河北省张家口市塞北管理区中学2021-2022学年高二数学文上学期期末试卷含解析_第1页
河北省张家口市塞北管理区中学2021-2022学年高二数学文上学期期末试卷含解析_第2页
河北省张家口市塞北管理区中学2021-2022学年高二数学文上学期期末试卷含解析_第3页
河北省张家口市塞北管理区中学2021-2022学年高二数学文上学期期末试卷含解析_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省张家口市塞北管理区中学2021-2022学年高二数学文上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为()A.243B.252C.261D.279参考答案:B由分步乘法原理知:用0,1,…,9十个数字组成的三位数(含有重复数字的)共有9×10×10=900,组成无重复数字的三位数共有9×9×8=648,因此组成有重复数字的三位数共有900-648=252.2.不等式≥0的解集是()A.{x|≤x<2} B.{x|} C.{x|x>2或} D.{x|x<2}参考答案:B【考点】其他不等式的解法.【分析】原不等式等价为(3x﹣1)(2﹣x)≥0,且2﹣x≠0,运用二次不等式的解法,即可得到解集.【解答】解:不等式≥0,等价为(3x﹣1)(2﹣x)≥0,且2﹣x≠0,解得≤x<2.即解集为{x|}.故选:B.3.已知长方体ABCD-A1B1C1D1中,AB=AD,AA1=2AB,E为AA1中点,则异面直线BE与CD1所成的角的余弦值为A.

B.

C.

D.参考答案:A4.对于平面和两条不同的直线、,下列命题是真命题的是()(A)若与所成的角相等,则

(B)若则(C)若,则

(D)若,则参考答案:D略5.已知F1、F2是椭圆的两焦点,过点F2的直线交椭圆于A、B两点,在△AF1B中,若有两边之和是10,则第三边的长度为(

)A.6 B.5 C.4 D.3参考答案:A【考点】椭圆的简单性质.【专题】计算题.【分析】由椭圆的定义得,所以|AB|+|AF2|+|BF2|=16,由此可求出|AB|的长.【解答】解:由椭圆的定义得两式相加得|AB|+|AF2|+|BF2|=16,又因为在△AF1B中,有两边之和是10,所以第三边的长度为:16﹣10=6故选A.【点评】本题考查椭圆的基本性质和应用,解题时要注意公式的合理运用.本题主要考查了椭圆的标准方程和椭圆与其他曲线的关系.要求学生综合掌握如直线、椭圆、抛物线等圆锥曲线的基本性质.6.已知抛物线,直线与交于两点,若,则点到直线的最大距离为()A.2

B.4 C.8 D.-4参考答案:C7.若圆C:x2+y2+2x﹣4y+3=0关于直线2ax+by+6=0对称,则由点(a,b)向圆C所作切线长的最小值是()A.2 B.3 C.4 D.6参考答案:C【考点】圆的切线方程;关于点、直线对称的圆的方程.【分析】由题意可知直线经过圆的圆心,推出a,b的关系,利用(a,b)与圆心的距离,半径,求出切线长的表达式,然后求出最小值.【解答】解:圆C:x2+y2+2x﹣4y+3=0化为(x+1)2+(y﹣2)2=2,圆的圆心坐标为(﹣1,2)半径为.圆C:x2+y2+2x﹣4y+3=0关于直线2ax+by+6=0对称,所以(﹣1,2)在直线上,可得﹣2a+2b+6=0,即a=b+3.点(a,b)与圆心的距离,,所以点(a,b)向圆C所作切线长:==≥4,当且仅当b=﹣1时弦长最小,为4.故选C.8.已知a,b,c分别是△内角A,B,C的对边,且(b﹣c)(sinB+sinC)=(a﹣)?sinA,则角B的大小为()A.30° B.45° C.60° D.120°参考答案:A【考点】余弦定理;正弦定理.【分析】由正弦定理化简已知等式可得c2+a2﹣b2=ac,由余弦定理可求cosB,结合B的范围即可得解.【解答】解:∵由正弦定理,可得,sinB=,sinC=,sinA=,∴由(b﹣c)(sinB+sinC)=(a﹣)?sinA可得,(b﹣c)(b+c)=a(a﹣c),即有c2+a2﹣b2=ac,则cosB==,由于0<B<180°,则B=30°.故选:A.【点评】本题主要考查了正弦定理和余弦定理及运用,考查运算能力,属于中档题.9.某同学从家到学校要经过两个十字路口.设各路口信号灯工作相互独立,且在第一个路口遇到红灯的概率为,两个路口都遇到红灯的概率为,则他在第二个路口遇到红灯的概率为(

)A. B. C. D.参考答案:C【分析】记在两个路口遇到红灯分别为事件A,B,由于两个事件相互独立,所以,代入数据可得解.【详解】记事件A为:“在第一个路口遇到红灯”,事件B为:“在第二个路口遇到红灯”,由于两个事件相互独立,所以,所以.【点睛】本题考查相互独立事件同时发生的概率问题,考查运用概率的基本运算.10.设正项等比数列{an}的前n项和为Sn,且,则数列{an}的公比为(

)

A.4 B.2 C.1 D.参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.已知都是定义在上的函数,,若,且(且)及,则的值为

.参考答案:12.设,则函数在=________时,有最小值__________。参考答案:

解析:13.函数在处的切线方程___________

参考答案:,又,所以函数在处的切线方程。14.已知,则的值是

.参考答案:15.已知向量,.若,则实数__________.

参考答案:略16.若中心在原点的双曲线的一条渐近线经过点(3,﹣4),则此双曲线的离心率为

.参考答案:或【考点】双曲线的简单性质.【专题】计算题;分类讨论;综合法;圆锥曲线的定义、性质与方程.【分析】根据中心在原点的双曲线的一条渐近线经过点(3,﹣4),=或,利用离心率公式,可得结论.【解答】解:∵中心在原点的双曲线的一条渐近线经过点(3,﹣4),∴=或,∴e==或.故答案为:或.【点评】本题考查双曲线的简单性质,考查学生的计算能力,比较基础.17.已知函数,若都是从区间任取的一个数,则成立的概率是_______________.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.在直角坐标系xOy中,直线l的参数方程为为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴非负半轴为极轴)中,圆C的方程为ρ=6sinθ(1)求圆C的直角坐标方程;(2)若点P(1,2),设圆C与直线l交于点A、B,求的最小值.参考答案:【考点】QH:参数方程化成普通方程.【分析】(1)利用极坐标与直角坐标的互化方法,求圆C的直角坐标方程;(2)利用参数的几何意义,求的最小值.【解答】解:(1)圆C的方程为ρ=6sinθ,可化为直角坐标方程为x2+y2=6y,即x2+(y﹣3)2=9;(2)直线l的参数方程为为参数),代入x2+(y﹣3)2=9,可得t2+2(cosα﹣sinα)t﹣7=0,∴t1+t2=﹣2(cosα﹣sinα),t1t2=﹣7,∴===≥,∴的最小值为.19.已知函数f(x)=xex+5.(1)求f(x)的单调区间;(2)求f(x)在[0,1]上的值域.参考答案:【考点】6B:利用导数研究函数的单调性;6E:利用导数求闭区间上函数的最值.【分析】(1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(2)根据函数的单调性求出f(x)的最大值和最小值,从而求出f(x)在[0,1]上的值域即可.【解答】解:(1)f′(x)=(x+1)ex,令f′(x)=0得x=﹣1,令f′(x)>0得x>﹣1,∴f(x)的增区间为(﹣1,+∞).令f′(x)<0得x<﹣1,∴f(x)的减区间为(﹣∞,﹣1).(2)当时x∈[0,1],f′(x)>0,∴f(x)在[0,1]上递增,∴f(x)min=f(0)=5,f(x)max=f(0)=e+5,∴f(x)在[0,1]上的值域为[5,e+5].20.如图,在梯形ABCD中,,PA⊥平面ABCD,.(1)证明:CD⊥平面PAC;(2)若E为AD的中点,求证:CE∥平面PAB.参考答案:证明:(1)∵平面,平面,∴.又,∴平面.(2)∵,∴.∵平面,∴,∴.又为的中点,∴,∴四边形是正方形,∴.又平面,平面,∴平面.21.已知为椭圆,的左右焦点,是坐标原点,过作垂直于轴的直线交椭圆于,设.(1)证明:成等比数列;(2)若的坐标为,求椭圆的方程;(3)在(2)的椭圆中,过的直线与椭圆交于、两点,若,求直线的方程.参考答案:(1)证明:由条件知M点的坐标为,其中,,

,即成等比数列.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论