版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第五章留数一.孤立奇点的分类(一类特殊的奇点)二.留数---(孤立奇点的数字特征)三.利用留数定理计算定积分--(留数的应用)留数定理--(计算复变函数积分的基本方法)1课件预备知识2课件5.1解析函数的孤立奇点1-33课件这时,
f(z)=c0+c1(z-z0)+...+cn(z-z0)n+....0<|z-z0|<d,则在圆域|z-z0|<d
内就有
f(z)=c0+c1(z-z0)+...+cn(z-z0)n+...,
从而函数
f(z)在z0就成为解析的了.所以z0称为可去奇点.孤立奇点。5课件
如果在罗朗级数中只有有限多个z-z0的负幂项,且其中关于(z-z0)-1的最高幂为
(z-z0)-m,即
f(z)=c-m(z-z0)-m+...+c-2(z-z0)-2+c-1(z-z0)-1+c0+c1(z-z0)+...(m1,c-m0),则孤立奇点z0称为函数
f(z)的m阶极点.上式也可写成
其中
g(z)=c-m+c-m+1(z-z0)+c-m+2(z-z0)2+...,在
|z-z0|<d内是解析的函数,且
g(z0)0.
反过来,当任何一个函数
f(z)能表示为(*)的形式,且g(z)在
解析,g(z0)0时,则z0是
f(z)的m阶极点.6课件如果z0为f(z)的极点,由(*)式,就有解:7课件解:奇点为或9课件综上所述:我们可以利用上述极限的不同情形来判别孤立奇点的类型.定理5.110课件例4判定下列函数的孤立奇点的类型。(洛比塔法则)11课件13课件解:零点与极点间的关系?14课件定理5.3这个定理为判断函数的极点提供了一个较为简单的方法.例6解:15课件(1)定义(3)根据零点与极点间的关系,定理5.3,定理5.2的推论(4)例7的结论17课件(定义)18课件解:奇点为19课件距离原点无限远的点,统称为无穷远点由于函数在无穷远点没有定义,所以无穷远点总是一个奇点。我们关心的是,在怎样的情况下,构成孤立奇点?定义:定义:孤立奇点。无穷远点的去心邻域21课件定义5.222课件例:判定下列函数在处奇点的类型或因为含有有限多正幂项,且最高次数为三次,23课件
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2025学年高中政治第3单元思想方法与创新意识课时作业18用对立统一的观点看问题含解析新人教版必修4
- 2024-2025学年新教材高中历史第三单元辽宋夏金多民族政权的并立与元朝的统一单元评估课后作业含解析新人教版必修中外历史纲要上
- 2025年度盘扣建筑构件质量控制检测合同4篇
- 2025年度汽车制造企业总经理聘请及智能制造合同范本4篇
- 二零二五年度智慧社区安防系统安装施工合同范本3篇
- 二零二五年度窗帘产业园区建设与管理合同3篇
- 二零二五年度四人合伙企业股权投资合同3篇
- 2025年度餐饮多人合伙经营营销推广合同范本3篇
- 二手房购买补充合同:2024年定制版版B版
- 二零二五年度2025版二手设备存量买卖服务协议2篇
- 产品共同研发合作协议范本5篇
- 风水学的基础知识培训
- 2024年6月高考地理真题完全解读(安徽省)
- 吸入疗法在呼吸康复应用中的中国专家共识2022版
- 1-35kV电缆技术参数表
- 信息科技课程标准测(2022版)考试题库及答案
- 施工组织设计方案针对性、完整性
- 2002版干部履历表(贵州省)
- DL∕T 1909-2018 -48V电力通信直流电源系统技术规范
- 2024年服装制版师(高级)职业鉴定考试复习题库(含答案)
- 门诊部缩短就诊等候时间PDCA案例-课件
评论
0/150
提交评论