2022年高考数学一轮复习 计数原理及排列组合(精讲)(解析版)_第1页
2022年高考数学一轮复习 计数原理及排列组合(精讲)(解析版)_第2页
2022年高考数学一轮复习 计数原理及排列组合(精讲)(解析版)_第3页
2022年高考数学一轮复习 计数原理及排列组合(精讲)(解析版)_第4页
2022年高考数学一轮复习 计数原理及排列组合(精讲)(解析版)_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

8.4计数原理及排列组合(精讲)思维导图思维导图常见考法常见考法考点一排列【例1】(1)(江西省南昌市第十中学2020-2021学年高二下学期第二次月考数学),,,,五人站成一排,如果,必须相邻且在的右边,那么不同的排法种数有()A.种 B.种 C.种 D.种(2)(四川省成都市树德中学2021-2022学年)七人排成一排,其中甲只能在排头或排尾,乙、丙两人必须相邻,则排法共有()A.种 B.种 C.种 D.种【答案】(1)A(2)D【解析】(1),必须相邻且在的右边,考虑,作为一个整体,所以不同的排法种数为种.故选:A(2)特殊元素优先安排,先让甲从头、尾中选取一个位置,有种选法,乙、丙相邻,捆绑在一起看作一个元素,与其余四个元素全排列,最后乙、丙可以换位,故共有(种).故选:D【一隅三反】1.(江苏省2021年对口高考单招一模数学试题)6人排成一行,甲、乙相邻且丙不排两端的排法有()A.288种 B.144种 C.96种 D.48种【答案】B【解析】把甲乙两人捆绑成一个元素,有种排法,现在相当于有5个元素排在5个位置上,先将丙排在中间3个位置中的某一个,有种排法,再将剩余的4个元素排在剩余的4个位置上,有种排法,所以共有种排法.故选:B.2.(河北省邯郸市2022届高三上学期开学摸底数学试题)由1,2,3,4,5,6六个数字按如下要求组成无重复数字的六位数,1必须排在前两位,且2,3,4必须排在一起,则这样的六位数共有()A.48个 B.60个 C.72个 D.84个【答案】B【解析】把2,3,4捆绑在一起,作为一个元素排列,当1排在第一位时,有种排法;当1排在第二位时,2,3,4作为一个元素只能排在第三、四、五位或第四、五、六位,故共有种排法.由分类加法计数原理得,共有60种排法.故选:B.3.(湖北省九师联盟2021-2022学年高三上学期8月开学考数学试题)高三(2)班某天安排6节课,其中语文、数学、英语、物理、生物、地理各一节,若要求物理课比生物课先上,语文课与数学课相邻,则编排方案共有()A.42种 B.96种 C.120种 D.144种【答案】C【解析】因为要求物理课比生物课先上,语文课与数学课相邻,所以课程编排方案共有种,故选:C.4.(2021届高三数学临考冲刺原创卷(四))一只口袋内装有个白球,个黑球,若将球不放回地随机一个一个摸出来,则第次摸出的是白球的概率为________.【答案】【解析】将个白球和个黑球都看作是不同的,并将球一一摸出依次排成一排,每一种不同的排法看作一个基本事件,那么基本事项的总数为,其中第个球是白球的排法数为,故所求概率为,故答案为:5.(江西省智学联盟体(南昌市第二中学等)某公司在元宵节组织了一次猜灯谜活动,主持人事先将10条不同灯谜分别装在了如图所示的10个灯笼中,猜灯谜的职员每次只能任选每列最下面的一个灯笼中的谜语来猜(无论猜中与否,选中的灯笼就拿掉),则这10条灯谜依次被选中的所有不同顺序方法数为____________.(用数字作答)【答案】【解析】一共有10条灯谜,共有种方法,由题意可知而其中按2,3,3,2组成的4列相对位置不变,所以结合倍缩法可知共有种,也即是这10条灯谜依次被选中的所有不同顺序方法有种故答案为:.考点二组合【例2】(1)(江苏省南通市海安市2021-2022学年高三上学期期初学业质量监测数学试题)从三个小区中选取6人做志愿者,每个小区至少选取1人,则不同的选取方案数为()A.10 B.20 C.540 D.1080(2)(内蒙古包头市2021-2022学年高三上学期起点调研考试数学(理科)试题安排6名志愿者扶贫干部到甲、乙、丙三个贫困村做扶贫工作,每人只做1个村的脱贫工作,甲村安排1名,乙村安排2名,丙村安排3名,则不同的安排方式共有___________种.【答案】(1)A(2)60【解析】(1)从三个小区中选取6人做志愿者,每个小区至少选取1人,即6个志愿者名额分到3个小区,每个小区至少1个,等价于6个相同的小球分成3组,每组至少1个,将6个小球排成一排,除去两端共有5个空,从中任取2个插入挡板,共有(种)方法,即从三个小区中选取6人做志愿者,每个小区至少选取1人,不同的选取方案数为10.故选:A(2)先选一个人安排到甲村,有种方法;再从剩下的5个人中选2个人安排到乙村,有,最后把剩下的3个人安排到丙村,有种方法,根据乘法分步原理共有种方法.故答案为:60【一隅三反】1.(宁夏大学附属中学2021届高三三模数学)从2名教师和5名学生中,选出3人参加“我爱我的祖国”主题活动.要求入选的3人中至少有一名教师,则不同的选取方案的种数是()A.20 B.55 C.30 D.25【答案】B【解析】根据题意,从2名教师和5名学生中,选出3人,有种选法,若入选的3人没有教师,即全部为学生的选法有种,则有种不同的选取方案,故选:B.2.(广东省茂名市2021届五校联盟高三下学期第三次联考数学试题)国外新冠肺炎不断扩散蔓延,2021年元月在我国本土疫情呈零星散发与聚集性疫情交织叠加态势,本着“疫情防控不松懈,健健康康过春节”精神,某地8名防疫工作人员到A、B、C、D四个社区做防护宣传,每名工作人员只去1个社区、A社区安排1名、B社区安排2名、C社区安排3名,剩下的人员到D社区,则不同的安排方法共有()A.39种 B.168种C.1268种 D.1680种【答案】D【解析】首先从8名工作人员中选1名去A社区,方法数有;然后从其余7名工作人员中选2名去B社区,方法数有;再从其余5名工作人员中选3名去C社区,方法数有:最后剩下的2名工作人员去D社区,故不同的安排方法共有种.故选:D.3.(黑龙江省哈尔滨市第九中学2021届高三第三次模拟考试理科数学试题)从将标号为1,2,3,…,9的9个球放入标号为1,2,3,…,9的9个盒子里,每个盒内只放一个球,恰好3个球的标号与其所在盒子的标号不一致的放入方法种数为()A.84 B.168 C.240 D.252【答案】B【解析】根据题意,先确定标号与其在盒子的标号不一致的3个球,即从9个球中取出3个,有种,而这3个球的排法有2×1×1=2种,则共有种,故选:B.4.(浙江省嘉兴市2021-2022学年高三上学期9月基础测试数学试题)某盒中有9个大小相同的球,分别标号为1,2,…,9,从盒中任取3个球,则取出的3个球的标号之和能被3整除的概率是______;记为取出的3个球的标号之和被3除的余数,则随机变量的数学期望______.【答案】【解析】从9个球中任取3个球有种不同的方法,1-9中能被3整除的有3,6,9,除3余1的有1,4,7,除3余2的有2,5,8,故将1-9划分为以上三类,显然来自同一类的三个数和为3的倍数,每个类别抽1个的三个数和也为3的倍数(其余数为0+1+2=3为3的倍数),所以在其中取出的3个球的标号之和能被3整除的情况有种,所以取出的3个球的标号之和能被3整除的概率.由题意知的所有可能取值为0,1,2,取出的3个球的标号之和被3除余1的情况有:①标号被3除余数为1的球1个和标号被3整除的球2个;②标号被3除余数为1的球2个和标号被3除余数为2的球1个;③标号被3除余数为2的球2个和标号被3整除的球1个.则.取出的3个球的标号之和被3除余2的情况有:①标号被3除余数为1的球2个和标号被3整除的球1个;②标号被3除余数为1的球1个和标号被3除余数为2的球2个;③标号被3除余数为2的球1个和标号被3整除的球2个,则,所以.故答案为:;.考点三排列组合综合运用【例3】(1)(重庆市第十一中学2022届高三上学期9月月考数学试题)重庆11中本学期接收了5名西藏学生,学校准备把他们分配到A,B,C三个班级,每个班级至少分配1人,则其中学生甲不分配到A班的分配方案种数是()A.720 B.100 C.150 D.345(2).(河北省唐山市2022届高三上学期开学摸底数学试题)现有4份不同的礼物,若将其全部分给甲、乙两人,要求每人至少分得份,则不同的分法共有()A.10种 B.14种 C.20种 D.28种【答案】(1)B(2)B【解析】(1)根据题意,分2步进行分析:①将5名学生分为3组,若分为的三组,有种分组方法,若分为的三组,有种分组方法,则有种分组方法,②将甲所在的组安排在或班,剩下2组任意安排,有种安排方法,则有种分配方案;故选:B.(2)4份不同的礼物分成两组有两种情况:1份和份;份和份;所以不同的分法有种,故选:B.【一隅三反】1.(2021年高考最后一卷理科数学(第六模拟)年月日,国家航天局探月与航天工程中心组织完成了我国首辆火星车全球征名活动的初次评审.初评环节遴选出弘毅、麒麟、哪吒、赤兔、祝融、求索、风火轮、追梦、天行、星火共个名称,作为我国首辆火星车的命名范围.某同学为了研究这些初选名字的内涵,计划从中随机选取个依次进行分析,若同时选中哪吒、赤兔,则哪吒和赤兔连续被分析,否则随机依次分析,则所有不同的分析情况有()A.种 B.种 C.种 D.种【答案】A【解析】①同时选中哪吒和赤兔,则只需从剩余的个初选名字中选出个,再进行排列即可,有种情况;②哪吒和赤兔有一个入选,则需从剩余的个初选名字中选出个,再进行排列,有种情况;③哪吒和赤兔都不选,则需从剩余的个初选名字中选出个,再进行排列,有种情况;不同的分析情况共有种.故选:A.2.(上海市静安区2021届高三二模数学试题)在1,2,3,4,5,6,7中任取6个不同的数作为一个3行2列矩阵的元素,要求矩阵的第2行的两个数字之和等于5,而矩阵的第1行和第3行的两个数字之和都不等于5,则可组成不同矩阵的个数为().A.204 B.260 C.384 D.480【答案】C【解析】两个数字之和等于5的情形只有两种:.下面先考虑第二行选取1,4作为元素,有种方法;再安排第一行、第三行,若只选取2,3中的一个有种方法,若2,3都选取,则有种方法.由乘法原理可得:方法.同理可得:第二行选取2,3作为元素,也有方法.利用加法原理可得:可组成不同矩阵的个数为种方法.故选:C3.(山东省临沂市沂水一中2021届高三二轮复习联考(一)数学对于一个国家的发展至关重要,发达国家常常把保持数学领先地位作为他们的战略需求.现某大学为提高数学系学生的数学素养,特开设了“古今数学思想”,“世界数字通史”,“几何原本”,“什么是数学”四门选修课程,要求数学系每位同学每学年至多选门,大一到大三三学年必须将四门]选修课程选完,则每位同学的不同选修方式有()A.种 B.种 C.种 D.种【答案】B【解析】由题意可知三年修完四门课程,则每位同学每年所修课程数为或或若是,则先将门学科分成三组共种不同方式.再分配到三个学年共有种不同分配方式,由乘法原理可得共有种,若是,则先将门学科分成三组共种不同方式,再分配到三个学年共有种不同分配方式,由乘法原理可得共有种,若是,则先将门学科分成三组共种不同方式,再分配到三个学年共有种不同分配方式,由乘法原理可得共有种所以每位同学的不同选修方式有种,故选:B.4.(山东省(新高考)2021届高三模拟冲关押题卷(二)数学试题)2020年,新型冠状病毒引发的疫情牵动着亿万人的心.八方驰援战疫情,众志成城克时难,社会各界支援湖北,共抗新型冠状病毒肺炎.山东某医院的甲、乙、丙、丁、戊5名医生到湖北的,,三个城市支援,若要求每个城市至少安排1名医生,则A城市恰好只有医生甲去支援的概率为______.【答案】【解析】分两步,第一步,把5名医生分成三组,有1,1,3和1,2,2两种分法,当分成1,1,3时,有种情况,当分成1,2,2时,有种情况;第二步,把这三组分到三个城市.则共有种情况.城市恰好只有医生甲去支援,即将剩下的4名医生分配到2个城市.则共有(种),因此所求概率.故答案为:5.(江西省南昌市第三中学2021届高三下学期第八次月考试数学(理)试题)南昌花博会期间,安排6位志愿者到4个展区提供服务,要求甲、乙两个展区各安排一个人,剩下两个展区各安排两个人,其中的小李和小王不在一起,不同的安排方案共有________种.【答案】156【解析】根据题意,设剩下的2个展区为丙展区和丁展区,用间接法分析

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论