复数的三角形式_第1页
复数的三角形式_第2页
复数的三角形式_第3页
复数的三角形式_第4页
复数的三角形式_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

复数的三角形式复习引入新课:①复数的表示的三种方法:代数式a+bi点z(a,b)向量oz②Z=a+bi所对应的向量oza为复数的实部b为复数的虚部r=√a2+b2为复数的模z(a,b)yxabrrabθ㈠复数辐角的概念:以x轴的正半轴为始边,向量oz所在的射线为终边的角θXOYZ(a,b)·注:1)、非零复数的辐角有无限多个值,它们相差2kπ(k∈Z)2)、若z=0,则r=0,辐角任意。(二)复数的辐角主值

注:1)a∈R+时,

arga=arg(ai)=arg(-a)=arg(-ai)=0π每一个不等于零的复数有唯一的模和辐角主值,并且可由模与辐角主值唯一确定。若辐角θ∈

则θ叫做辐角主值,记作argz=θ即

<argz根据三角函数的定义,终边上任意一点Z(a,b),z到原点的距离为r,则z=a+bi=rcosθ+irsinθ=r(cosθ+isinθ)代数形式三角形式(三)复数的三角形式Z(a,b)OXbrθaY复数的三角形式条件:Z=(i)①r≥0。②加号连接。③Cos在前,Sin在后。④θ前后一致,可任意值。rCosSinθθ+“模非负,角相同,余正弦,加号连”例1:把下列复数代数式化成三角式:例题分析小结:代数式化三角式的步骤(1)先求复数的模(2)决定辐角所在的象限(3)根据正切值,象限求出辐角(4)求出复数三角式。小结:一般在复数三角式中的辐角,常取它的主值这既使表达式简便,又便于运算,但三角形式辐角不一定要主值。把下列复数化成三角形式:(1)6(2)-5(3)2i(4)-i(5)-2+2i

课堂练习例2、根据下列条件,求复数z例题分析课

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论