




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年中考数学模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.已知∠BAC=45。,一动点O在射线AB上运动(点O与点A不重合),设OA=x,如果半径为1的⊙O与射线AC有公共点,那么x的取值范围是()A.0<x≤1 B.1≤x< C.0<x≤ D.x>2.解分式方程时,去分母后变形为A. B.C. D.3.如图,在边长为3的等边三角形ABC中,过点C垂直于BC的直线交∠ABC的平分线于点P,则点P到边AB所在直线的距离为()A.33 B.32 C.4.如图,OP平分∠AOB,PC⊥OA于C,点D是OB上的动点,若PC=6cm,则PD的长可以是()A.7cm B.4cm C.5cm D.3cm5.下列四张正方形硬纸片,剪去阴影部分后,如果沿虚线折叠,可以围成一个封闭的长方体包装盒的是()A. B. C. D.6.如图,△A′B′C′是△ABC以点O为位似中心经过位似变换得到的,若△A′B′C′的面积与△ABC的面积比是4:9,则OB′:OB为()A.2:3 B.3:2 C.4:5 D.4:97.如图,在平面直角坐标系中,点A在第一象限,点P在x轴上,若以P,O,A为顶点的三角形是等腰三角形,则满足条件的点P共有()A.2个 B.3个 C.4个 D.5个8.一、单选题如图:在中,平分,平分,且交于,若,则等于()A.75 B.100 C.120 D.1259.某射击运动员练习射击,5次成绩分别是:8、9、7、8、x(单位:环).下列说法中正确的是()A.若这5次成绩的中位数为8,则x=8B.若这5次成绩的众数是8,则x=8C.若这5次成绩的方差为8,则x=8D.若这5次成绩的平均成绩是8,则x=810.如图,Rt△ABC中,∠C=90°,∠A=35°,点D在边BC上,BD=2CD.把△ABC绕着点D逆时针旋转m(0<m<180)度后,如果点B恰好落在初始Rt△ABC的边上,那么m=()A.35° B.60° C.70° D.70°或120°二、填空题(共7小题,每小题3分,满分21分)11.因式分解:.12.观察下列图形,若第1个图形中阴影部分的面积为1,第2个图形中阴影部分的面积为,第3个图形中阴影部分的面积为,第4个图形中阴影部分的面积为,…则第n个图形中阴影部分的面积为_____.(用字母n表示)13.若一元二次方程x2﹣2x﹣m=0无实数根,则一次函数y=(m+1)x+m﹣1的图象不经过第_____象限.14.函数y=中,自变量x的取值范围是_________.15.化简:=____.16.如图,∠1,∠2是四边形ABCD的两个外角,且∠1+∠2=210°,则∠A+∠D=____度.17.如图,在△ABC中,CA=CB,∠ACB=90°,AB=4,点D为AB的中点,以点D为圆心作圆,半圆恰好经过三角形的直角顶点C,以点D为顶点,作90°的∠EDF,与半圆交于点E,F,则图中阴影部分的面积是____.三、解答题(共7小题,满分69分)18.(10分)如图,四边形ABCD内接于⊙O,∠BAD=90°,点E在BC的延长线上,且∠DEC=∠BAC.(1)求证:DE是⊙O的切线;(2)若AC∥DE,当AB=8,CE=2时,求AC的长.19.(5分)如图,Rt△ABC的两直角边AC边长为4,BC边长为3,它的内切圆为⊙O,⊙O与边AB、BC、AC分别相切于点D、E、F,延长CO交斜边AB于点G.(1)求⊙O的半径长;(2)求线段DG的长.20.(8分)为评估九年级学生的体育成绩情况,某校九年级500名学生全部参加了“中考体育模拟考试”,随机抽取了部分学生的测试成绩作为样本,并绘制出如下两幅不完整的统计表和频数分布直方图:成绩x分人数频率25≤x<3040.0830≤x<3580.1635≤x<40a0.3240≤x<45bc45≤x<50100.2(1)求此次抽查了多少名学生的成绩;(2)通过计算将频数分布直方图补充完整;(3)若测试成绩不低于40分为优秀,请估计本次测试九年级学生中成绩优秀的人数.21.(10分)已知四边形ABCD为正方形,E是BC的中点,连接AE,过点A作∠AFD,使∠AFD=2∠EAB,AF交CD于点F,如图①,易证:AF=CD+CF.(1)如图②,当四边形ABCD为矩形时,其他条件不变,线段AF,CD,CF之间有怎样的数量关系?请写出你的猜想,并给予证明;(2)如图③,当四边形ABCD为平行四边形时,其他条件不变,线段AF,CD,CF之间又有怎样的数量关系?请直接写出你的猜想.图①图②图③22.(10分)如图,已知点A,B的坐标分别为(0,0)、(2,0),将△ABC绕C点按顺时针方向旋转90°得到△A1B1C.(1)画出△A1B1C;(2)A的对应点为A1,写出点A1的坐标;(3)求出B旋转到B1的路线长.23.(12分)已知关于的方程mx2+(2m-1)x+m-1=0(m≠0).求证:方程总有两个不相等的实数根;若方程的两个实数根都是整数,求整数的值.24.(14分)如图,在中,,垂足为D,点E在BC上,,垂足为,试判断DG与BC的位置关系,并说明理由.
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】如下图,设⊙O与射线AC相切于点D,连接OD,∴∠ADO=90°,∵∠BAC=45°,∴△ADO是等腰直角三角形,∴AD=DO=1,∴OA=,此时⊙O与射线AC有唯一公共点点D,若⊙O再向右移动,则⊙O与射线AC就没有公共点了,∴x的取值范围是.故选C.2、D【解析】试题分析:方程,两边都乘以x-1去分母后得:2-(x+2)=3(x-1),故选D.考点:解分式方程的步骤.3、D【解析】试题分析:∵△ABC为等边三角形,BP平分∠ABC,∴∠PBC=12∠ABC=30°,∵PC⊥BC,∴∠PCB=90°,在Rt△PCB中,PC=BC•tan∠PBC=3考点:1.角平分线的性质;2.等边三角形的性质;3.含30度角的直角三角形;4.勾股定理.4、A【解析】
过点P作PD⊥OB于D,根据角平分线上的点到角的两边距离相等可得PC=PD,再根据垂线段最短解答即可.【详解】解:作PD⊥OB于D,∵OP平分∠AOB,PC⊥OA,PD⊥OA,∴PD=PC=6cm,则PD的最小值是6cm,故选A.【点睛】考查了角平分线上的点到角的两边距离相等的性质,垂线段最短的性质,熟记性质是解题的关键.5、C【解析】A、剪去阴影部分后,组成无盖的正方体,故此选项不合题意;B、剪去阴影部分后,无法组成长方体,故此选项不合题意;C、剪去阴影部分后,能组成长方体,故此选项正确;D、剪去阴影部分后,组成无盖的正方体,故此选项不合题意;故选C.6、A【解析】
根据位似的性质得△ABC∽△A′B′C′,再根据相似三角形的性质进行求解即可得.【详解】由位似变换的性质可知,A′B′∥AB,A′C′∥AC,∴△A′B′C′∽△ABC,∵△A'B'C'与△ABC的面积的比4:9,∴△A'B'C'与△ABC的相似比为2:3,∴,故选A.【点睛】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.7、C【解析】
分为三种情况:①AP=OP,②AP=OA,③OA=OP,分别画出即可.【详解】如图,分OP=AP(1点),OA=AP(1点),OA=OP(2点)三种情况讨论.∴以P,O,A为顶点的三角形是等腰三角形,则满足条件的点P共有4个.故选C.【点睛】本题考查了等腰三角形的判定和坐标与图形的性质,主要考查学生的动手操作能力和理解能力,注意不要漏解.8、B【解析】
根据角平分线的定义推出△ECF为直角三角形,然后根据勾股定理即可求得CE2+CF2=EF2,进而可求出CE2+CF2的值.【详解】解:∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,∴△EFC为直角三角形,
又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,
∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,
∴CM=EM=MF=5,EF=10,
由勾股定理可知CE2+CF2=EF2=1.
故选:B.【点睛】本题考查角平分线的定义(从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线),直角三角形的判定(有一个角为90°的三角形是直角三角形)以及勾股定理的运用,解题的关键是首先证明出△ECF为直角三角形.9、D【解析】
根据中位数的定义判断A;根据众数的定义判断B;根据方差的定义判断C;根据平均数的定义判断D.【详解】A、若这5次成绩的中位数为8,则x为任意实数,故本选项错误;B、若这5次成绩的众数是8,则x为不是7与9的任意实数,故本选项错误;C、如果x=8,则平均数为(8+9+7+8+8)=8,方差为[3×(8-8)2+(9-8)2+(7-8)2]=0.4,故本选项错误;D、若这5次成绩的平均成绩是8,则(8+9+7+8+x)=8,解得x=8,故本选项正确;
故选D.【点睛】本题考查中位数、众数、平均数和方差:一般地设n个数据,x1,x2,…xn的平均数为,则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.10、D【解析】
①当点B落在AB边上时,根据DB=DB1,即可解决问题,②当点B落在AC上时,在RT△DCB2中,根据∠C=90°,DB2=DB=2CD可以判定∠CB2D=30°,由此即可解决问题.【详解】①当点B落在AB边上时,∵DB=DB∴∠B=∠DB∴m=∠BDB②当点B落在AC上时,在RT△DCB∵∠C=90°,DB∴∠CB∴m=∠C+∠CB故选D.【点睛】本题考查的知识点是旋转的性质,解题关键是考虑多种情况,进行分类讨论.二、填空题(共7小题,每小题3分,满分21分)11、.【解析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式后继续应用平方差公式分解即可:.12、n﹣1(n为整数)【解析】试题分析:观察图形可得,第1个图形中阴影部分的面积=()0=1;第2个图形中阴影部分的面积=()1=;第3个图形中阴影部分的面积=()2=;第4个图形中阴影部分的面积=()3=;…根据此规律可得第n个图形中阴影部分的面积=()n-1(n为整数)•考点:图形规律探究题.13、一【解析】∵一元二次方程x2-2x-m=0无实数根,
∴△=4+4m<0,解得m<-1,
∴m+1<0,m-1<0,
∴一次函数y=(m+1)x+m-1的图象经过二三四象限,不经过第一象限.
故答案是:一.14、x≤1且x≠﹣1【解析】
由二次根式中被开方数为非负数且分母不等于零求解可得结论.【详解】根据题意,得:,解得:x≤1且x≠﹣1.故答案为x≤1且x≠﹣1.【点睛】本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(1)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.15、【解析】
先利用除法法则变形,约分后通分并利用同分母分式的减法法则计算即可.【详解】原式,
故答案为【点睛】本题考查了分式的混合运算,熟练掌握运算法则是解题的关键.16、210.【解析】
利用邻补角的定义求出∠ABC+∠BCD,再利用四边形内角和定理求得∠A+∠D.【详解】∵∠1+∠2=210°,∴∠ABC+∠BCD=180°×2﹣210°=150°,∴∠A+∠D=360°﹣150°=210°.故答案为:210.【点睛】本题考查了四边形的内角和定理以及邻补角的定义,利用邻补角的定义求出∠ABC+∠BCD是关键.17、π﹣1.【解析】
连接CD,作DM⊥BC,DN⊥AC,证明△DMG≌△DNH,则S四边形DGCH=S四边形DMCN,求得扇形FDE的面积,则阴影部分的面积即可求得.【详解】连接CD,作DM⊥BC,DN⊥AC.∵CA=CB,∠ACB=90°,点D为AB的中点,∴DC=AB=1,四边形DMCN是正方形,DM=.则扇形FDE的面积是:=π.∵CA=CB,∠ACB=90°,点D为AB的中点,∴CD平分∠BCA.又∵DM⊥BC,DN⊥AC,∴DM=DN.∵∠GDH=∠MDN=90°,∴∠GDM=∠HDN.在△DMG和△DNH中,∵,∴△DMG≌△DNH(AAS),∴S四边形DGCH=S四边形DMCN=1.则阴影部分的面积是:π﹣1.故答案为π﹣1.【点睛】本题考查了三角形的全等的判定与扇形的面积的计算的综合题,正确证明△DMG≌△DNH,得到S四边形DGCH=S四边形DMCN是关键.三、解答题(共7小题,满分69分)18、(1)证明见解析;(2)AC的长为.【解析】
(1)先判断出BD是圆O的直径,再判断出BD⊥DE,即可得出结论;(2)先判断出AC⊥BD,进而求出BC=AB=8,进而判断出△BCD∽△DCE,求出CD,再用勾股定理求出BD,最后判断出△CFD∽△BCD,即可得出结论.【详解】(1)如图,连接BD,∵∠BAD=90°,∴点O必在BD上,即:BD是直径,∴∠BCD=90°,∴∠DEC+∠CDE=90°.∵∠DEC=∠BAC,∴∠BAC+∠CDE=90°.∵∠BAC=∠BDC,∴∠BDC+∠CDE=90°,∴∠BDE=90°,即:BD⊥DE.∵点D在⊙O上,∴DE是⊙O的切线;(2)∵DE∥AC.∵∠BDE=90°,∴∠BFC=90°,∴CB=AB=8,AF=CF=AC,∵∠CDE+∠BDC=90°,∠BDC+∠CBD=90°,∴∠CDE=∠CBD.∵∠DCE=∠BCD=90°,∴△BCD∽△DCE,∴,∴,∴CD=1.在Rt△BCD中,BD==1,同理:△CFD∽△BCD,∴,∴,∴CF=,∴AC=2C=.【点睛】考查了圆周角定理,垂径定理,相似三角形的判定和性质,切线的判定和性质,勾股定理,求出BC=8是解本题的关键.19、(1)1;(2)【解析】(1)由勾股定理求AB,设⊙O的半径为r,则r=(AC+BC-AB)求解;(2)过G作GP⊥AC,垂足为P,根据CG平分直角∠ACB可知△PCG为等腰直角三角形,设PG=PC=x,则CG=x,由(1)可知CO=r=,由Rt△AGP∽Rt△ABC,利用相似比求x,由OG=CG-CO求OG,在Rt△ODG中,由勾股定理求DG.试题解析:(1)在Rt△ABC中,由勾股定理得AB==5,∴☉O的半径r=(AC+BC-AB)=(4+3-5)=1;(2)过G作GP⊥AC,垂足为P,设GP=x,由∠ACB=90°,CG平分∠ACB,得∠GCP=45°,∴GP=PC=x,∵Rt△AGP∽Rt△ABC,∴=,解得x=,即GP=,CG=,∴OG=CG-CO=-=,在Rt△ODG中,DG==.20、(1)50;(2)详见解析;(3)220.【解析】
(1)利用1组的人数除以1组的频率可求此次抽查了多少名学生的成绩;(2)根据总数乘以3组的频率可求a,用50减去其它各组的频数即可求得b的值,再用1减去其它各组的频率即可求得c的值,即可把频数分布直方图补充完整;(3)先得到成绩优秀的频率,再乘以500即可求解.【详解】解:(1)4÷0.08=50(名).答:此次抽查了50名学生的成绩;(2)a=50×0.32=16(名),b=50﹣4﹣8﹣16﹣10=12(名),c=1﹣0.08﹣0.16﹣0.32﹣0.2=0.24,如图所示:(3)500×(0.24+0.2)=500×0.44=220(名).答:本次测试九年级学生中成绩优秀的人数是220名.【点睛】本题主要考查数据的收集、处理以及统计图表。21、(1)图②结论:AF=CD+CF.(2)图③结
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 垃圾挖运合同协议
- 场地临时出租合同协议
- 基地种植预售合同协议
- 工程人工机械合同协议
- 回迁房分割合同协议
- 工地运输协议合同协议
- 垫资过桥合同合同协议
- 基建合同第三方安全协议
- 工地集体劳动合同协议
- 工程合作承包协议书范本
- 美国学生阅读技能训练
- 网络安全服务项目服务质量保障措施(实施方案)
- 生产加工型小微企业安全管理考试(含答案)
- 青少年科技创新比赛深度分析
- 世界近代武器革新图鉴(1722-1900)英国篇
- 安标受控件采购管理制度
- 亚低温的治疗与护理
- 危险化学品企业设备完整性 第2部分 技术实施指南 编制说明
- 防高坠自查自纠台账
- GB/T 4437.1-2023铝及铝合金热挤压管第1部分:无缝圆管
- 市政工程消耗量定额 zya1-31-2015
评论
0/150
提交评论