山西省长治市辛寨中学2022年高二数学文月考试题含解析_第1页
山西省长治市辛寨中学2022年高二数学文月考试题含解析_第2页
山西省长治市辛寨中学2022年高二数学文月考试题含解析_第3页
山西省长治市辛寨中学2022年高二数学文月考试题含解析_第4页
山西省长治市辛寨中学2022年高二数学文月考试题含解析_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省长治市辛寨中学2022年高二数学文月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.如图所示的韦恩图中,A、B是非空集合,定义A*B表示阴影部分的集合。若,则A*B为(

)A.

B.

C.

D.参考答案:D略2.圆的圆心坐标和半径分别是(

) A.(0,2)2 B.(2,0)4 C.(-2,0)2 D.(2,0)2参考答案:B3.在如图所示的坐标平面的可行域(阴影部分且包括边界)内,目标函数取得最大值的最优解有无数个,则a为

A.-2

B.2

C.-6

D.6

参考答案:A4.椭圆的右焦点为F,其右准线与轴的交点为A,在椭圆上存在点P满足线段AP的垂直平分线过点F,则椭圆离心率的取值范围是(

)A.(0,]

B.(0,]

C.[,1)

D.[,1)参考答案:D略5.设均为正数,且,,,则(

A、

B、

C、

D、参考答案:D略6.若,则等于(

)A.-1

B.1

C.0

D.无法确定参考答案:B7.下列结论错误的是()

A.命题“若,则”与命题“若则”互为逆否命题;

B.命题,命题则为真;

C.“若则”的逆命题为真命题;

D.若为假命题,则、均为假命题.参考答案:C8.已知双曲线的两个焦点为,,是此双曲线上一点,若,,则该双曲线的方程是(

A

B

C

D参考答案:

A9.下列语句中:①

其中是赋值语句的个数为(

)A.6

B.5

C.4

D.3参考答案:C无10.已知∈R,则下列正确的是A.

B.C.

D.参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.命题“?x∈R,2x2﹣3ax+9<0”为假命题,则实数a的取值范围为.参考答案:[﹣2,2]【考点】命题的真假判断与应用;函数恒成立问题.【分析】根据题意,原命题的否定“?x∈R,2x2﹣3ax+9≥0”为真命题,也就是常见的“恒成立”问题,只需△≤0.【解答】解:原命题的否定为“?x∈R,2x2﹣3ax+9≥0”,且为真命题,则开口向上的二次函数值要想大于等于0恒成立,只需△=9a2﹣4×2×9≤0,解得:﹣2≤a≤2.故答案为:[﹣2,2]12.如图,已知抛物线y2=4x的焦点为F,直线l过F且依次交抛物线及圆(x﹣1)2+y2=于点A,B,C,D四点,则9|AB|+4|CD|的最小值为.参考答案:【考点】K8:抛物线的简单性质.【分析】求出||AB|=xA+,|CD|=xD+,当l⊥x轴时,则xD=xA=1,9|AB|+4|CD|=.当l:y=k(x﹣1)时,代入抛物线方程,得:k2x2﹣(2k2+4)x+k2=0,9|AB|+4|CD|=.【解答】解:∵y2=4x,焦点F(1,0),准线l0:x=﹣1由定义得:|AF|=xA+1,又∵|AF|=|AB|+,∴|AB|=xA+同理:|CD|=xD+,当l⊥x轴时,则xD=xA=1,∴9|AB|+4|CD|=.当l:y=k(x﹣1)时,代入抛物线方程,得:k2x2﹣(2k2+4)x+k2=0,∴xAxD=1,xA+xD=1,∴9|AB|+4|CD|=.综上所述4|AB|+9|CD|的最小值为.故答案为:.13.函数的定义域是

.参考答案:

14.直线kx+y+2k+1=0必经过的点是

.参考答案:(-2,-1)15.现有如下四个命题:①若动点P与定点A(﹣4,0)、B(4,0)连线PA、PB的斜率之积为定值,则动点P的轨迹为双曲线的一部分②设m,n∈R,常数a>0,定义运算“*”:m*n=(m+n)2﹣(m﹣n)2,若x≥0,则动点P(x,)的轨迹是抛物线的一部分③已知两圆A:(x+1)2+y2=1、圆B:(x﹣1)2+y2=25,动圆M与圆A外切、与圆B内切,则动圆的圆心M的轨迹是椭圆④已知A(7,0),B(﹣7,0),C(2,﹣12),椭圆过A,B两点且以C为其一个焦点,则椭圆的另一个焦点的轨迹为双曲线上述四个命题中真命题为

.(请写出其序号)参考答案:①②③【考点】曲线与方程.【分析】利用直译法,求①选项中动点P的轨迹方程,进而判断表示的曲线;利用新定义运算,利用直译法求选项②中曲线的轨迹方程,进而判断轨迹图形;利用圆与圆的位置关系,利用定义法判断选项③中动点的轨迹;利用椭圆定义,由定义法判断④中动点的轨迹即可.【解答】解:设P(x,y),因为直线PA、PB的斜率存在,所以x≠±4,直线PA、PB的斜率分别是k1=,k2=,∴,化简得9y2=4x2﹣64,即(x≠±4),∴动点P的轨迹为双曲线的一部分,①正确;∵m*n=(m+n)2﹣(m﹣n)2,∴=2,设P(x,y),则y=2,即y2=4ax(x≥0,y≥0),即动点的轨迹是抛物线的一部分,②正确;由题意可知,动圆M与定圆A相外切与定圆B相内切∴MA=r+1,MB=5﹣r∴MA+MB=6>AB=2∴动圆圆心M的轨迹是以A,B为焦点的椭圆,③正确;设此椭圆的另一焦点的坐标D(x,y),∵椭圆过A、B两点,则CA+DA=CB+DB,∴15+DA=13+DB,∴DB﹣DA=2<AB,∴椭圆的另一焦点的轨迹是以A、B为焦点的双曲线一支,④错误故答案为:①②③.16.从5名男医生.4名女医生中选3名医生组成一个医疗小分队,要求其中男.女医生都有,则不同的组队方案共有

种(数字回答).参考答案:70【考点】D9:排列、组合及简单计数问题.【分析】不同的组队方案:选3名医生组成一个医疗小分队,要求其中男、女医生都有,方法共有两类,一是:一男二女,另一类是:两男一女;在每一类中都用分步计数原理解答.【解答】解:直接法:一男两女,有C51C42=5×6=30种,两男一女,有C52C41=10×4=40种,共计70种间接法:任意选取C93=84种,其中都是男医生有C53=10种,都是女医生有C41=4种,于是符合条件的有84﹣10﹣4=70种.故答案为:70.17.若执行如下图所示的框图,输入x1=1,x2=2,x3=3,=2,则输出的数等于________.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数,(且),.(1)若函数在上的最大值为1,求a的值;(2)若存在使得关于的不等式成立,求k的取值范围.参考答案:(1)或;(2)分析】(1)利用导数结合定义域讨论出函数的单调区间,根据单调区间求出函数的最小值,从而解出的范围;(2)关于的不等式存在成立,等价于不等式在有解,令,对函数求导,求出函数在上的单调区间,从而求出的最小值,即可求出的取值范围。【详解】(1)因为,令,,,当时,在上单调递增,在上单调递减,所以在区间上的最大值为,令,解得.当,,当时,在上单调递增,上单调递减,上单调递增,所以最大值1可能在或处取得,而,所以,解得.当时,在区间上单调递增,上单调递减,上单调递增,所以最大值1可能在或处取得,而,所以,解得,与矛盾.当时,在区间上单调递增,在单调递减,所以最大值1可能在处取得,而,矛盾.综上所述,或.(2)关于的不等式存在成立,等价于不等式在有解,设,,,当即时,递增,当,即时,递减,又,,∵,∴.【点睛】本题主要考查利用导数讨论函数的单调区间,最大最小值的问题以及分离参数法,综合性比较强,有一定难度。19.(本题满分16分)设实数满足不等式组(1)画出点所在的平面区域,并在区域中标出边界所在直线的方程;(2)设,在(1)所求的区域内,求函的最大值和最小值.参考答案:解析:(1)已知的不等式组等价于或……………

2分解得点(x,y)所在平面区域为如图所示的阴影部分(含边界).其中AB:y=2x-5;BC:x+y=4;CD:y=-2x+1;DA:x+y=1.………………

4分……8分(2)f(x,y)表示直线l:y-ax=b在y轴上的截距,且直线l与(1)中所求区域有公共点.∵a>-1,∴当直线l过顶点C时,f(x,y)最大.∵C点的坐标为(-3,7),∴f(x,y)的最大值为7+3a.

10分如果-1<a≤2,那么直线l过顶点A(2,-1)时,f(x,y)最小,最小值为-1-2a.

……13分如果a>2,那么直线l过顶点B(3,1)时,f(x,y)最小,最小值为1-3a.

……16分略20.△ABC的内角A,B,C的对边分别是a,b,c,已知2cosA(bcosC+ccosB)=a.(1)求角A;(2)若a=,b+c=5,求△ABC的面积.参考答案:【考点】余弦定理;正弦定理.【分析】(1)由已知及正弦定理,三角函数恒等变换的应用可得2cosAsinA=sinA,从而可求cosA=,结合范围A∈(0,π),即可得解A的值.(2)由已知及余弦定理可得7=25﹣3bc,解得bc=6,利用三角形面积公式即可计算得解.【解答】(本题满分为12分)解:(1)由已知及正弦定理可得:2cosA(sinBcosC+sinCcosB)=sinA,…2分可得:2cosAsin(B+C)=sinA,解得:2cosAsinA=sinA,即:cosA=,…5分由于:A∈(0,π),所以:A=…6分(2)由已知及余弦定理可得:a2=b2+c2﹣2bccsoA=(b+c)2﹣2bc(1+cosA),…7分因为:a=,b+c=5,cosA=,所以:7=25﹣3bc,解得:bc=6,…10分所以:S△ABC=bcsinA=…12分21.设函数.(1)求函数的单调区间;(2)当时,不等式恒成立,求实数的取值范围;(3)关于的方程在上恰有两个相异实根,求的取值范围.参考答案:解:(1)函数定义域为

----------------------1分

---------------------------------2分由得或;

由得或.因此递增区间是;递减区间是---------4分(2)由(1)知,在上递减,在上递增---------------5分又且,所以时,.---------------------8分故时,不

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论