湖南长沙市芙蓉区第十六中学2022-2023学年九年级数学第一学期期末复习检测试题含解析_第1页
湖南长沙市芙蓉区第十六中学2022-2023学年九年级数学第一学期期末复习检测试题含解析_第2页
湖南长沙市芙蓉区第十六中学2022-2023学年九年级数学第一学期期末复习检测试题含解析_第3页
湖南长沙市芙蓉区第十六中学2022-2023学年九年级数学第一学期期末复习检测试题含解析_第4页
湖南长沙市芙蓉区第十六中学2022-2023学年九年级数学第一学期期末复习检测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列说法正确的是()A.一颗质地硬币已连续抛掷了5次,其中抛掷出正面的次数为1次,则第6次一定抛掷出为正面B.某种彩票中奖的概率是2%,因此买100张该种彩票一定会中奖C.天气预报说2020年元旦节紫云下雨的概率是50%,所以紫云2020年元旦节这天将有一半时间在下雨D.某口袋中有红球3个,每次摸出一个球是红球的概率为100%2.如图,在△ABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC相切,点P,Q分别是边BC和半圆上的动点,连接PQ,则PQ长的最大值与最小值的和是()A.6B.C.9D.3.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.4.的半径为5,圆心O到直线l的距离为3,则直线l与的位置关系是A.相交 B.相切 C.相离 D.无法确定5.用半径为3cm,圆心角是120°的扇形围成一个圆锥的侧面,则这个圆锥的底面半径为()A. B.1.5cm C. D.1cm6.如图所示,AB是⊙O的直径,AM、BN是⊙O的两条切线,D、C分别在AM、BN上,DC切⊙O于点E,连接OD、OC、BE、AE,BE与OC相交于点P,AE与OD相交于点Q,已知AD=4,BC=9,以下结论:①⊙O的半径为,②OD∥BE,③PB=,④tan∠CEP=其中正确结论有()A.1个 B.2个 C.3个 D.4个7.若α为锐角,且,则α等于()A. B. C. D.8.在美术字中,有些汉字是中心对称图形,下面的汉字不是中心对称图形的是()A. B. C. D.9.在一个不透明的袋子中共装有红、黄、蓝三种颜色的小球,这些球除颜色外都相同,其中有3个红球,5个黄球,若随机摸出一个红球的概率为,则这个袋子中蓝球的个数是()A.3个 B.4个 C.5个 D.12个10.如果(m+2)x|m|+mx-1=0是关于x的一元二次方程,那么m的值为()A.2或-2 B.2 C.-2 D.011.如图,AD是△ABC的中线,点E在AD上,AD=4DE,连接BE并延长交AC于点F,则AF:FC的值是()A.3:2 B.4:3 C.2:1 D.2:312.在平面直角坐标系中,点P(﹣2,7)关于原点的对称点P'在()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空题(每题4分,共24分)13.如图,已知函数y=ax2+bx+c(a1)的图象的对称轴经过点(2,1),且与x轴的一个交点坐标为(4,1).下列结论:①b2﹣4ac1;②当x2时,y随x增大而增大;③a﹣b+c1;④抛物线过原点;⑤当1x4时,y1.其中结论正确的是_____.(填序号)14.抛物线y=2x2+4x-1向右平移_______个单位,经过点P(4,5).15.一个质地均匀的小正方体,六个面分别标有数字1,1,2,4,5,5,随机掷一次小正方体,朝上一面的数字是奇数的概率是__________.16.如图,四边形,都是平行四边形,点是内的一点,点,,,分别是,上,,的一点,,,若阴影部分的面积为5,则的面积为__________.17.已知:二次函数y=ax2+bx+c图象上部分点的横坐标x与纵坐标y的对应值如表格所示,那么它的图象与x轴的另一个交点坐标是_____.x…﹣1012…y…0343…18.在比例尺为1∶500000的地图上,量得A、B两地的距离为3cm,则A、B两地的实际距离为_____km.三、解答题(共78分)19.(8分)如图,点是反比例函数图象上的一点,过点作轴于点,连接,的面积为1.点的坐标为.若一次函数的图象经过点,交双曲线的另一支于点,交轴点.(1)求反比例函数和一次函数的解析式;(1)若为轴上的一个动点,且的面积为5,请求出点的坐标.20.(8分)如图,在中,,,.点从点出发,沿向终点运动,同时点从点出发,沿射线运动,它们的速度均为每秒5个单位长度,点到达终点时,、同时停止运动,当点不与点、重合时,过点作于点,连接,以、为邻边作.设与重叠部分图形的面积为,点的运动时间为.(1)①的长为______;②的长用含的代数式表示为______;(2)当为矩形时,求的值;(3)当与重叠部分图形为四边形时,求与之间的函数关系式.21.(8分)如图,四边形ABCD的外接圆为⊙O,AD是⊙O的直径,过点B作⊙O的切线,交DA的延长线于点E,连接BD,且∠E=∠DBC.(1)求证:DB平分∠ADC;(2)若CD=9,tan∠ABE=,求⊙O的半径.22.(10分)解方程.(1)1x1﹣6x﹣1=0;(1)1y(y+1)﹣y=1.23.(10分)已知:在Rt△ABC中,AB=BC,在Rt△ADE中,AD=DE;连结EC,取EC的中点M,连结DM和BM.(1)若点D在边AC上,点E在边AB上且与点B不重合,如图1,求证:BM=DM且BM⊥DM;(2)如果将图1中的△ADE绕点A逆时针旋转小于45°的角,如图2,那么(1)中的结论是否仍成立?如果不成立,请举出反例;如果成立,请给予证明.24.(10分)如图,在由12个小正方形构造成的网格图(每个小正方形的边长均为1)中,点A,B,C.(1)画出△ABC绕点B顺时针旋转90°后得到的△A1B1C1;(2)若点D,E也是网格中的格点,画出△BDE,使得△BDE与△ABC相似(不包括全等),并求相似比.25.(12分)如图,在△ABC中,点D在BC边上,BC=3CD,分别过点B,D作AD,AB的平行线,并交于点E,且ED交AC于点F,AD=3DF.(1)求证:△CFD∽△CAB;(2)求证:四边形ABED为菱形;(3)若DF=,BC=9,求四边形ABED的面积.26.有三张正面分别标有数字:-1,1,2的卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中随机抽出一张记下数字,放回洗匀后再从中随机抽出一张记下数字.(1)请用列表或画树形图的方法(只选其中一种),表示两次抽出卡片上的数字的所有结果;(2)将第一次抽出的数字作为点的横坐标x,第二次抽出的数字作为点的纵坐标y,求点(x,y)落在双曲线上的概率.

参考答案一、选择题(每题4分,共48分)1、D【分析】概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生.【详解】解:A、一颗质地硬币已连续抛掷了5次,其中抛掷出正面的次数为1次,则第6次一定抛掷出为正面,是随机事件,错误;

B、某种彩票中奖的概率是2%,因此买100张该种彩票不一定会中奖,错误;

C、下雨的概率是50%,是说明天下雨的可能性是50%,而不是明天将有一半时间在下雨,错误;

D、正确.

故选:D.【点睛】正确理解概率的含义是解决本题的关键.注意随机事件的条件不同,发生的可能性也不等.2、C【解析】试题分析:如图,设⊙O与AC相切于点E,连接OE,作OP1⊥BC垂足为P1交⊙O于Q1,此时垂线段OP1最短,P1Q1最小值为OP1﹣OQ1,∵AB=10,AC=8,BC=6,∴AB2=AC2+BC2,∴∠C=10°,∵∠OP1B=10°,∴OP1∥AC∵AO=OB,∴P1C=P1B,∴OP1=12AC=4,∴P1Q1最小值为OP1﹣OQ1=1,如图,当Q2在AB边上时,P2与B重合时,P2Q2考点:切线的性质;最值问题.3、D【分析】根据轴对称图形、中心对称图形的定义即可判断.【详解】A、是轴对称图形,不符合题意;B、是中心对称图形,不符合题意;C、是轴对称图形,不符合题意;D、是轴对称图形,也是中心对称图形,故符合题意.故选:D.【点睛】此题主要考查了中心对称图形与轴对称图形的概念,轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.4、A【分析】根据直线和圆的位置关系可知,圆的半径大于直线到圆距离,则直线l与O的位置关系是相交.【详解】∵⊙O的半径为5,圆心O到直线的距离为3,∴直线l与⊙O的位置关系是相交.故选A.【点睛】本题考查了直线和圆的位置关系,直接根据直线和圆的位置关系解答即可.5、D【详解】解:设此圆锥的底面半径为r,根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得,,解得:r=1.故选D.6、C【解析】试题解析:作DK⊥BC于K,连接OE.∵AD、BC是切线,∴∠DAB=∠ABK=∠DKB=90°,∴四边形ABKD是矩形,∴DK=AB,AD=BK=4,∵CD是切线,∴DA=DE,CE=CB=9,在RT△DKC中,∵DC=DE+CE=13,CK=BC﹣BK=5,∴DK==12,∴AB=DK=12,∴⊙O半径为1.故①错误,∵DA=DE,OA=OE,∴OD垂直平分AE,同理OC垂直平分BE,∴AQ=QE,∵AO=OB,∴OD∥BE,故②正确.在RT△OBC中,PB===,故③正确,∵CE=CB,∴∠CEB=∠CBE,∴tan∠CEP=tan∠CBP===,故④正确,∴②③④正确,故选C.7、B【解析】根据得出α的值.【详解】解:∵∴α-10°=60°,

即α=70°.

故选:B.【点睛】本题考查特殊角的三角函数值,特殊角的三角函数值的计算在中考中经常出现,题型以选择题、填空题为主.8、A【解析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形可得答案.【详解】A、不是中心对称图形,故此选项符合题意;B、是中心对称图形,故此选项不符合题意;C、是中心对称图形,故此选项不符合题意;D、是中心对称图形,故此选项不符合题意;故选:A.【点睛】本题考查中心对称图形的概念,解题的关键是熟知中心图形的定义.9、B【分析】设蓝球有x个,根据摸出一个球是红球的概率是,得出方程即可求出x.【详解】设蓝球有x个,依题意得解得x=4,经检验,x=4是原方程的解,故蓝球有4个,选B.【点睛】此题主要考查了概率公式的应用,用到的知识点为:概率=所求情况数与总情况数之比.得到所求的情况数是解决本题的关键.10、B【分析】根据一元二次方程的定义可得:|m|=1,且m+1≠0,再解即可.【详解】解:由题意得:|m|=1,且m+1≠0,

解得:m=1.

故选:B.【点睛】此题主要考查了一元二次方程的定义,关键是掌握“未知数的最高次数是1”;“二次项的系数不等于0”.11、A【分析】过点D作DG∥AC,根据平行线分线段成比例定理,得FC=1DG,AF=3DG,因此得到AF:FC的值.【详解】解:过点D作DG∥AC,与BF交于点G.

∵AD=4DE,

∴AE=3DE,

∵AD是△ABC的中线,∴∵DG∥AC∴,即AF=3DG,即FC=1DG,∴AF:FC=3DG:1DG=3:1.

故选:A.【点睛】本题考查了平行线分线段成比例定理,正确作出辅助线充分利用对应线段成比例的性质是解题的关键.12、D【分析】平面直角坐标系中任意一点,关于原点对称的点的坐标是,即关于原点对称的点的横纵坐标都互为相反数,这样就可以确定其对称点所在的象限.【详解】∵点关于原点的对称点的坐标是,∴点关于原点的对称点在第四象限.故选:D.【点睛】本题比较容易,考查平面直角坐标系中关于原点对称的两点的坐标之间的关系,是需要识记的内容.二、填空题(每题4分,共24分)13、①④⑤【分析】根据函数图象和二次函数的性质可以判断题目中的各个小题是否正确,从而可以解答本题.【详解】解:由函数图象可知,抛物线与轴两个交点,则,故①正确,当时,随的增大而减小,故②错误,当时,,故③错误,由函数的图象的对称轴经过点,且与轴的一个交点坐标为,则另一个交点为,故④正确,当时,,故⑤正确,故答案为:①④⑤.【点睛】本题考查二次函数图象与系数的关系、抛物线与轴的交点,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.14、3或7【分析】先化成顶点式,设向右平移个单位,再由平移规律求出平移后的抛物线解析式,再把点(4,5)代入新的抛物线解析式即可求出m的值.【详解】,设抛物线向右平移个单位,得到:,∵经过点(4,5),

∴,化简得:,∴

解得:或.

故答案为:或.【点睛】本题主要考查了函数图象的平移和一个点在图象上那么这个点就满足该图象的解析式,要求熟练掌握平移的规律:左加右减,上加下减,并用规律求函数解析式.15、【分析】直接利用概率求法进而得出答案.【详解】∵一个质地均匀的小正方体,六个面分别标有数字1,1,2,4,5,5,∴随机掷一次小正方体,朝上一面的数字是奇数的概率是:.故答案为:.【点睛】此题主要考查了概率公式,正确掌握概率公式是解题关键.16、90【分析】根据平行四边形的性质得到AB∥CD,AB=CD,EF∥HG,EF=HG,根据平行线分线段成比例定理和相似三角形的性质即可得到结论.【详解】∵四边形都是平行四边形,∴,,∴,∴,.又∵,∴,∴,,,.易知,∴【点睛】此题考查平行四边形的性质,平行线分线段成比例定理,三角形的面积,正确的识别图形是解题的关键.17、(3,0).【解析】分析:根据(0,3)、(2,3)两点求得对称轴,再利用对称性解答即可.详解:∵抛物线y=ax2+bx+c经过(0,3)、(2,3)两点,∴对称轴x==1;点(﹣1,0)关于对称轴对称点为(3,0),因此它的图象与x轴的另一个交点坐标是(3,0).故答案为(3,0).点睛:本题考查了抛物线与x轴的交点,关键是熟练掌握二次函数的对称性.18、1【分析】由在比例尺为1:50000的地图上,量得A、B两地的图上距离AB=3cm,根据比例尺的定义,可求得两地的实际距离.【详解】解:∵比例尺为1:500000,量得两地的距离是3厘米,

∴A、B两地的实际距离3×500000=100000cm=1km,

故答案为1.【点睛】此题考查了比例尺的性质.注意掌握比例尺的定义,注意单位要统一.三、解答题(共78分)19、(1),;(1)P(0,5)或(0,1).【分析】(1)根据“点A是反比例函数图象上的一点,过点A作AB⊥x轴于点B,连接OA,△AOB的面积为1”即可求得k的值,从而得到反比例函数的解析式,分别将点A和点D的坐标代入反比例函数的解析式,即可求得点A和点D的坐标,用待定系数法求出a和b的值,即能求得一次函数的解析式,

(1)△PAC可以分成△PAD和△PCD,分别求出点A和点C到y轴的距离,根据“△PAC的面积为5”,求出PD的长度,结合点D的坐标,求出点P的坐标即可.【详解】解:(1)根据题意得:

k=-1×1=-4,

即反比例函数的解析式为,解得:

m=4,n=-1,

即点A(-1,4),点C(4,-1),

把点A(-1,4),C(4,-1)代入y=ax+b得:,解得:,即一次函数的解析式为:y=-x+3,

(1)把x=0代入y=-x+3得:y=3,

即点D(0,3),

点A到y轴的距离为1,点C到y轴的距离为4,

S△PAD=×PD×1=PD,

S△PCD=×PD×4=1PD,

S△PAC=S△PAD+S△PCD=PD=5,

PD=1,

∵点D(0,3),

∴点P的坐标为(0,1)或(0,5).【点睛】本题考查了反比例函数与一次函数的交点问题,根据题意和图示找出正确的等量关系式解决本题的关键.20、(1)①3;②3t;(2);(3)当0<t≤时,S=-3t2+48t;当<t<3,S=t2−14t+1.【分析】(1)①根据勾股定理即可直接计算AB的长;②根据三角函数即可计算出PN;

(2)当▱PQMN为矩形时,由PN⊥AB可知PQ∥AB,根据平行线分线段成比例定理可得,即可计算出t的值.

(3)当▱PQMN与△ABC重叠部分图形为四边形时,有两种情况,Ⅰ.▱PQMN在三角形内部时,Ⅱ.▱PQMN有部分在外边时.由三角函数可计算各图形中的高从而计算面积.【详解】解:(1)在Rt△ABC中,∠C=90°,AC=20,BC=2.

∴AB==3.

∴sin∠CAB=,

由题可知AP=5t,

∴PN=AP•sin∠CAB=5t•=3t.

故答案为:①3;②3t.

(2)当▱PQMN为矩形时,∠NPQ=90°,

∵PN⊥AB,

∴PQ∥AB,

∴,

由题意可知AP=CQ=5t,CP=20-5t,

∴,

解得t=,

即当▱PQMN为矩形时t=.

(3)当▱PQMN△ABC重叠部分图形为四边形时,有两种情况,

Ⅰ.如解图(3)1所示.▱PQMN在三角形内部时.延长QM交AB于G点,

由(1)题可知:cosA=sinB=,cosB=,AP=5t,BQ=2-5t,PN=QM=3t.

∴AN=AP•cosA=4t,BG=BQ•cosB=9-3t,QG=BQ•sinB=12-4t,

∵.▱PQMN在三角形内部时.有0<QM≤QG,

∴0<3t≤12-4t,

∴0<t≤.

∴NG=3-4t-(9-3t)=16-t.

∴当0<t≤时,▱PQMN与△ABC重叠部分图形为▱PQMN,S与t之间的函数关系式为S=PN•NG=3t•(16-t)=-3t2+48t.

Ⅱ.如解图(3)2所示.当0<QG<QM,▱PQMN与△ABC重叠部分图形为梯形PQGN时,

即:0<12-4t<3t,解得:<t<3,

▱PQMN与△ABC重叠部分图形为梯形PQGN的面积S=NG(PN+QG)=(16−t)(3t+12−4t)=t2−14t+1.

综上所述:当0<t≤时,S=-3t2+48t.当<t<3,S=t2−14t+1.【点睛】本题考查了平行四边形的性质、勾股定理、矩形的性质、锐角三角函数等知识,关键是根据题意画出图形,分情况进行讨论,避免出现漏解.21、(1)见解析;(2)【分析】(1)连接,证明,可得,则;(2)证明,,则,可求出,则答案可求出.【详解】解:(1)证明:连接OB,∵BE为⊙O的切线,∴OB⊥BE,∴∠OBE=90°,∴∠ABE+∠OBA=90°,∵OA=OB,∴∠OBA=∠OAB,∴∠ABE+∠OAB=90°,∵AD是⊙O的直径,∴∠OAB+∠ADB=90°,∴∠ABE=∠ADB,∵四边形ABCD的外接圆为⊙O,∴∠EAB=∠C,∵∠E=∠DBC,∴∠ABE=∠BDC,∴∠ADB=∠BDC,即DB平分∠ADC;(2)解:∵tan∠ABE=,∴设AB=x,则BD=2x,AD==x,∵∠E=∠E,∠ABE=∠BDE,∴△AEB∽△BED,∴BE2=AE•DE,且==,设AE=a,则BE=2a,∴4a2=a(a+x),∴a=x,∵∠BAE=∠C,∠ABE=∠BDC,∴△AEB∽△CBD,∴,∴=,解得=3,∴AD=x=15,∴OA=.【点睛】本题考查切线的性质、解直角三角形、勾股定理等知识,解题的关键是学会添加常用辅助线解决问题.22、(1),;(1)y1=﹣1,y1=.【分析】(1)根据配方法即可求出答案;(1)根据因式分解法即可求出答案;【详解】解:(1)∵1x1﹣6x﹣1=0,∴x1﹣3x=,∴(x﹣)1=,∴x=,解得:,;(1)∵1y(y+1)﹣y=1,∴1y(y+1)﹣y﹣1=0,∴(y+1)(1y﹣1)=0,∴y+1=0或1y﹣1=0,解得:y1=﹣1,y1=.【点睛】本题考查解一元二次方程,解题的关键是熟练掌握一元二次方程的解法,本题属于基础题型.23、(1)证明见解析(2)当△ADE绕点A逆时针旋转小于45°的角时,(1)中的结论成立【分析】(1)根据直角三角形斜边上的中线的性质得出BM=DM,然后根据四点共圆可以得出∠BMD=2∠ACB=90°,从而得出答案;(2)连结BD,延长DM至点F,使得DM=MF,连结BF、FC,延长ED交AC于点H,根据题意得出四边形CDEF为平行四边形,然后根据题意得出△ABD和△CBF全等,根据角度之间的关系得出∠DBF=∠ABC=90°.【详解】解:(1)在Rt△EBC中,M是斜边EC的中点,∴.在Rt△EDC中,M是斜边EC的中点,∴.∴BM=DM,且点B、C、D、E在以点M为圆心、BM为半径的圆上.∴∠BMD=2∠ACB=90°,即BM⊥DM.(2)当△ADE绕点A逆时针旋转小于45°的角时,(1)中的结论成立.证明:连结BD,延长DM至点F,使得DM=MF,连结BF、FC,延长ED交AC于点H.∵DM=MF,EM=MC,∴四边形CDEF为平行四边形,∴DE∥CF,ED=CF,∵ED=AD,∴AD=CF,∵DE∥CF,∴∠AHE=∠ACF.∵,,∴∠BAD=∠BCF,又∵AB=BC,∴△ABD≌△CBF,∴BD=BF,∠ABD=∠CBF,∵∠ABD+∠DBC=∠CBF+∠DBC,∴∠DBF=∠ABC=90°.在Rt△中,由,,得BM=DM且BM⊥DM.【点睛】本题主要考查的是平行四边形的判定与性质、三角形全等、直角三角形的性质,综合性比较强.本题解题的关键是通过构建全等三角形来得出线段相等,然后根据线段相等得出所求的结论.24、(1)如图1所示:△A1B1C1,即为所求;见解析;(1)如图1所示:△BDE,即为所求,见解析;相似比为::1.【分析】(1)直接利用旋转的性质得出对应点位置进而得出答案;(1)直接利用相似图形的性质得出符合题意的答案.【详解】(1)如图1所示:△A1B1C1,即为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论