下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省湛江市石岭中学2021-2022学年高一数学文联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若函数在上是增函数,那么的大致图象是
()二、参考答案:A2.下列函数中是偶函数且在(0,+∞)上单调递增的是A.
B
C.
D参考答案:Ay=|x|在上单调递增,且为偶函数;在上单调递减;y=(x+1)2在单调递增,是非奇非偶函数;在上单调递减,故选A.3.直线的倾斜角为
A、
B、
C、
D、参考答案:B4.已知取最大值时x的值是(
)
A.
B.
C.
D.参考答案:B略5.已知,则a、b、c的大小关系为(
)A. B.C. D.参考答案:D【分析】根据幂函数的单调性性,得到,再根据对数的运算性质,得到,即可得到答案.【详解】由题意,幂函数在上为单调递增函数,所以,又由对数的运算性质,可得,所以,故选D.【点睛】本题主要考查了幂函数的单调性,以及对数的运算性质的应用,其中解答中熟练应用幂函数的单调性进行比较是解答的关键,着重考查了推理与运算能力,属于基础题.6.我国古代数学家刘徽在《九章算术注》中提出割圆术:“割之弥细,所失弥少,割之割,以至于不可割,则与圆合体,而无所失矣”,即通过圆内接正多边形细割圆,并使正多边形的面积无限接近圆的面积,进而来求得较为精确的圆周率.如果用圆的内接正n边形逼近圆,算得圆周率的近似值记为,那么用圆的内接正2n边形逼近圆,算得圆周率的近似值加可表示成(
)A. B. C. D.参考答案:C【分析】设圆的半径为,由内接正边形的面积无限接近圆的面积可得:,由内接正边形的面积无限接近圆的面积可得:,问题得解.【详解】设圆的半径为,将内接正边形分成个小三角形,由内接正边形的面积无限接近圆的面积可得:,整理得:,此时,即:同理,由内接正边形的面积无限接近圆的面积可得:,整理得:此时所以故选:C【点睛】本题主要考查了圆的面积公式及三角形面积公式的应用,还考查了正弦的二倍角公式,考查计算能力,属于中档题。7.在平行四边形中,为一条对角线,,则=(
)A.(2,4)
B.(3,5)(1,1)
C.(-1,-1)
D.(-2,-4)参考答案:C略8.函数是(
)A.奇函数 B.非奇非偶函数 C.偶函数 D.既是奇函数又是偶函数参考答案:C【分析】利用诱导公式将函数的解析式化简,然后利用定义判断出函数的奇偶性.【详解】由诱导公式得,该函数的定义域为,关于原点对称,且,因此,函数为偶函数,故选:C.【点睛】本题考查函数奇偶性的判断,解题时要将函数解析式进行简化,然后利用奇偶性的定义进行判断,考查分析问题和解决问题的能力,属于基础题.9.已知幂函数f(x)=xα(α为常数)的图像过点P(2,),则f(x)的单调递减区间是A.(-∞,0)
B.(-∞,+∞)
C.(-∞,0)∪(0,+∞)
D.(-∞,0),(0,+∞)参考答案:D略10.f(x)是定义在R上的奇函数,当x≥0时,f(x)=2x+2x+b(b为常数),则f(-1)=()A.3
B.1
C.-1
D.-3参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11.对于任意的两个实数对,规定:,当且仅当;定义运算“”为:,运算“”为:.
设,若,则=___________.
参考答案:略12.某校开展“爱我江西、爱我家乡”摄影比赛,9位评委为参赛作品A给出的分数如茎叶图所示。记分员在去掉一个最高分和一个最低分后,算的平均分为91,复核员在复核时,发现有一个数字(茎叶图中的x)无法看清。若记分员计算无误,则数字应该是___________
参考答案:113.已知幂函数的图象经过点(9,3),则
参考答案:10
14.函数的单调递增区间为▲;值域为▲.参考答案:[0,2);[-2,+∞)15.若函数是偶函数,则的递增区间是
▲参考答案:16.已知向量满足,则的取值范围是
.参考答案:解法一:因为,,所以,,所以,即,所以.解法二:如图:,,由已知得,则一定在中垂线上,以为圆心,2为半径作圆,平移到处时,平移到处时,所以.17.过点(1,2)且在两坐标轴上的截距相等的直线的方程.参考答案:2x﹣y=0或x+y﹣3=0【考点】直线的两点式方程.【分析】分两种情况考虑,第一:当所求直线与两坐标轴的截距不为0时,设出该直线的方程为x+y=a,把已知点坐标代入即可求出a的值,得到直线的方程;第二:当所求直线与两坐标轴的截距为0时,设该直线的方程为y=kx,把已知点的坐标代入即可求出k的值,得到直线的方程,综上,得到所有满足题意的直线的方程.【解答】解:①当所求的直线与两坐标轴的截距不为0时,设该直线的方程为x+y=a,把(1,2)代入所设的方程得:a=3,则所求直线的方程为x+y=3即x+y﹣3=0;②当所求的直线与两坐标轴的截距为0时,设该直线的方程为y=kx,把(1,2)代入所求的方程得:k=2,则所求直线的方程为y=2x即2x﹣y=0.综上,所求直线的方程为:2x﹣y=0或x+y﹣3=0.故答案为:2x﹣y=0或x+y﹣3=0三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知圆C:(x﹣3)2+(y﹣4)2=4,直线l1过定点A(1,0).(1)若l1与圆相切,求l1的方程;(2)若l1与圆相交于P,Q两点,线段PQ的中点为M,又l1与l2:x+2y+2=0的交点为N,判断AM?AN是否为定值,若是,则求出定值;若不是,请说明理由.参考答案:【考点】直线和圆的方程的应用.【分析】(1)由直线l1与圆相切,则圆心到直线的距离等于半径,求得直线方程,注意分类讨论;(2)分别联立相应方程,求得M,N的坐标,再求AM?AN.【解答】解:(1)①若直线l1的斜率不存在,即直线x=1,符合题意.②若直线l1斜率存在,设直线l1为y=k(x﹣1),即kx﹣y﹣k=0.由题意知,圆心(3,4)到已知直线l1的距离等于半径2,即解之得.所求直线方程是x=1,3x﹣4y﹣3=0.(2)直线与圆相交,斜率必定存在,且不为0,可设直线方程为kx﹣y﹣k=0由得;又直线CM与l1垂直,得.∴AM?AN=为定值.19.(10分)已知全集,求的值.参考答案:解由得(4分)由得(8分)解得(10分)略20.(10分)某服装厂生产一种服装,每件服装的成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,决定当一次订购量超过100件时,每多订购一件,订购的全部服装的出场单价就降低0.02元,根据市场调查,销售商一次订购量不会超过600件.(1)设一次订购x件,服装的实际出厂单价为p元,写出函数p=f(x)的表达式;(2)当销售商一次订购多少件服装时,该厂获得的利润最大?其最大利润是多少?参考答案:考点: 函数模型的选择与应用;二次函数在闭区间上的最值.专题: 应用题.分析: (1)根据题意,函数为分段函数,当0<x≤100时,p=60;当100<x≤600时,p=60﹣(x﹣100)×0.02=62﹣0.02x.(2)设利润为y元,则当0<x≤100时,y=60x﹣40x=20x;当100<x≤600时,y=(62﹣0.02x)x﹣40x=22x﹣0.02x2,分别求出各段上的最大值,比较即可得到结论.解答: (1)当0<x≤100时,p=60;当100<x≤600时,p=60﹣(x﹣100)×0.02=62﹣0.02x.∴p=(2)设利润为y元,则当0<x≤100时,y=60x﹣40x=20x;当100<x≤600时,y=(62﹣0.02x)x﹣40x=22x﹣0.02x2.∴y=当0<x≤100时,y=20x是单调增函数,当x=100时,y最大,此时y=20×100=2000;当100<x≤600时,y=22x﹣0.02x2=﹣0.02(x﹣550)2+6050,∴当x=550时,y最大,此时y=6050.显然6050>2000.所以当一次订购550件时,利润最大,最大利润为6050元.点评: 本题考查分段函数,考查函数的最值,解题的关键是正确写出分段函数的解析式,属于中档题.21.已知(1)化简(2)若是第四象限角,且,求的值参考答案:(1)
(2)22.如图,假设河的一条岸边为直线MN,于C,点B,D在MN上,现将货物从A地经陆地AD又经水路DB运往B地,已知,,又知陆地单位距离的运费是水路单位距离运费的两倍;水运费用为每公里100元.(1)若设,求运费y与x的函数关系
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 居间合同2025年度版:定义、属性与服务质量评估体系3篇
- 二零二五年度能源项目权益转让与投资合同3篇
- 二零二五年软件开发服务合同4篇
- 二零二五版智能LED户外广告平台合作项目合同3篇
- 影视器材租赁与技术服务2025年度合同3篇
- 二零二五年度房地产开发项目造价咨询合同6篇
- 二零二五版搬家运输合同:搬家运输途中物品丢失赔偿3篇
- 二零二五版海鲜加盟店日常运营管理与维护服务合同范本2篇
- 二零二五年度车辆转让附带绿色出行奖励政策合同3篇
- 二零二五年度智能办公桌椅研发合作合同2篇
- 一年级语文雨点儿-教学课件【希沃白板初阶培训结营大作业】
- 替格瑞洛药物作用机制、不良反应机制、与氯吡格雷区别和合理使用
- 河北省大学生调研河北社会调查活动项目申请书
- GB/T 20920-2007电子水平仪
- 如何提高教师的课程领导力
- 企业人员组织结构图
- 日本疾病诊断分组(DPC)定额支付方式课件
- 两段焙烧除砷技术简介 - 文字版(1)(2)课件
- 实习证明模板免费下载【8篇】
- 复旦大学用经济学智慧解读中国课件03用大历史观看中国社会转型
- 案件受理登记表模版
评论
0/150
提交评论