BP⊥BQ可求得直线BP的解析式,然后联立直线BP和抛物线的解析式即可求出点P的坐标,再计算此时两个三角形的两组对应边是否成比例即可判断点P是否满足条件;当点Q取另外一种情况的坐标时,再按照同样的方法计算判断即可.【详解】解:(1)设抛物线的对称轴与轴交于点,如图1,∴轴,∴,∵抛物线的对称轴是直线,∴OE=1,∴,∴∴将点代入函数表达式得:,∴;(2)设,①点在轴上方时,,如图2,过点Q作QH⊥x轴于点H,∵,∴,解得:或(舍),∴;②点在轴下方时,∵OA=1,OC=3,∴,∵,∴点与点关于直线对称,∴;(3)①当点为时,若存在点P,使∽,则∠PBQ=∠COA=90°,由B(3,0)、Q可得,直线BQ的解析式为:,所以直线PB的解析式为:,联立方程组:,解得:,,∴,∵,,∴,∴不存在;②当点为时,如图4,由B(3,0)、Q可得,直线BQ的解析式为:,所以直线PB的解析式为:,联立方程组:,解得:,,∴,∵,,∴,∴不存在.综上所述,不存在满足条件的点,使∽.【点睛】本题考查了平行线分线段成比例定理、二次函数图象上点的坐标特征、一元二次方程的解法、相似三角形的判定和性质、锐角三角函数和两个函数的交点等知识,综合性强、具有相当的难度,熟练掌握上述知识、灵活应用分类和数形结合的数学思想是解题的关键.25、(1)见解析;(2)【分析】(1)连接OC,根据三角形的内角和得到∠EDC+∠ECD=90°,根据等腰三角形的性质得到∠A=∠

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论