版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
本文格式为Word版,下载可任意编辑——SPSS对主成分回归实验报告《多元统计分析分析》测验报告
2022年
月
日学院经贸学院姓名
学号
测验名称
测验劳绩
一、测验目的(一)利用SPSS对主成分回归举行计算机实现.(二)要求纯熟软件操作步骤,重点掌管对软件处理结果的解释.二、测验内容
以教材例题7.2为测验对象,应用软件对例题举行操作练习,以掌管多元统计分析方法的应用三、测验步骤(以文字列出软件操作过程并附上操作截图)
1、数据文件的输入或建立:(文件名以学号或姓名命名)
将表7.2数据输入spss:点击"文件'下"新建'"数据'见图1:
图1
点击左下角"变量视图'首先定义变量名称及类型:见图2:
图2:
然后点击"数据视图'举行数据输入(图3):
图3
完成数据输入2、概括操作分析过程:
(1)首先做因变量Y与自变量X1-X3的普遍线性回归:
在变量视图下点击"分析'菜单,选择"回归'-"线性'(图4):
图4
将因变量Y调入"因变量'栏,将x1-x3调入"自变量'栏(图5):
然后选择相关要输出的结果:①点击右上角"统计量(s)':"回归系数'下选择"估计';"残差'下选择"D.W';在右上角选择输出"模型拟合度'、"片面相关和偏相关'"共线性诊断'(后两项是做多重共线性检验)。选完后点击"持续'(见图6)②假设需要对因变量与残差举行图形分析那么需要在"绘制'下选择相关工程(图7),一般不需要那么持续③假设需要将相关结果如因变量预料值、残差等保存那么点击"保存'(图8),选择要保存的工程④假设是逐步回归法或者设置不带常数项的回归模型那么点击"选项'(图9)
其他选项按软件默认。结果点击"确定',运行线性回归,输出相关结果(见表1-3)
图5图图66图7
图8图9回归分析输出结果:
表1模型汇总bb
模型RR方调整R方标准估计的误差Durbin-Watson1.996a
.992.988.488872.740a.预料变量:(常量),x3,x2,x1。
b.因变量:y
表2Anovabb
模型平方和df均方FSig.1回归204.776368.259285.610.000a
残差1.6737.239
总计206.44910
a.预料变量:(常量),x3,x2,x1。
b.因变量:y
表3系数aa
模型非标准化系数标准系数tSig.相关性共线性统计量B标准误差试用版零阶偏片面容差VIF1(常量)-10.1281.212
-8.355.000
x1-.051.070-.339-.731.488.965-.266-.025.005185.997x2.587.095.2136.203.000.251.920.211.9811.019x3.287.1021.3032.807.026.972.728.095.005186.110a.因变量:y由表可知,回归模型拟合优度达成99.2%,方差分析也显示线性回归方程整体显著(F=285.61,Sig.=0.000)但是回归系数估计结果中,x1的系数为-0.051与一般经济理论冲突且不显著(t检验值-0.731,检验的p值0.488),经多重共线性诊断(x1与x3的VIF值高达180以上)说明自变量存在共线性。运用主成分分析做多重共线性处理:
(2)自变量x1-x3的主成分分析:
由于spss没有独立的主成分分析模块,需要在因子分析里完成,因此需要更加留神:
在数据窗口下选择"分析'"降维'"因子分析'(见图10);在弹出的窗口中将x1-x3调入"变量'(见图11);然后①点击"描述',选择要输出的统计量(见图12):选中"统计量'下的两个工程(输出变量描述统计和初始分析结果);在"相关矩阵'一般要选择输出"系数'、"显著性水平'、"KMO'(做主成分分析和因子分析的适用性检验,也就是检验变量之间的相关系数是否足够大可以做因子分析)选完后点击"持续'举行下一步;②点击"抽取'(见图13):在"方法'下默认"主成分';"分析'下,默认"相关性矩阵'(含义是要对变量做标准化处理,然后基于标准化后的协差阵也就是相关阵举行分解做因子分析或主成分分析),假设不需要对变量做标准化处理就选"协方差矩阵';"输出'中的两项都选,要求输出没有旋转的因子解(主成分分析必选项)和碎石图(用图形抉择提取的主成分或因子的个数);"抽取"下,默认的是基于特征值(大于
1表示提取的因子或主成分至少代表1个单位标准差的变量信息,由于标准化后的变量方差为1,因子或者主成分作为提取的综合变量理应至少代表1个变量的信息),也可以自选提取的因子个数(即其次项),本例中做主成分回归,选择提取全部可能的3个主成分,所以自选个数填3。选完后点击"持续'举行下一步;③点击"旋转'(图14),按默认的"方法'下不旋转(留神,主成分分析不能旋转!)其他不用选,点击"持续'举行下一步;④点击"得分',计算不旋转的初始因子得分(图15),选中"保存为变量',"方法'下按默认,其他不修改,点击"持续'举行下一步。⑤"选项'下可以不选按默认(选项里主要针对缺失值和系数显示格式,不影响分析结果)
结果点击"确定',运行因子分析。
图10图11
图12图图13
图图14
图图15
由运行结果计算主成分:
表44、描述统计量
均值标准差分析Nx1194.590929.9995211x23.30001.6492411x3139.736420.6344011
表55、相关矩阵
x1x2x3相关x11.000.026.997x2.0261.000.036x3.997.0361.000Sig.(单侧)
x1
.470.000x2.470
.459x3.000.459
表66、KMO和
Bartlett的检验取样足够度的Kaiser-Meyer-Olkin度量。
.492Bartlett的球形度检验近似卡方42.687df3Sig..000
表77、解释的总方差成份初始特征值提取平方和载入合计方差的%累积%合计方差的%累积%11.99966.63866.6381.99966.63866.6382.99833.27299.910.99833.27299.9103.003.090100.000.003.090100.000提取方法:主成份分析。
表88、成份矩阵aa
成份123x1.999-.036.037x2.062.998.000x3.999-.026-.037提取方法:主成份。
a.已提取了3个成份。
由表5、6可知适合做主成分或因子分析(KMO检验通过),表7知前两个主成分(初始因子)付出率已达99.91%,提取前两个主成分用于分析。由表8(初始因子载荷阵)和表7可计算前两个特征向量,用表8前两列分别除以前两个特征值的平方根得前两个主成分表达式:
F1=0.7066X1*+0.0439X2*+0.7066X3*(式1)
F2=-0.0360X1*+0.9990X2*-0.0260X3*(式2)
其中X1*-X3*表示为标准化变量(这是由于在举行主成分分析时是以标准化变量举行分析的,是从相关阵启程分析的,见图13的选项)。
由于主成分互不相关,可以用提取的主成分代替自变量举行回归分析,因此需要计算主成分得分来代替自变量X1-X3。主成分的计算:依据式1和2中两个主成分的表达式,对各自变量标准化后带入就可以计算出每个样品的主成分得分。但是在spss中,由因子分析提取时是用主成分法提取的,根据初始因子与主成分的关系,未旋转的初始因子等于主成分除以特征根的平方根,因此主成分得分等于因子得分乘以特征根的平方根,因此可以由因子得分计算主成分得分。前面在因子分析选项中保存了因子得分(见图15),因此计算两个主成分得分:点击"转换'"计算变量'(图16):在弹出的窗口分别定义主成分F1=第一因子得分*第一特征根的平方根(图17)和F2=其次因子得分*其次特征根的平方根。
(3)主成分回归过程:
要做主成分回归,需要用标准化的因变量(由于自变量经过标准化处理做主成分分析,因变量需要对应做标准化)与主成分做回归,对因变量Y做标准化处理,点击"分析'"描述统计'"描述'(见图18),在弹出窗口中将Y调入变量,并选中"将标准化得分另存为变量'(图19)后确定完成Y的标准化。
点击"分析'"回归'"线性'(图20)在弹出窗口(图21)中将Zscore(y)调入因变量,F1和F2调入自变量,其他选项同前面图6-9,然后点击"确定'运行主成分回归,相关输出结果见表9
图16
图17
图18图图19
图图20
图图21
主成分回归结果:
表99、模型汇总模型RR方调整R方标准估计的误差1.994a
.988.985.12104901a.预料变量:(常量),F1,F2。
表10、Anovabb
模型平方和df均方FSig.1回归9.88324.941337.230.000a
残差.1178.015
总计10.00010
a.预料变量:(常量),F1,F2。
b.因变量:Zscore(y)
表11、系数aa
模型非标准化系数标准系数tSig.共线性统计量B标准误差试用版容差VIF1(常量)-3.043E-16.036
.0001.000
F2.191.038.1914.993.0011.0001.000F1.690.027.97625.486.0001.0001.000a.因变量:Zscore(y)
由表9-11可知,标准化Y对两个主成分的线性回归通过显著性检验,也没有多重共线性,回归系数合理,即Y*=0.690F1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农业灌溉压缩空气管道方案
- 工业废弃物管理与处理方案
- LED显示屏广告投放合同
- 除四害合同(2篇)
- 物流行业服务质量绩效评价方案
- 家委会工作中的挑战与解决方案总结
- 2022检验科医院感染暴发应急制度
- 一校一案德育教育创新方案
- 工程材料库房移交协议书(2篇)
- 青岛2024年03版小学5年级英语第1单元暑期作业
- 新版深度学习完整整套教学课件
- 2023学年完整公开课版冰雕史话
- BIM大赛题库含答案
- 罗马人的故事(全15册)(修订版)
- 单位无宿舍证明
- DB21-T3702-2023矿山废弃地植被自然恢复技术规程
- 吊索具检查记录表
- 商务接待申请表
- GB/T 13663.2-2005给水用聚乙烯(PE)管道系统第2部分:管件
- 上期开特下期必开特规律
- 基础生命科学导论:第七章-进化课件
评论
0/150
提交评论