下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省汕头市新中学校2022-2023学年高二数学文联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.是成立的(
)
A.不充分不必要条件
B.必要不充分条件C.充分不必要条件
D.充要条件参考答案:C略2.已知P是双曲线=1(a>0,b>0)右支上一点,F1,F2分别是双曲线的左、右焦点,I为△PF1F2的内心,若S△IPF1=S△IPF2+S△IF1F2成立,则该双曲线的离心率为()A.4 B. C.2 D.2参考答案:B【考点】双曲线的简单性质.【分析】先根据题意作出示意图,如图所示,利用平面几何的知识利用三角形面积公式,代入已知式S△IPF1=S△IPF2+S△IF1F2,化简可得|PF1|﹣|PF2|=|F1F2|,再结合双曲线的定义与离心率的公式,可求出此双曲线的离心率.【解答】解:如图,设圆I与△PF1F2的三边F1F2、PF1、PF2分别相切于点E、F、G,连接IE、IF、IG,则IE⊥F1F2,IF⊥PF1,IG⊥PF2,它们分别是△IF1F2,△IPF1,△IPF2的高,∴S△IPF1=|PF1|?|IF|=|PF1|r,S△IPF2=|PF2|?|IG|=|PF2|r,S△IF1F2=|F1F2|?|IE|=|F1F2|r,其中r是△PF1F2的内切圆的半径.∵S△IPF2=S△IPF1﹣S△IF1F2,∴|PF2|=|PF1|﹣|F1F2|,两边约去得:|PF2|=|PF1|﹣|F1F2|,∴|PF1|﹣|PF2|=|F1F2|根据双曲线定义,得|PF1|﹣|PF2|=2a,|F1F2|=2c,∴2a=c?离心率为e==.故选B.【点评】本题将三角形的内切圆放入到双曲线当中,用来求双曲线的离心率,着重考查了双曲线的基本性质、三角形内切圆的性质和面积计算公式等知识点,属于中档题.3.已知m,n表示两条不同直线,α表示平面,下列说法正确的是(
)A.若m∥α,n∥α,则m∥n B.若m⊥α,n?α,则m⊥nC.若m⊥α,m⊥n,则n∥α D.若m∥α,m⊥n,则n⊥α参考答案:B【考点】空间中直线与直线之间的位置关系.【专题】空间位置关系与距离.【分析】A.运用线面平行的性质,结合线线的位置关系,即可判断;B.运用线面垂直的性质,即可判断;C.运用线面垂直的性质,结合线线垂直和线面平行的位置即可判断;D.运用线面平行的性质和线面垂直的判定,即可判断.【解答】解:A.若m∥α,n∥α,则m,n相交或平行或异面,故A错;B.若m⊥α,n?α,则m⊥n,故B正确;C.若m⊥α,m⊥n,则n∥α或n?α,故C错;D.若m∥α,m⊥n,则n∥α或n?α或n⊥α,故D错.故选B.【点评】本题考查空间直线与平面的位置关系,考查直线与平面的平行、垂直的判断与性质,记熟这些定理是迅速解题的关键,注意观察空间的直线与平面的模型.4.已知,则下列结论正确的是
(
)A、
B、C、
D、参考答案:D略5.下列说法中运用了类比推理的是(
)A.人们通过大量试验得出掷硬币出现正面向上的概率为0.5B.在平面内,若两个正三角形的边长的比为1:2,则它们的面积比为1:4.从而推出:在空间中,若两个正四面体的棱长的比为1:2,则它们的体积比为1:8C.由数列的前5项猜出该数列的通项公式D.数学中由周期函数的定义判断某函数是否为周期函数参考答案:B【分析】根据归纳推理、类比推理、和演绎推理对四个选项逐一判断,最后选出正确的答案.【详解】选项A:是归纳推理;选项B:是类比推理;选项C:是归纳推理;选项D:是演绎推理.【点睛】本题考查了类比推理,熟练掌握归纳推理、类比推理、和演绎推理的定义是解题的关键.6.执行如图所示的程序框图,输出的S值为(
)A.2B.4C.8D.16
参考答案:C7.i是虚数单位,若集合S=,则().A. B. C. D.参考答案:B8.在极坐标系中,圆=-2sin+2cos的圆心的极坐标是(
)A.(,)
B.(,)
C.(,)
D.(,)参考答案:A9.数列{an}中,an=-2n2+29n+3,则此数列最大项的值是()A.103
B.108C.103
D.108参考答案:D略10.设等差数列{an}的前n项和为Sn,若S3=9,S5=20,则a7+a8+a9=()[A.63
B.45
C.27
D.36参考答案:C略二、填空题:本大题共7小题,每小题4分,共28分11.点P在圆x2+y2-8x-4y+11=0上,点Q在圆x2+y2+4x+2y-1=0上,则|PQ|的最小值是________.参考答案:略12.已知复数z1=1+i,z2=m﹣i(m∈R,i是虚数单位),若z1?z2为纯虚数,则m=_________.参考答案:略13.P是椭圆上一定点,是椭圆的两个焦点,若,则椭圆的离心率为
______.参考答案:14.已知函数,(、且是常数).若是从、、、四个数中任取的一个数,是从、、三个数中任取的一个数,则函数为奇函数的概率是____________.
参考答案:15.已知y=ax(a>0且a≠1)是定义在R上的单调递减函数,记a的所有可能取值构成集合A;P(x,y)是椭圆+=1上一动点,点P1(x1,y1)与点P关于直线y=x+1对称,记的所有可能取值构成集合B.若随机地从集合A,B中分别抽出一个元素λ1,λ2,则λ1>λ2的概率是.参考答案:【考点】几何概型.【分析】根据指数函数的性质以及直线和圆锥曲线的位置关系求出集合A,B,然后根据几何概型的概率公式即可得到结论.【解答】解:∵y=ax(a>0且a≠1)是定义在R上的单调递减函数,∴0<a<1,∴A={a|0<a<1}.P1(x1,y1)关于直线y=x+1的对称点为P(y1﹣1,x1+1),P是椭圆+=l上一动点,∴﹣4≤y1﹣1≤4,即﹣1≤≤1,设b=,则﹣1≤b≤1,∴B={b|﹣1≤b≤1}.∴随机的从集合A,B中分别抽取一个元素λ1,λ2,则λ1>λ2等价为,则对应的图象如图:则λ1>λ2的概率是,故答案为:16.设复数(为虚数单位),则的虚部是
.参考答案:-1
略17.若函数f(x)=xlnx在x0处的函数值与导数值之和等于1,则x0的值等于_________.参考答案:1三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数为自然对数的底数,(1)求的最小值;(2)当图象的一个公共点坐标,并求它们在该公共点处的切线方程。(14分)参考答案:解:(1)
………………4分即
………………8分
(2)当由(1)可知,图象的一个公共点。
………………11分又处有共同的切线,其方程为
即
………………14分略19.已知抛物线y2=4x,焦点为F,顶点为O,点P在抛物线上移动,Q是OP的中点.(1)求点Q的轨迹方程;(2)若倾斜角为60°且过点F的直线交Q的轨迹于A,B两点,求弦长|AB|.参考答案:【考点】直线与圆锥曲线的综合问题;圆锥曲线的轨迹问题.【专题】综合题.【分析】(1)设Q(x,y),根据Q是OP中点,可得P(2x,2y),利用点P在抛物线y2=4x上,即可得到点Q的轨迹方程;(2)设出直线AB的方程代入y2=2x,消去y得:3x2﹣8x+3=0,利用韦达定理,可计算弦长|AB|.【解答】解:(1)设Q(x,y),∵Q是OP中点,∴P(2x,2y)又∵点P在抛物线y2=4x上∴(2y)2=4×2x,即y2=2x为点Q的轨迹方程(2)∵F(1,0),,∴直线AB的方程为:设点A(x1,y1),B(x2,y2)直线AB的方程代入y2=2x,消去y得:3x2﹣8x+3=0∴∴【点评】本题考查求轨迹方程,考查弦长的计算,解题的关键是掌握代入法求轨迹方程,将直线方程与抛物线方程联立,利用韦达定理求解.20.设x=3是函数f(x)=(x2+ax+b)e3﹣x,(x∈R)的一个极值点.(1)求a与b的关系式(用a表示b),并求f(x)的单调区间;(2)设,若存在ξ1,ξ2∈,使得成立,求a的取值范围.参考答案:考点: 利用导数研究函数的极值;利用导数研究函数的单调性.专题: 导数的综合应用.分析: (1)由已知中函数f(x)=(x2+ax+b)e3﹣x(x∈R)的一个极值点是x=3.我们根据函数在某点取得极值的条件,易得f′(3)=0,进而构造方程求出a与b的关系式,分析函数在各个区间上的符号,即可得到答案.(2)根据g(x)的表达式,利用导数法确定函数的单调性,再根据(1)的结论,我们可以构造一个关于a的不等式,解不等式即可得到答案.解答: 解:(1)f′(x)=﹣e3﹣x,(1分)由f′(3)=0,得﹣e3﹣3=0,即得b=﹣3﹣2a,(2分)则f′(x)=﹣(x﹣3)(x+a+1)e3﹣x.令f′(x)=0,得x1=3或x2=﹣a﹣1,由于x=3是极值点,∴﹣a﹣1≠3,即a≠﹣4,(4分)当a<﹣4时,x2>3=x1,则在区间(﹣∞,3)上,f′(x)<0,f(x)为减函数;在区间(3,﹣a﹣1)上,f′(x)>0,f(x)为增函数;在区间(﹣a﹣1,+∞)上,f′(x)<0,f(x)为减函数.(5分)当a>﹣4时,x2<3=x1,则在区间(﹣∞,﹣a﹣1)上,f′(x)<0,f(x)为减函数;在区间(﹣a﹣1,3)上,f′(x)>0,f(x)为增函数;在区间(3,+∞)上,f′(x)<0,f(x)为减函数;(2)由(Ⅰ)知,当a>0时,f(x)在区间(0,3)上的单调递增,在区间(3,4)上单调递减,由于f(x)连续,而f(0)=﹣(2a+3)e3<0,f(4)=(2a+13)e﹣1>0,f(3)=a+6,那么f(x)在区间上的值域是:,又g(x)==(x+a+1)e5﹣x,(a>0,x∈),g′(x)=﹣e5﹣x(x+a)<0,∴g(x)在区间上是减函数,而g(0)=(a+1)e5,g(4)=(a+5)e,∴它在区间上的值域是:,∴只需e(a+5)﹣(a+6)<5e2﹣6即可,解得:a<5e,∴a的范围是:(0,5e).点评: 本题考查的知识点是函数在某点取得极值的条件,利用导数研究函数的单调性,其中根据已知中的函数的解析式,结合导数公式,求出函数的导函数的解析式,是解答本题的关键.21.已知数列{an}为公差不为零的等差数列,其前n项和为Sn,满足S5﹣2a2=25,且a1,a4,a13恰为等比数列{bn}的前三项(Ⅰ)求数列{an},{bn}的通项公式;(Ⅱ)设Tn是数列{}的前n项和,是否存在k∈N*,使得等式1﹣2Tk=成立,若存在,求出k的值;若不存在,说明理由.参考答案:【考点】数列的求和;数列递推式.【分析】(I)利用等差数列与等比数列的通项公式及其前n项和公式即可得出;(II)利用“裂项求和”与数列的单调性即可得出.【解答】解:(Ⅰ)设等差数列{an}的公差为d(d≠0),∴,解得a1=3,d=2,∵b1=a1=3,b2=a4=9,∴.(Ⅱ)由(I)可知:an=3+2(n﹣1)=2n+1.,∴=,∴,单调递减,得,而,所以不存在k∈N*,使得等式成立.22.设两个非零向量与不共线.(1)若+,,,求证:A,B,D三点共线;(2)试确定实数k,使k+和+k共线.参考答案:【考点】向量的共线定理.【专题】计算题;证明题.【分析】(1)根据所给的三个首尾相连的向量,用其中两个相加
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024工程水电装修合同范本
- 卫生间聚氨酯防水施工方案
- 临时脚手架搭设方案
- N-Succinimidyloxycarbonylpentadecyl-methanethiosulfonate-生命科学试剂-MCE
- 踝关节力量训练课程设计
- 贷款销售课程设计
- 评审中学化学高级教师个人工作总结
- 数控制齿工(中级)技能鉴定理论考试题库(含答案)
- 备课、作业检查制度
- 甲醛水连续精馏课程设计
- 医嘱单模板:长期医嘱单模板与临时医嘱单模板
- 科室运营分析模板
- 地下车库维修工程施工合同word模板
- DB43∕T 1851-2020 张家界莓茶种植技术规程
- 构建教研新常态实现教改新跨越
- 旅游管理特色专业质量工程申报书
- 中医急救护理的应用课件(PPT 93页)
- 220KV变电所管理制度
- 商检、法检、三检的区别
- tsg z6002-2010特种设备焊接操作人员考核细则
- .运维服务目录
评论
0/150
提交评论