




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省阳江市第七中学2023年高一数学文期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.(5分)一个圆锥的表面积为π,它的侧面展开图是圆心角为120°的扇形,则该圆锥的高为() A. 1 B. C. 2 D. 2参考答案:B考点: 旋转体(圆柱、圆锥、圆台).专题: 空间位置关系与距离.分析: 设圆锥的底面半径为r,结合圆锥的表面积为π,它的侧面展开图是圆心角为120°的扇形,求出圆锥和母线,进而根据勾股定理可得圆锥的高.解答: 设圆锥的底面半径为r,∵它的侧面展开图是圆心角为120°的扇形,∴圆锥的母线长为3r,又∵圆锥的表面积为π,∴πr(r+3r)=π,解得:r=,l=,故圆锥的高h==,故选:B点评: 本题考查的知识点是旋转体,熟练掌握圆锥的几何特征是解答的关键.2.设数列是等比数列,满足,且,,则(
)A.B.C.D.参考答案:B3.已知f(x),g(x)对应值如表.x01-1f(x)10-1x0-11g(x)-101则f(g(1))的值为()A.-1
B.0
C.1
D.不存在参考答案:B4.设>1,则图像大致为(
)参考答案:B略5.(5分)(2011新课标)下列函数中,既是偶函数又在(0,+∞)上单调递增的函数是() A.y=2x3 B.y=|x|+1 C.y=﹣x2+4 D.y=2﹣|x|参考答案:B【考点】函数奇偶性的判断;函数奇偶性的性质. 【专题】计算题;函数的性质及应用. 【分析】由函数的奇偶性和单调性的定义和性质,对选项一一加以判断,即可得到既是偶函数又在(0,+∞)上单调递增的函数. 【解答】解:对于A.y=2x3,由f(﹣x)=﹣2x3=﹣f(x),为奇函数,故排除A; 对于B.y=|x|+1,由f(﹣x)=|﹣x|+1=f(x),为偶函数,当x>0时,y=x+1,是增函数,故B正确; 对于C.y=﹣x2+4,有f(﹣x)=f(x),是偶函数,但x>0时为减函数,故排除C; 对于D.y=2﹣|x|,有f(﹣x)=f(x),是偶函数,当x>0时,y=2﹣x,为减函数,故排除D. 故选B. 【点评】本题考查函数的性质和运用,考查函数的奇偶性和单调性及运用,注意定义的运用,以及函数的定义域,属于基础题和易错题. 6.从这20个正整数中,每次取3个不同的数组成等比数列,则不同等比数列的个数共有A.10 B.16 C.20 D.22参考答案:D7.函数是
A.最小正周期为的偶函数
B.最小正周期为的奇函数
C.最小正周期为的偶函数
D.最小正周期为的奇函数参考答案:D8.已知函数f(x)=,若方程f(x)=a有四个不同的解x1,x2,x3,x4,且x1<x2<x3<x4,则x3(x1+x2)+的取值范围为()A.(﹣1,+∞) B.(﹣1,1) C.(﹣∞,1) D.[﹣1,1]参考答案:B【考点】根的存在性及根的个数判断;函数的图象.【分析】作出函数f(x),得到x1,x2关于x=﹣1对称,x3x4=1;化简条件,利用数形结合进行求解即可.【解答】解:作函数f(x)的图象如右,∵方程f(x)=a有四个不同的解x1,x2,x3,x4,且x1<x2<x3<x4,∴x1,x2关于x=﹣1对称,即x1+x2=﹣2,0<x3<1<x4,则|log2x3|=|log2x4|,即﹣log2x3=log2x4,则log2x3+log2x4=0即log2x3x4=0则x3x4=1;当|log2x|=1得x=2或,则1<x4<2;<x3<1;故x3(x1+x2)+=﹣2x3+,<x3<1;则函数y=﹣2x3+,在<x3<1上为减函数,则故x3=取得最大值,为y=1,当x3=1时,函数值为﹣1.即函数取值范围是(﹣1,1).故选:B.【点评】本题考查分段函数的运用,主要考查函数的单调性的运用,运用数形结合的思想方法是解题的关键.9.若且,则xy有(
)A.最小值64 B.最大值64 C.最小值 D.最小值参考答案:A考点:基本不等式。分析:和定积最大,直接运用均值不等式2/x+8/y=1≥2=8,就可解得xy的最小值,注意等号成立的条件。解答:因为x>0,y>0所以2/x+8/y=1≥2=8,?xy≥64当且仅当x=4,y=16时取等号,故选A。点评:本题考查了均值不等式,定理的使用条件为一正二定三相等,利用基本不等式可求最值,和定积最大,积定和最小。10.设有直线m,n和平面,则下列四个命题中,正确的是(
)A.若m∥α,n∥α,则m∥n B.若m?α,n?α,m∥β,l∥β,则α∥βC.若α⊥β,m?α,则m⊥β D.若α⊥β,m⊥β,mα,则m∥α参考答案:D【分析】在A中,m与n相交、平行或异面;在B中,α与β相交或平行;在C中,m⊥β或m∥β或m与β相交;在D中,由直线与平面垂直的性质与判定定理可得m∥α.【详解】由直线m、n,和平面α、β,知:对于A,若m∥α,n∥α,则m与n相交、平行或异面,故A错误;对于B,若m?α,n?α,m∥β,n∥β,则α∥β或α与β相交,故B错误;对于中,若α⊥β,α⊥β,m?α,则m⊥β或m∥β或m与β相交,故C错误;对于D,若α⊥β,m⊥β,mα,则由直线与平面垂直的性质与判定定理得m∥α,故D正确.故选:D.【点睛】本题考查了命题真假的判断问题,考查了空间线线、线面、面面的位置关系的判定定理及推论的应用,体现符号语言与图形语言的相互转化,是中档题.二、填空题:本大题共7小题,每小题4分,共28分11.已知函数和定义如下表:123443213124
则不等式≥解的集合为
。参考答案:12.已知函数f(x),g(x)分别由下表给出:x123
x123f(x)211g(x)321
则当f(g(x))=2时,x=_______________.参考答案:、3;13.下列四个说法: ①函数上也单调递增,所以在区间上是增函数; ②若函数; ③符合条件的集合A有4个; ④函数有3个零点。 其中正确说法的序号是______________。参考答案:③④14.数列,的通项公式的是
。参考答案:略15.清洗衣服,若每次能洗去污垢的,要使存留的污垢不超过1%,则至少要清洗______次。
参考答案:4略16.定义,若,,则函数在的单调性是__________.(填“递增”、“递减”、“先减后增”、“先增后减”其中之一即可)参考答案:先增后减由定义结果为,的较小者,单调递减,,单调递增,,又,∴,,,,,,,∴在先增后减.17.函数的值域是
.参考答案:(-1,1]三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.某工厂在政府的帮扶下,准备转型生产一种特殊机器,生产需要投入固定成本万元,生产与销售均已百台计数,且每生产台,还需增加可变成本万元,若市场对该产品的年需求量为台,每生产百台的实际销售收入近似满足函数.()试写出第一年的销售利润(万元)关于年产量(单位:百台,,)的函数关系式:(说明:销售利润=实际销售收入-成本)()因技术等原因,第一年的年生产量不能超过台,若第一年的年支出费用(万元)与年产量(百台)的关系满足,问年产量为多少百台时,工厂所得纯利润最大?参考答案:见解析()由题意可得,,即,.()设工厂所得纯利润为,则.∴当时,函数取得最大值.当年产量为百台时,工厂所得纯利润最大,最大利润为万元.19.已知函数f(x)满足f()=x+.(1)求函数的解析式;(2)判断函数f(x)在区间(,+∞)上的单调性,并用定义法加以证明.参考答案:【考点】函数解析式的求解及常用方法.【专题】转化思想;定义法;函数的性质及应用.【分析】(1)利用换元法进行求解即可.(2)利用函数单调性的定义进行证明即可.【解答】解:(1)设t=,则x=2t,即f(t)=2t+,即f(x)=2(x+),x≠0.(2)函数在(,1)上为减函数,则(1,+∞)为增函数,对任意的1<x1<x2,则f(x1)﹣f(x2)=2(x1+﹣x2﹣)=2(x1﹣x2)?,∵1<x1<x2,∴x1x2>1,则x1x2﹣1>0,x1﹣x2<0,∴f(x1)﹣f(x2)<0,即f(x1)<f(x2),∴函数在区间(1,+∞)上是单调递增函数.同理函数在(,1)上为减函数.【点评】本题主要考查函数解析式的求解以及函数单调性的证明,利用定义法和换元法是解决本题的关键.20.计算:参考答案:见解析【知识点】指数与指数函数解:
21.已知定义在区间上的函数为奇函数且(1)求实数m,n的值;(2)求证:函数上是增函数。(3)若恒成立,求t的最小值。参考答案:(1)对应的函数为,对应的函数为
(2)
理由如下:令,则为函数的零点。,方程的两个零点因此整数
(3)从图像上可以看出,当时,
当时,
22.设数列{an},{bn},已知,,(1)求数列的通项公式;(2)设Sn为数列{bn}的前n项和,对任意.(i)求证:;(ii)若恒成立,求实数p的取值范围.参考答案:(1);(2)(i)见证明;(ii)【分析】(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高三学习攻略-主题班会课件
- 2025年餐饮营销方案策划主题
- 2025年暑期工作方案
- 2025年瓦楞彩钢夹芯板项目可行性研究报告
- 2025年环保型聚烯烃阻燃剂项目可行性研究报告
- 武汉生物工程学院《药学情景英语》2023-2024学年第一学期期末试卷
- 浙江宇翔职业技术学院《供配电工程》2023-2024学年第二学期期末试卷
- 浙江省宁波市四校2025届初三下学期第一次周考化学试题试卷含解析
- 四川农业大学《三字一话》2023-2024学年第二学期期末试卷
- 浙江省丽水市四校联考2024-2025学年高三物理试题二模冲刺试题(六)含解析
- 《云南蔬菜出口现状及完善对策研究》8400字(论文)
- 《常见鱼类》课件
- 劳动用工风险与规范培训
- 咯血病人的护理
- 银行业审计服务方案
- 安徽省2024年中考道德与法治真题试卷(含答案)
- 《公路建设项目文件管理规程》
- 2023年北京按摩医院招聘笔试真题
- 西门子S7-1500 PLC技术及应用 课件 第5、6章 S7-1500 PLC 的通信及其应用、S7-1500 PLC的工艺指令应用
- 中国生殖支原体感染诊疗专家共识(2024年版)解读课件
- 人教版小学三年级下期数学单元、期中和期末检测试题
评论
0/150
提交评论