




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第25节点、线与圆的位置关系第六章圆目录contents课前预习考点梳理课堂精讲广东中考考点1考点2课前预习目录contents课前预习Listenattentively1.已知⊙O的直径为3cm,点P到圆心O的距离OP=2cm,则点P()A.在⊙O外B.在⊙O上C.在⊙O内D.不能确定A2.(2016•梧州)已知半径为5的圆,其圆心到直线的距离是3,此时直线和圆的位置关系为()A.相离 B.相切 C.相交 D.无法确定C课前预习Listenattentively3.(2016•泉州)如图,AB和⊙O相切于点B,∠AOB=60°,则∠A的大小为()A.15° B.30° C.45° D.60°B4.(2016•包头)如图,已知AB是⊙O的直径,点C在⊙O上,过点C的切线与AB的延长线交于点P,连接AC,若∠A=30°,PC=3,则BP的长为
.课前预习Listenattentively5.(2016•黄石)如图,⊙O的直径为AB,点C在圆周上(异于A,B),AD⊥CD.(1)若BC=3,AB=5,求AC的值;(2)若AC是∠DAB的平分线,求证:直线CD是⊙O的切线.【分析】(1)首先根据直径所对的圆周角为直角得到直角三角形,然后利用勾股定理求得AC的长即可;(2)连接OC,证OC⊥CD即可;利用角平分线的性质和等边对等角,可证得∠OCA=∠CAD,即可得到OC∥AD,由于AD⊥CD,那么OC⊥CD,由此得证.课前预习Listenattentively【解答】(1)解:∵AB是⊙O直径,C在⊙O上,∴∠ACB=90°,又∵BC=3,AB=5,∴由勾股定理得AC=4;(2)证明:∵AC是∠DAB的角平分线,∴∠DAC=∠BAC,又∵AD⊥DC,∴∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴∠DCA=∠CBA,又∵OA=OC,∴∠OAC=∠OCA,∵∠OAC+∠OBC=90°,∴∠OCA+∠ACD=∠OCD=90°,∴DC是⊙O的切线.考点梳理目录contents1.点与圆的位置关系有三种:如果圆的半径为r,某一点到圆心的距离为d,那么:(1)点在圆外 (2)点在圆上 (3)点在圆内2.直线与圆的位置关系直线与圆的位置关系有三种:相离、相切和相交,如下表:考点梳理Listenattentively考点梳理Listenattentively3.切线的性质切线的性质定理:圆的切线垂直于经过切点的半径.切线的主要性质:(1)切线和圆只有一个公共点;(2)切线和圆心的距离等于圆的半径;(3)切线垂直于经过切点的半径;(4)经过圆心垂直于切线的直线必过切点;(5)经过切点垂直于切线的直线必过圆心.切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.圆的切线垂直于这条圆的_______.半径考点梳理Listenattentively4.切线长定理
(1)切线长:在经过圆外一点的圆的切线上,这点与切点之间的线段的长叫做这点到圆的切线长.(2)定理:过圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线_____两条切线的夹角.平分课堂精讲目录contents课堂精讲Listenattentively1.(2016泰安模拟)已知⊙O的半径为10cm,点A是线段OP的中点,且OP=25cm,则点A和⊙O的位置关系是()A.点A在⊙O内 B.点A在⊙O上 C.点A在⊙O外 D.无法确定【分析】先计算出OP的长,再比较OP与圆的半径的大小,然后根据点与圆的位置关系判断点A和⊙O的位置关系.
【解答】解:∵点A是线段OP的中点,且OP=25cm∴OA=12.5,而⊙O的半径为10cm,∴OA>圆的半径,∴点A在⊙O外.故选C.C考点1点、直线与圆的位置关系课堂精讲Listenattentively2.(2015•齐齐哈尔)如图,两个同心圆,大圆的半径为5,小圆的半径为3,若大圆的弦AB与小圆有公共点,则弦AB的取值范围是()A.8≤AB≤10B.8<AB≤10C.4≤AB≤5D.4<AB≤5A【分析】此题可以首先计算出当AB与小圆相切的时候的弦长.连接过切点的半径和大圆的一条半径,根据勾股定理和垂径定理,得AB=8.若大圆的弦AB与小圆有公共点,即相切或相交,此时AB≥8;又因为大圆最长的弦是直径10,则8≤AB≤10.课堂精讲Listenattentively【解答】解:当AB与小圆相切,∵大圆半径为5,小圆的半径为3,∴AB=2=8.∵大圆的弦AB与小圆有公共点,即相切或相交,∴8≤AB≤10.故选:A.3.如图,∠ACB=60°,⊙O的圆心O在边BC上,⊙O的半径为3,在圆心O向点C运动的过程中,当CO=
时,⊙O与直线CA相切.分析:过O作OD⊥AC于D,当,⊙O与直线CA相切时,则OD为圆的半径3,进而求出CO的长.课堂精讲Listenattentively【解答】解:过O作OD⊥AC于D,当⊙O与直线CA相切时,则OD为圆的半径3,即OD=3,∵∠ACB=60°,∴sin60°==,∴CO=2,故答案为:2.课堂精讲Listenattentively4.(2016•衢州)如图,AB是⊙O的直径,C是⊙O上的点,过点C作⊙O的切线交AB的延长线于点E,若∠A=30°,则sin∠E的值为()A、 B、 C、 D、考点2
切线的性质与判定【分析】首先连接OC,由CE是⊙O切线,可证得OC⊥CE,又由圆周角定理,求得∠BOC的度数,继而求得∠E的度数,然后由特殊角的三角函数值,求得答案.A课堂精讲Listenattentively【解答】解:连接OC,∵CE是⊙O切线,∴OC⊥CE,∵∠A=30°,∴∠BOC=2∠A=60°,∴∠E=90°﹣∠BOC=30°,∴sin∠E=sin30°=.故选A.课堂精讲Listenattentively5.(2016•丹东)如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,CE⊥AD,交AD的延长线于点E.(1)求证:∠BDC=∠A;(2)若CE=4,DE=2,求AD的长.【分析】(1)连接OD,由CD是⊙O切线,得到∠ODC=90°,根据AB为⊙O的直径,得到∠ADB=90°,等量代换得到∠BDC=∠ADO,根据等腰直角三角形的性质得到∠ADO=∠A,即可得到结论;(2)根据垂直的定义得到∠E=∠ADB=90°,根据平行线的性质得到∠DCE=∠BDC,根据相似三角形的性质得到 ,解方程即可得到结论.课堂精讲Listenattentively
(2)∵CE⊥AE,∴∠E=∠ADB=90°,∴DB∥EC,∴∠DCE=∠BDC,∵∠BDC=∠A,∴∠A=∠DCE,∵∠E=∠E,∴△AEC∽△CED,∴ ,∴EC2=DE•AE,∴16=2(2+AD),∴AD=6.【解答】(1)证明:连接OD,∵CD是⊙O切线,∴∠ODC=90°,即∠ODB+∠BDC=90°,∵AB为⊙O的直径,∴∠ADB=90°,即∠ODB+∠ADO=90°,∴∠BDC=∠ADO,∵OA=OD,∴∠ADO=∠A,∴∠BDC=∠A;课堂精讲Listenattentively6.(2016•南平)如图,PA,PB是⊙O的切线,A,B为切点,点C在PB上,OC∥AP,CD⊥AP于D.(1)求证:OC=AD;(2)若∠P=50°,⊙O的半径为4,求四边形AOCD的周长(精确到0.1)【分析】(1)只要证明四边形OADC是矩形即可.(2)在Rt△OBC中,根据sin∠BCO=,求出OC即可解决问题.课堂精讲Listenattentively【解答】(1)证明:∵PA切⊙O于点A,∴OA⊥PA,即∠OAD=90°,∵OC∥AP,∴∠COA=180°﹣∠OAD=180°﹣90°=90°,∵CD∥PA,∴∠CDA=∠OAD=∠COA=90°,∴四边形AOCD是矩形,∴OC=AD.(2)解:∵PB切⊙O于等B,∴∠OBP=90°,∵OC∥AP,∴∠BCO=∠P=50°,在RT△OBC中,sin∠BCO=,OB=4,∴OC=≈5.22,∴矩形OADC的周长为2(OA+OC)=2×(4+5.22)=18.4.课堂精讲Listenattentively7.(2016•南充)如图,在Rt△ABC中,∠ACB=90°,∠BAC的平分线交BC于点O,OC=1,以点O为圆心OC为半径作半圆.(1)求证:AB为⊙O的切线;(2)如果tan∠CAO=,求cosB的值.【分析】(1)如图作OM⊥AB于M,根据角平分线性质定理,可以证明OM=OC,由此即可证明.(2)设BM=x,OB=y,列方程组即可解决问题.课堂精讲Listenattentively课堂精讲Listenattentively8.(2016•枣庄)如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PB、AB,∠PBA=∠C.(1)求证:PB是⊙O的切线;(2)连接OP,若OP∥BC,且OP=8,⊙O的半径为2,求BC的长.【分析】(1)连接OB,由圆周角定理得出∠ABC=90°,得出∠C+∠BAC=90°,再由OA=OB,得出∠BAC=∠OBA,证出∠PBA+∠OBA=90°,即可得出结论;(2)证明△ABC∽△PBO,得出对应边成比例,即可求出BC的长.课堂精讲Listenattentively【解答】(1)证明:连接OB,如图:∵AC是⊙O的直径,∴∠ABC=90°,∴∠C+∠BAC=90°,∵OA=OB,∴∠BAC=∠OBA,∵∠PBA=∠C,∴∠PBA+∠OBA=90°,即PB⊥OB,∴PB是⊙O的切线;(2)解:∵⊙O的半径为2,∴OB=2,AC=4,∵OP∥BC,∴∠C=∠BOP,又∵∠ABC=∠PBO=90°,∴△ABC∽△PBO,∴ ,即 ,∴BC=2.目录contents广东中考广东中考ListenattentivelyA9.(2011梅州)已知OP=5,⊙O的半径为5,则点P在()A.⊙O上B.⊙O内C.⊙O外D.圆心上【分析】根据点到圆心的距离和半径之间的数量关系,即可判断点和圆的位置关系.点到圆心的距离小于圆的半径,则点在圆内;点到圆心的距离等于圆的半径,则点在圆上;点到圆心的距离大于圆的半径,则点在圆外.【解答】解:∵点到圆心的距离d=5=r,
∴该点P在⊙O上.
故选A.广东中考Listenattentively10.(2008湛江)⊙O的半径为4,圆心O到直线l的距离为3,则直线l与⊙O的位置关系是()A.相交B.相切C.相离D.无法确定解析:圆心O到直线l的距离d=3,而⊙O的半径R=4.又因为d<R,则直线和圆相交.A广东中考Listenattentively11.(2011广东)如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠A=40°,则∠C=
.解析:如图,连接OB,∵AB与⊙O相切于点B,∴∠OBA=90°,∵∠A=40°,∴∠AOB=50°,∵OB=OC,∴∠C=∠OBC,∵∠AOB=∠C+∠OBC=2∠C,∴∠C=25°.25°广东中考Listenattentively12.(2010广东)如图,PA与⊙O相切于A点,弦AB⊥OP,垂足为C,OP与⊙O相交于D点,已知OA=2,OP=4.(1)求∠POA的度数;(2)计算弦AB的长.广东中考Listenattentively解析:解:(1)∵PA与⊙O相切于A点,∴△OAP是直角三角形,∵OA=2,OP=4,∴cos∠POA==,∴∠POA=60°.(2)∵直角三角形OCA中∠AOC=60°,OA=2∴AC=OA•sin60°=2×=.∵AB⊥OP,∴AB=2AC=2.广东中考Listenattentively13.(2013广东)如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,弦BD=BA,AB=12,BC=5,BE⊥DC交DC的延长线于点E.(1)求证:∠BCA=∠BAD;(2)求DE的长;(3)求证:BE是⊙O的切线.广东中考Listenattentively解析:(1)证明:∵BD=BA,∴∠BDA=∠BAD∵∠BCA=∠BDA(圆周角定理),∴∠BCA=∠BAD.(2)解:∵∠BDE=∠CAB(圆周角定理)且∠BED=∠CBA=90°,∴△BED∽△CBA,∴=,即=,解得:DE=.广东中考Listenattentively(3)证明:连结OB,OD,在△ABO和△DBO中,∵∴△ABO≌△DBO,∴∠DBO=∠ABO,∵∠ABO=∠OAB=∠BDC,∴∠DBO=∠BDC,∴OB∥ED,∵BE⊥ED,∴EB⊥BO,∵OB是⊙O的半径,,∴BE是⊙O的切线.广东中考Listenattentively14.(2014广东)如图,⊙O是△ABC的外接圆,AC是直径,过点O作OD⊥AB于点D,延长DO交⊙O于点P,过点P作PE⊥AC于点E,作射线DE交BC的延长线于F点,连接PF.(1)求证:OD=OE;(2)求证:PF是⊙O的切线.广东中考Listenattentively解析:(1)证明:∵PE⊥AC,OD⊥AB,∠PEA=90°,∠ADO=90°在△ADO和△PEO中,∴△POE≌△AOD(AAS),∴OD=EO;(2)连接PC,由AC是直径知BC⊥AB,又OD⊥AB,∴PD∥BF,∴∠OPC=∠PCF,∠ODE=∠CFE广东中考Listenattentively由(1)知OD=OE,则∠ODE=∠OED,又∠OED=∠FEC,∴∠FEC=∠CFE,∴EC=FC,由OP=OC知∠OPC=∠OCP,∴∠PCE=∠PCF,在△PCE和△PFC中,
∴△PCE≌△PFC,∴∠PFC=∠PEC=90°,由∠PDB=∠B=90°可知∠OPF=90°即OP⊥PF,∴PF是⊙O的切线.广东中考Listenattentively15.(2016广东)如图,⊙O是△ABC的外接圆,BC是⊙O的直径,∠ABC=30°,过点B作⊙O的切线BD,与CA的延长线交于点D,与半径AO的延长线交于点E,过点A作⊙O的切线AF,与直径BC的延长线交于点F.(1)求证:△ACF∽△DAE;(2)若S△AOC=,求DE的长;(3)连接EF,求证:EF是⊙O的切
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 四个合伙人合同协议书
- 脱离债务协议书
- 男子生育协议书
- 竹鼠引种协议书
- 快递签合同转租协议书
- 熟食店转让合同协议书
- 莫衡相亲协议书
- 外包电气工程师协议书
- 租山合伙协议书
- 自然死亡协议书
- 2025年中国冷库用叉车数据监测研究报告
- 2025年高考第二次模拟考试物理(浙江卷)(参考答案)-20250416-113627
- 2025年化妆师职业技能考试试题及答案
- GA 1812.1-2024银行系统反恐怖防范要求第1部分:人民币发行库
- 2025中信建投证券股份限公司校园招聘易考易错模拟试题(共500题)试卷后附参考答案
- 2025年山东省泰安市新泰市中考二模化学试题(原卷版+解析版)
- 2025年鸡蛋市场调查报告
- 2025年职业技能竞赛(计算机程序员赛项)参考试题(附答案)
- 湖北省武汉市2025届高中毕业生四月调研考试语文试卷及答案(武汉四调)
- 2025年全国中小学生百科知识竞赛题库及答案(480题)
- 测控技术培训课件
评论
0/150
提交评论