版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
§1.1.1算法的概念
【教学目标】:
(1)了解算法的含义,体会算法的思想。
(2)能够用自然语言叙述算法。
(3)掌握正确的算法应满足的要求。
(4)会写出解线性方程(组)的算法。
(5)会写出一个求有限整数序列中的最大值的算法。
【教学重点】算法的含义、解二元一次方程组和判断一个数为质数的算法设计。.
【教学难点】把自然语言转化为算法语言。.
【学法与教学用具】
学法:
1、写出的算法,必须能解决一类问题(如:判断一个整数n(n>l)是否为质数;求任意一个方
程的近似解;……),并且能够重复使用。
2、要使算法尽量简单、步骤尽量少。
3、要保证算法正确,且计算机能够执行,如:让计算机计算1X2X3X4X5是可以做到的,
但让计算机去执行“倒一杯水”“替我理发”等则是做不到的。
教学用具:计算机,TI-voyage200图形计算器
【教学过程】
一、本章章头图说明
章头图体现了中国古代数学与现代计算机科学的联系,它们的基础都是“算法二
算法作为一个名词,在中学教科书中并没有出现过,我们在基础教育阶段还没有接触算
法概念。但是我们却从小学就开始接触算法,熟悉许多问题的算法。如,做四则运算要先乘
除后加减,从里往外脱括弧,竖式笔算等都是算法,至于乘法口诀、珠算口诀更是算法的具
体体现。广义地说,算法就是做某一件事的步骤或程序。菜谱是做菜肴的算法,洗衣机的使
用说明书是操作洗衣机的算法,歌谱是一首歌曲的算法。在数学中,主要研究计算机能实现
的算法,即按照某种机械程序步骤一定可以得到结果的解决问题的程序。
古代的计算工具:算筹与算盘.
20世纪最伟大的发明:计算机,计算机是强大的实现各种算法的工具。
x-2j=-1①
例1:解二元一次方程组:
2x+j=1②
分析:解二元一次方程组的主要思想是消元的思想,有代入消元和加减消元两种消元的方法,
下面用加减消元法写出它的求解过程.
解:第一步:②-①义2,得:5y=3;③
第二步:解③得J=—;
第三步:将y=|代入①,得x=|.
学生探究:对于一般的二元一次方程组来说,上述步骤应该怎样进一步完善?
老师评析:本题的算法是由加减消元法求解的,这个算法也适合一般的二元一次方程组的解
法。下面写出求方程组的解的算法:
例2:写出求方程组?(。也-与仇,o)的解的算法.
a2x+b2y=c2②
解:第一步:②XR-①Xa2,得:(flib2-a2by)y=axc2-a2cx③
第二步:解③得了="一号
aib2一°2"1
第三步:将.="2一"|代入①,得x=£t二生
a{b2-a2bxa]
利用TI-voyage200图形计算器演示:(吸引学生的注意力)
j
:eryuan(>:Loc-alx,y,al,bl,ml?a2,b2,mi
:Prgn:Input"al'Sal
:ClrIO:Input"bi%bi
:Loc-aLx^u,alml,m2:Input
!Input,,al»ai!Input"a2"»a2
!Input"bl%%bl!Input,,b2",b2
:Irtput"Ml",hl!Ir*put"M2,,»MI2
!Ihput,,a2",a2!(a2*nl-al*m2VCa2*bl-al*b2)->y
:Input"'b2"»b2:<nl-bl*y)/aHx
:Inp一ut"'m2",M2:Disp*'x=:M»x
:<a2*n1-a1*m2)/Ca2*b1-a1*b2):D1SPny=5H»y
!<Kil-bl*y)/aHxsEndPrgm
MAINDEGRPFFiDKFUNCMAINDEGAFTRUXFUNC
运行结果:
.~Y:=>■r:x-Y_F?Y~Y*"i
|二I,…:依”:漱»・#:VJ冕、⑵毋出II
2
b2
1
m2(其中输入a1=1,b1=・2,m1=・1,a2=2
1
x=:b2=1,m2=1,当然可输入其它数值)
.2
y=!
MAINDEGRPPRDXFUNCWHO
算法概念.
在京学上,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题是程序或
步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.
说明:
1.“算法”没有一个精确化的定义,教科书只对它作了描述性的说明.
2.算法的特点:
⑴有限性:
一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的.
⑵确定性:
算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可.
⑶顺序性与正确性:
算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一
步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成
问题.
(4)不唯一性:
求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的算法.
⑸普遍性:
很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限、事先
设计好的步骤加以解决.
例题讲评:
例3、任意给定一个大于1的整数n,试设计一个程序或步骤对n是否为质数做出判断.
分析:(1)质数是只能被1和自身整除的大于1的整数.
(2)要判断一个大于1的整数n是否为质数,只要根据质数的定义,用比这个整数小
的数去除n,如果它只能被1和本身整除,而不能被其它整数整除,则这个数便是质数.
解:算法:
第一步:判断n是否等于2.若n=2,则n是质数;若n>2,则执行第二步.
第二步:依次从2~(n-1)检验是不是n的因数,即整除n的数.若有这样的数,则n不是质
数;若没有这样的数,则n是质数.
说明:本算法是用自然语言的形式描述的.设计算法一定要做到以下要求:
(1)写出的算法必须能解决一类问题,并且能够重复使用.
(2)要使算法尽量简单、步骤尽量少.
(3)要保证算法正确,且计算机能够执行.
利用TI-voyage200图形计算器演示:(学生已经被吸引住了)
以Rc。石。11彘旗即工遮箱
:zhishu2<)|
:PrgnInputaintergen:
:Locali,k,n5
:Input11Inputainterger:11,n5.
!For2^ceilin2(n-^2)
!ICnod(n,i)=0Then、一,.shizhishu
!DUPn,"bushizhishu"15JJInputainterger!
!Re-turnA51
:EndIf
:EndFor51.
sDispn,"shizhishu"bushizhishu
sEndPrgm
MRINOEGMf-FfiDXFUNCMRINPEGMf-FfiDXFUNCWHO
例4、.用二分法设计一个求方程/-2=0的近似根的算法.
分析:该算法实质是求痣的近似值的一个最基本的方法.
解:设所求近似根与精确解的差的绝对值不超过0.005,算法:
第一步:令/(》)=/一2.因为/⑴<0,/⑵>0,所以设币=1,X2=2.
第二步:令/n=土产,判断f(m)是否为0.若是,则m为所求;若否,则继续判断)/(m)
大于0还是小于0.
第三步:若/(x)/(m)>0,则X|=m;否则,令X2=m.
第四步:判断|与-*2|<0-0。5是否成立?若是,则xi、X2之间的任意值均为满足条件的近似
根;若否,则返回第二步.
说明:按以上步骤,我们将依次得到课本第4页的表1-1和图1.1-1.于是,开区间(1.4140625,
1.41796875)中的实数都满足假设条件的原方程是近似根.
利用TI-voyage200图形计算器演示:
您fc。名。册能科工.猛置1庐岛后。山先帽五而遮展[〕
•ar*#end":u+b
:Prgn:EndIT
:Loc-alr<x>a,b,e:IfThen
:DefineF<x?S=x^2-2:c*b
!Input"Jingquedu”,e!Else
!InpuL"zuoduandian11,aSc+a
sInput"youduahdain",bJErtdir
sirrca)*r(b)<oThensEMUhil©
:Uhi19abs(a-b)>e:EndIf
:<a+b>/2^c:Dispa
;IffCc)=OThensDispb
sc^-asEndPrgm
MAINDEGRPTRUKFUNCMAINDEGHFPRUXFUNC
运行结果:
.~丫…丫『一丫~Y~1
H,…:也维57建:3:£卜冕、|P「gmI0心M中国|]
jingquedu
0.005
zuoduandian
1
youduandain
2
1.4140625
1.41796875
MAINDEGHFFRUXFUNC,”11。
练习1:
写出解方程X2-2X-3=0的一个算法。
解:算法1:
第一步:移项,得X2—2X—3=0;①
第二步:①式两边同加1并配方,得(x-1)2=4;②
第三步:②式两边开方,得x—1=±2;③
第四步:解③得x=3或x=-l。
算法2:
第一步:计算方程的判别式判断其符号△=22+4X3=16>0;
第二步:将a=l,b=—2,c=-3代入求根公式x=_b_q~~—
得X1=3,X2=-1
评析:比较两种算法,算法2更简单,步骤少,所以利用公式解决问题是最理想、
合算的算法。因此在寻求算法的过程中,首先是利用公式。
下面设计一个求一般的一元二次方程ax2+bx+c=0的根的算法如下:
第一步:计算△=b?+4ac;
第二步:若△<();
第三步:输出方程无实根;
第四步:若△》();
—b±Nb2-4ac
第五步:计算并输出方程根
Xi,2=2
练习2、求1X3X5X7X9X11的值,写出其算法。
第一步,先求1X3,得到结果3;
第二步,将第一步所得结果3再乘以5,得到结果15;
第三步,再将15乘以7,得到结果105;
第四步,再将105乘以9,得到945;
第五步,再将945乘以11,得到10395,即是最后结果。
评析:求解某个问题的算法不同于求解一个具体问题的方法,算法必须能够解决一类问
题,并且能够重复使用;算法过程要能一步一步地执行,每一步操作必须确切,能在有
限步后得出结果。
练习3、有蓝和黑两个墨水瓶,但现在却错把蓝墨水装在了黑墨水瓶中,黑墨水错装在
了蓝墨水瓶中,要求将其互换,请你设计算法解决这一问题。
分析:由于两个墨水瓶中的墨水不能直接交换,故可以考虑通过引入第三个空墨水
瓶的办法进行交换。
解:算法步骤如下:
第一步:取一只空的墨水瓶,设其为白色;
第二步:将黑墨水瓶中的蓝墨水装入白瓶中;
第三步:将蓝墨水瓶中的黑墨水装入黑瓶中;
第四步:将白瓶中的蓝墨水装入蓝瓶中;
第五步:交换结束。
评析:对于这种非数值性问题的算法设计问题,应当首先建立过程模型,根据过程设计步骤,
完成算法。
小结
1、算法概念和算法的基本思想
(1)算法与一般意义上具体问题的解法的联系与区别;
(2)算法的五个特征。
2、利用算法的思想和方法解决实际问题,能写出一此简单问题的算法
3、两类算法问题
(1)数值性计算问题,如:解方程(或方程组),解不等式(或不等式组),套用公式判断性
的问题,累加,累乘等一类问题的算法描述,可通过相应的数学模型借助一般数学计算方法,
分解成清晰的步骤,使之条理化即可。
(2)非数值性计算问题,如:排序、查找、变量变换、文字处理等需先建立过程模型,通过
模型进行算法设计与描述。
4、利用TI-voyage200图形计算器演示时,开始学生看,想,探究,然后模范、创新。图形
计算器为学生创建一个自我发挥的平台。
作业:(课本第4页练习)
1、任意给定一个正实数,设计一个算法求以这个数为半径的圆的面积.
解:算法步骤:
第一步:输入任意一个正实数r;
第二步:计算以r为半径的圆的面积:S=nr2-,
第三步:输出圆的面积S.
2、任意给定一个大于1的正整数n,设计一个算法求出n的所有因数.
解:算法步骤:
第一步:依次以2〜(n-1)为除数去除n,检查余数是否为0.若是,则是n的因数;若不是,
则不是n的因数;
第二步:在n的因数中加入1和n;
第三步:输出n的所有因数.
利用TI-voyage200图形计算器演示:
:uinshu2Cp
:Prgn
:Locali»k,n,a,e,
:Input11Input--ainterger:",n
!Fori,1
!ICnod<n,i5=0Then
!Di£pi
sEhdir
:EndFor
:EndPrgm
MftlNDEG-SFFRDXFUNC
运行结果:
§1.1.2程序框图
【教学目标】:
(6)掌握程序框图的概念;会用通用的图形符号表示算法,掌握算法的三个基本逻辑结构
(7)掌握画程序框图的基本规则,能正确画出程序框图。
(8)通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程;学会灵活、正
确地画程序框图。
【教学重点】经过模仿、操作、探索,经历通过设计程序框图表达求解问题的过程,重点是
程序框图的基本概念、基本图形符号和3种基本逻辑结构
【教学难点】难点是能综合运用这些知识正确地画出程序框图。
【学法与教学用具】:
学法:
1、要弄清各种图形符号的意义,明确每个图形符号的使用环境,图形符号间的联结方式。
图形符号都有各自的使用环境和作用
2、在我们描述算法或画程序框图时,必须遵循一定的逻辑结构,事实证明,无论如何复杂的
问题,我们在设计它们的算法时,只需用顺序结构、条件结构和循环结构这三种基本逻辑
就可以了,因此我们必须掌握并正确地运用这三种基本逻辑结构。
教学用具:计算机,Tl-voyage200图形计算器
【教学过程】
引入:
算法可以用自然语言来描述,但为了使算法的程序或步骤表达得更为直观,我们更经常地用
图形方式来表示它。
程序框图基本概念:
(1)程序构图的概念
程序框图乂称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的
图形。
一个程序框图包括以下儿部分:表示相应操作的程序框;带箭头的流程线;程序框外必要的
文字说明。
(2)构成程序框的图形符号及其作用
程序框名称功能
表示一个算法的起始和结束,是任何流程
起止框
\__图不可少的。
表示一个算法输入和输出的信息,可用在
输入、输出框
算法中任何需要输入、输出的位置。
赋值、计算,算法中处理数据需要的算式、
处理框公式等分别写在不同的用以处理数据的
__处理框内。
判断某一条件是否成立,成立时在出口处
判断框标明“是”或“Y”;不成立时标明“否”
O或“N”。
学习这部分知识的时候,要掌握各个图形的形状、作用及使用规则,画程序框图的规则如下:
1、使用标准的图形符号。
2、框图一般按从上到下、从左到右的方向画。
3、除判断框外,大多数流程图符号只有一个进入点和一个退出点。判断框具有超过一个退出
点的唯一符号。
4、判断框分两大类,一类判断框“是”与“否”两分支的判断,而且有且仅有两个结果;另
一类是多分支判断,有儿种不同的结果。
5、在图形符号内描述的语言要非常简练清楚。
(3)、算法的三种基本逻辑结构:顺序结构、条件结构、循环结构。
顺序结构
顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的,它是由若干个
依次执行的处理步骤组成的,它是任何一个算法都离不开的一种基本算法结构。
顺序结构在程序框图中的体现就是用流程线将程序框自上而
下地连接起来,按顺序执行算法步骤。如在示意图中,A框和B
框是依次执行的,只有在执行完A框指定的操作后,才能接着执
行B框所指定的操作。
例3、已知一个三角形的三边分别为2、3、4,利用海伦公式设计一个算法,求出它的面积,
并画出算法的程序框图。
(算法一自然语言)
第一步:a=2,b=3,c=4;
2+3+4
第二步:p=~^—;
第三步:S=、p(p-2)(p―3)(p―4)
利用T「voyage200图形计算器演示:(学生先看,
1
运行
"»b-------A
*<P-b>*(p-e))4s
MAINPEGHPPfiDKFUNCMAIN-DEGEXACT~~FI1NCWHO-
应用:请写出求A(x”力),B(X2,y2)的两点距离的一个算法,并画出程序框图。
(学生动手先构思算法,然后画出程序框图,个别好学生利用做TI做实验)
条件结构
条件结构是指在算法中通过对条件的判断,
根据条件是否成立而选择不同流向的算法结构。
它的一般形式如右图所示:
注意:
1、右图此结构中包含一个判断框,根据给定的
条件P是否成立而选择执行A框或B框。无论
P条件是否成立,只能执行A框或B框之一,不
可能同时执行A框和B框,也不可能A框、B框都不执行。
2、一个判断结构可以有多个判断框。
例4、任意给定3个正实数,设计一个算法,判断分别以这3个数为三边边长的三角形是否
存在。画出这个算法的程序框图。
解:
算法分析:判断分别以这3个数为三边边长的三角形是否存在,只需要验收这3个数当中任
意两个数的和是否大于第3个数,这就需要用到条件结构。
程序框图:(见课本)
利用Tbvoyage200图形计算器演示:(学生先看,再跟着做)
="iiirY~丫」,丫ry丫~F5Y~Y-S
U,…:依”演.:冰上心力:冗\“、他广9新10v出|]
:Prgna=
:ClrIO5
sLoc-ala^b.c
!Inputna=r,,a运行r
!Input,'b=",b
!I^put11e="c.——>c=
!If*a+b>ean?ds+Gbandb-1-c>aThen13
:D1SP"shisanjiaoxing"
:ElseshisanJiaoxing
•Dis^nbush!sanjiaoxing"
MAINOEGEXUCTFUNCMAINDEGEXHSFUNCWHO
(学生在利用图形计算器的过程中已经渗透着算法的奥妙)
应用:设计求一个数X的绝对值的算法,并画出相应的程序框图。
(当然这个要求学生先画出程序框图,再利用图形计算器来解决,快的学生三分钟可以弄好)
F5
ControlL:|,…:依:量:三卜冗、|PrgmI0乜2继通|
DEGEX府5DEGEXrtCI
循环结构:
在一些算法中,经常会出现从某处开始,按照一定条件,反复执行某一处理步骤的情况,这
就是循环结构,反复执行的处理步骤为循环体,显然,循环结构中一定包含条件结构。循环
结构又称重复结构,循环结构可细分为两类:
(1)、一类是当型循环结构,如下左图所示,它的功能是当给定的条件P成立时,执行A框,
A框执行完毕后,再判断条件P是否成立,如果仍然成立,再执行A框,如此反复执行A框,
直到某一次条件P不成立为止,此时不再执行A框,离开循环结构。
(2)、另一类是直到型循环结构,如下右图所示,它的功能是先执行,然后判断给定的条件
P是否成立,如果P仍然不成立,则继续执行A框,直到某一次给定的条件P成立为止,此
不成立成立不成立
p
当型循环结构直到型循环结构
注意:
1、循环结构要在某个条件下终止循环,这就需要条件结构来判断。因此,循环结构中一定包
含条件结构,但不允许“死循环”。
2、在循环结构中都有一个计数变量和累加变量。计数变量用于记录循环次数,累加变量用于
输出结果。计数变量和累加变量一般是同步执行的,累加一次,计数一次。
例5、设计一个计算1+2+3+…+100的值的算法,并画出程序框图。
解:
算法如下:
第一步:sum=O;
第二步:i=l;
第三步:sum=sum+i;
第四步:i=i+l;
第五步:如果i不大于100,返回重新执行第三步,第四步,第五步,否则,算法结
束,最后得到的sum值就是1+2+3+-+100的值。
程序框图(可参看课本)
利用TI-voyage200图形计算器演示:(先看当型循环结构)
「丫~丫㈠y丫”“丫F5Y~Y-'I
:力
:Prgrp5050.
:clrio.
sLocali,he
!14-i运行
!04-he
:Whilei<100----►
!he-+i->he
:i+1虱
:EndUlhile
:Disphe
sEndPrgm
MAINDEGEXflCTFUNC
(学生会思考:若取不同n,计算1+2+3+…+n
(再看直到型循环结构)
j
u:y8(>|
JPrgn
:Locali,自ok
:l->i:0->sol
SLoop运行
!sol+i->sol
siri>ioo
sGotoend
:i*Hi
:EndLoop
5Lblend
:Dispsol
MAINDEGEXrtCIFUNCMAINDEGEXfKIFUNCWHO
(已知循环次数可以用For语句)
1j慈豆黑扇■冰力黑:通厂)
Pr9a5050.
Clr—*O
Lc।a11•he
Ii
Ohe运行
F.11O
&r1G
h&+・l4A
EndFore
.
DlshQ
Endrgm
DEGEX府5DEGEXrtCI
应用:设计一个计算F+2?+……+100?的值的算法,并画出程序框图。
(学生很快的把刚才那个程序改“he+iThe”为“he+^The”即可)
课堂小结:
本节课主要讲述了程序框图的基本知识,包括常用的图形符号、算法的基本逻辑结构,
算法的基本逻辑结构有三种,即顺序结构、条件结构和循环结构。其中顺序结构是最简单的
结构,也是最基本的结构,循环结构必然包含条件结构,所以这三种基本逻辑结构是相互支
撑的,它们共同构成了算法的基本结构,无论怎样复杂的逻辑结构,都可以通过这三种结构
来表达。
在具体画程序框图时,要注意的问题:流程线上要有标志执行顺序的前头;判断框后边
的流程线应根据情况标注“是”或“否”;在循环结构中,要注意根据条件设计合理的计数变
量、累加变量等,特别要条件的表述要恰当、精确。
利用Tbvoyage200图形计算器时,很多学生已对它着迷了,学生会想出更多的问题,互
相进行比较、讨论,自己出发掘比课本更重要的东西。
§1.2.1输入、输出语句和赋值语句
【教学目标】:
(9)正确理解输入语句、输出语句、赋值语句的结构。
(10)让学生充分地感知、体验应用计算机解决数学问题的方法;并能初步操作、模仿。
(11)过实例,使学生理解3种基本的算法语句(输入语句、输出语句和赋值语句)的表示
方法、结构和用法,能用这三种基本的算法语句表示算法,进一步体会算法的基本思
相心、O
【教学重点】正确理解输入语句、输出语句、赋值语句的作用。
【教学难点】准确写出输入语句、输出语句、赋值语句。
【学法与教学用具】
学法:
我们用自然语言或程序框图描述的算法,计算机是无法“看得懂,听得见”的。因此还
需要将算法用计算机能够理解的程序设计语言翻译成计算机程序。程序设计语言有很多种。
如BASIC,Foxbase,C语言,C++,J++,VB,VC,JB等。为了实现算法中的三种基本的逻辑
结构:顺序结构、条件结构和循环结构,各种程序设计语言中都包含下列基本的算法语句:
输入语句、输出语句、赋值语句条件语句和循环语句.今天,我们一起用类BASIC语言学习输
入语句、输出语句、赋值语句。
教学用具:计算机,TI-voyage200图形计算器
【教学过程】
输入语句、输出语句和赋值语句基本上对应于算法中的顺序结构。下面的例题是用这三种基
本的算法语句表示的一个算法。
例1:用描点法作函数y=x3+3x2—24x+30的图象时,需要求出自变量和函数的一组对
应值。编写程序,分别计算当x=-5,-4,-3,-2,-1,0,1,2,3,4,5时的函数值。
程序:INPUT"x=";x输入语句
y=x"3+3*x"2-24*x+30赋值语句
PRINTx打印语句
PRINTy打印语句
END
利用TI-voyage200图形计算器演示:
(学生先看,再跟着做,学生先不必深究该程序如何得来,模仿编写程序,通过运行自己编
写的程序发现问题所在,进一步提高学生的模仿能力,并观察与BASIC语言的异同)
探究:在这个程序中,你们觉得哪些是输入语句、输出语句和赋值语句呢?(同学们互相交
流、议论、猜想、概括出结论o提示:“input”和“print"("Disp")的中文意思等)
If:-"iiirY~丫㈠丫丫”▼丫~FSY~Y-S
|一小・“,:11量br•北m::卜尤G:w“、|PrgmI0心出|]
x=
5
x=
y=xA3-»-3*xA2-24*x+30=11,5
y=xA3->-3*xA2-24*x+30=
MAINDEGEX府CTFUNCMAINDEGEXIKIFIINC^Q/MO
输入语句
(1)输入语句的一般格式
图形计算器
格式
INPUT“提示内容”;变量INPUT"提示内容”,变量
(2)输入语句的作用是实现算法的输入信息功能;
(3)“提示内容”提示用户输入什么样的信息,变量是指程序在运行时其值是可以变化的量;
(4)输入语句要求输入的值只能是具体的常数,不能是函数、变量或表达式;
(5)提示内容与变量之间用分号“;”隔开,若输入多个变量,变量与变量之间用逗号“,”
隔开。
输出语句
(1)输出语句的一般格式
图形计算器
格式
PRINT"提示内容”;表达式Disp”提示内容”,变量
(2)输出语句的作用是实现算法的输出结果功能;
(3)“提示内容”提示用户输入什么样的信息,表达式是指程序要输出的数据;
(4)输出语句可以输出常量、变量或表达式的值以及字符。
赋值语句
(1)赋值语句的一般格式图形计算器
变量=表达式格式表达式T变量
(2)赋值语句的作用是将表达式所代表的值赋给变量;
(3)赋值语句中的“="称作赋值号,与数学中的等号的意义是不同的。赋值号的左右两边
不能对换,它将赋值号右边的表达式的值赋给赋值号左边的变量;
(4)赋值语句左边只能是变量名字,而不是表达式,右边表达式可以是一个数据、常量或算
式;
(5)对于一个变量可以多次赋值。
注意:①赋值号左边只能是变量名字,而不能是表达式。如:2=X是错误的。
②赋值号左右不能对换。如“A=B”“B=A”的含义运行结果是不同的。
③不能利用赋值语句进行代数式的演算。(如化简、因式分解、解方程等)
④赋值号与数学中的等号意义不同。
例2:编写程序,计算一个学生数学、语文、英语三门课的平均成绩。
分析:先写出算法,画出程序框图,再进行编程。
程序:
INPUT“Maths=";a
INPUT“Chinese:";b
INPUT“English:";c
PRINT“Theaverage=";(a+b+c)/3
END
学生利用TI-voyage200图形计算器演示:
FT1n~匹K,―.C
j卜am”・卜:i.你外yw卜.比?:匕:.:1||
:k2()|
:Prgmmaths=
:Input"Maths.=",a90
•Input11chinese=",bchinese=
!Input,,english=11,c运行85
!DiSP"theaverageis",<-a4-b+c)/3
!Er*dPrghenglish=
95
the^uerageis
90
MAINDEGEXrtCIFUNCMAINDEGEXrtCTFUNCWHO
(利用图形计算器实验,学生会发现编程越来越有趣,从老师引导到自觉学习,不断的修改
程序,直到自己创新)
例3、给一个变量重复赋值。
J
MAINDEGEXACTMAINDEGEXIKIFUNC
学生得到以下结论:对于一个变量可以多次赋值,变量的值就是最后一次的赋值。
例4、交换两个变量A和B的值,并输出交换前后的值。
程序:
INPUTA
分析:引入一个中间变量X,将A的值赋予X,
INPUTB
又将B的值赋予A,再将X的值赋予B,从PRINTA,B
而达到交换A,B的值。(比如生活中交换装x=A
A=B
满红墨水和蓝墨水的两个瓶子里的墨水,需要
B=x
再找一个空瓶子)
PRINTA,B
END
:k3<)12
:Prgn
:Inputa7
sInputb36
iDisp11yuanshuzhishi!11,a,b
Ja-^-xyuanshuzhis-his
12
36
:D1SP"houlaishuzhishi:a,b
:EndFrgrihoulaishuzhishi•
36
DEGEXIKIDEGEXACT
(完成程序后,学生可以利用TI-voyage200图形计算器编写自己的程序了)
P15练习1.2.3参考答案:
程序:INPUT"请输入华氏温度:”;x
y=(x-32)*5/9
PRINT“华氏温度:”;x
PRINT“摄氏温度:";y
END
创新:如果要求输入一个摄氏温度,输出其相应的华氏温度,又该如何设计程序?(学生课
后思考,讨论、再利用Tbvoyage200图形计算器完成)
2.程序:INPUT“请输入a(aO)=";a
INPUT"请输入b(b0)=";b
X=a+b
Y=a-b
Z=a*b
Q=a/b
PRINTa.b
PRINTX,Y,Z,Q
END
3.程序:p=(2+3+4)/2
t=p*(p-2)*(p-3)*(p-4)
s=SQR(t)
PRINT”该三角形的面积为:”;s
END(注:SQR()是函数名,用来求某个数的平方根)
其中要注意图形计算器的个别语句与BASIC语言有点差异,要灵活转换!
【课堂小结】
本节课介绍了输入语句、输出语句和赋值语句的结构特点及联系。掌握并应用输入语句,
输出语句,赋值语句编写一些简单的程序解决数学问题,特别是掌握赋值语句中的作
用及应用。编程一般的步骤:先写出算法,再进行编程。我们要养成良好的习惯,也有助于
数学逻辑思维的形成。注意:BASIC语言中的标准函数,如SQR(x)表示x的算术平方根,
ABS(x)表示x的绝对值等。
有了图形计算器,学生的主动性明显加强,他们可以随时随地的编写属于自己的程序!
§1.2.2条件语句
【教学目标】:
(12)正确理解条件语句的概念,并掌握其结构。
(13)会应用条件语句编写程序。
【教学重点】条件语句的步骤、结构及功能。
【教学难点】会编写程序中的条件语句。
【学法与教学用具】:
学法:了解条件语句在程序中起判断转折作用,在解决实际问题中起决定作用。
教学用具:计算机,TI-voyage200图形计算器
【教学过程】
条件语句
1、条件语句的一般格式有两种:(1)IF—THEN—ELSE语句;(2)IF—THEN语句。
2、IF—THEN—ELSE语句
IF—THEN—ELSE语句的一般格式为图1,对应的程序框图为图2。
IF条件THEN
语句1
ELSE
语句2
ENDIF
图1图2
分析:在IF—THEN—ELSE语句中,“条件”表示判断的条件,“语句1”表示满足条件时执
行的操作内容;“语句2”表示不满足条件时执行的操作内容;ENDIF表示条件语句的结束。
计算机在执行时,首先对IF后的条件进行判断,如果条件符合,则执行THEN后面的语句1;
若条件不符合,则执行ELSE后面的语句2。
3、IF—THEN语句
容,条件不满足时,结束程序;ENDIF表示条件语句的结束。计算机在执行时首先对IF
后的条件进行判断,如果条件符合就执行THEN后边的语句,若条件不符合则直接结束该条
件语句,转而执行其它语句。
例5、编写程序,输入一元二次方程ax2+bx+c=0的系数,输出它的实数根。
分析:先把解决问题的思路用程序框图表示出来,然后再根据程序框图给出的算法步骤,逐
步把算法用对应的程序语句表达出来。(程序框图先由学生讨论,再统一,可以参考课本)
算法分析:
在求解方程之前,需要首先判断判别式的符号,再根据判别式的符号判断方程根的情况:△
>0时,方程有两个不相等的实数根;△=()时,方程有两个相等的实数根;△<()时,方程
没有实数根。这个过程可以用算法中的条件结构来表示。
利用TI-voyage200图形计算器演示(程序见下两图)
jj
:k5()
:Prgn
:Input11inputa=",a
:Input"Inputb=",b
!Input11Inputc=",crootis!",xl
!b^2-4*a*c4d
s•b/(2*a)->proot!Hx2=",x2
!j(3b£(d))/(2*5>4q
:ird>0Then
:p4-q->xlroot"
;p-q-^x2
SICxl=x2Then
MAINDEGEXACTFUNCMAINDEGEXACTFUNC
运行程序:输入a=l,b=-2,c=-l时,结果为:
「±"・川•丫~Y;:r;x-Y_r?Y~Y—'i
1
Inputb=
-2
Inputc=
-1
toorealroot:xl=
■15+1(学生会惊喜的发现:自己也是个编程高手了!)
x2=
1-J2
MRINDEGEM5FUNCWHO
例6、编写程序,使得任意输入的3个整数按从大到小的顺序输出。
算法分析:用a,b,c表示输入的3个整数;为了节约变量,把它们重新排列后,仍用a,b,
c表示,并使aeb》c.具体操作步骤可先讨论,再对照课本。
程序框图和程序:(参照课本)
利用TI-voyage200图形计算器演示(程序见下两图)
1IFc>a
:bijlao
a:t
:Prgn3buca
,
:Loc-alHh«,
a一at♦c
:InputHb二u>dIr
二bEn
,
!InputH一n>b
C>Ic
*InpijtThc.bmt
A-nel
sirb>ac+ba
Mttc
:b->aEndIr
:g
t*bDisE
;EndIfEndr
;IfC>3Then
MRINDEGEKIKTFUNCMAINDEGEXIKIFUNC运行程
序:输入a=3,b=8,c=2时,结果为:
l<TWY~~丫…丫r“丫~rsy-Y""\
T,・“,:依i:«.br.::K:J:w3小、PrgalOCM中出
a
3
b
8
C
2
8
3
2
MRINDEGEXIKIFUNCWHO
练习:r3X2+1(X>0),
1、已知函数f(x)=<x+1(x=0),
〔2X2+3X(X<0).
编写一个程序,对每输入的个X值,都得到相应的函数值。(学生利用条件语句的嵌套,
可选择IF—THEN语句,先写出算法,再利用图形计算器验证)
课本练习2
提示:mod的用法(即整除中取余数);intdiv的用法(即整除中取商的整数部分)
口不屁息;。山先遇:匕%.遮北I]
:)|
:Prgm,yuanLiangweishushi
:Input11yuan1iangweishushi",x29
:Ifand100Then^iaohuanhoushis
!intDiv(x10)4a
!mod(x,10)I4b运行92
______guanLiangueishushi
:Di^p"jiaohuarihoushi!x
:Else
:0i£P"wrong',jiaohuanhoushis
sEndIf87
;EndPrgm
MAINDEGEX肌IFUNCMRINDEGEX肌IFUNCWHO
小结
条件语句一般用在需要对条件进行判断的算法设计中,如判断一个数的正负,确定两个
数的大小等问题,还有求分段函数的函数值等,往往要用条件语句,有时甚至要用到条件语
句的嵌套
编程的一般步骤:
(1)算法分析:根据提供的问题,利用数学及相关学科的知识,设计出解决问题的算法。
(2)画程序框图:依据算法分析,画出程序框图。
(3)写出程序:根据程序框图中的算法步骤,逐步把算法用相应的程序语句表达出来。
§1.2.3循环语句
【教学目标】:
(14)正确理解循环语句的概念,并掌握其结构。
(15)会应用循环语句编写程序。
【教学重点】两种循环
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小额汽车贷款合同范例
- 2024年企业租车合同协议样本
- 标准版市政道路工程合同
- 上门服务协议合同范本2024年
- 小型货车销售合同
- 网络广告合作协议
- 2024年度网络安全防护服务合同
- 办公租赁合同模板
- (2024版)人工智能医疗诊断系统开发合同
- 2024年度医疗器械独家代理合同
- 跨境数据流动的全球治理进展、趋势与中国路径
- 【多旋翼无人机的组装与调试5600字(论文)】
- 2023年辽阳市宏伟区事业单位考试真题
- 环境工程专业英语 课件
- 继电保护动作分析报告课件
- 五年级数学上册8解方程课件
- 教学工作中存在问题及整改措施
- 内部项目跟投协议书(正)
- 钢管静压桩质量监理细则
- 5000头奶牛养殖场新建项目环境评估报告书
- 16飞机颠簸教学课件
评论
0/150
提交评论