山西省长治市芮中学2022年高二数学文月考试卷含解析_第1页
山西省长治市芮中学2022年高二数学文月考试卷含解析_第2页
山西省长治市芮中学2022年高二数学文月考试卷含解析_第3页
山西省长治市芮中学2022年高二数学文月考试卷含解析_第4页
山西省长治市芮中学2022年高二数学文月考试卷含解析_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省长治市芮中学2022年高二数学文月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若对于函数图象上任意一点处的切线,在函数的图象上总存在一条切线,使得,则实数a的取值范围为(

)A. B.C. D.参考答案:A【分析】转化条件得,,使得成立,利用基本不等式求得的取值范围后即可得解.【详解】函数,,函数,,要使过曲线上任意一点的切线为,在函数的图象上总存在一条切线,使得,则即,,,当且仅当时等号成立,,,使得等式成立,所以,解得:或.故选:A.【点睛】本题考查了导数的几何意义和基本不等式的应用,考查了转化化归思想,属于中档题.2.过M(-2,0)的直线m与椭圆+y2=1交于P1、P2两点,线段P1P2的中点为P,设直线m的斜率为k1(k1≠0),直线OP的斜率为k2,则k1k2的值为 ()A.2 B.-2 C. D.-参考答案:D略3.一空间几何体的三视图如图所示,则该几何体的体积为()A.2π+2B.4π+2C.2π+D.4π+参考答案:C略4.下列说法:

①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;

②设有一个回归方程,变量x增加一个单位时,y平均增加5个单位;

③线性回归方程必过();④在一个2×2列联中,由计算得则有99%的把握确认这两个变量间有关系;其中错误的个数是

A.0

B.1

C.2

D.3

本题可以参考独立性检验临界值表:0.50.400.250.150.100.050.250.0100.0050.001k0.4550.7081.3232.0722.7063.8415.0246.5357.87910.828

参考答案:B略5.某考察团对全国10大城市进行职工人均工资水平x(千元)与居民人均消费水平y(千元)统计调查发现,y与x具有相关关系,回归方程为=0.66x+1.562.若某城市居民人均消费水平为7.675(千元),估计该城市人均消费额占人均工资收入的百分比约为()A.83% B.72% C.67% D.66%参考答案:A【分析】把y=7.675代入回归直线方程求得x,再求的值.【详解】当居民人均消费水平为7.675时,

则7.675=0.66x+1.562,即职工人均工资水平x≈9.262,

∴人均消费额占人均工资收入的百分比为故选:A.【点睛】本题考查了回归直线方程的应用,熟练掌握回归直线方程变量的含义是解题的关键.

6.根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万吨)柱形图。以下结论不正确的是()A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关参考答案:D由柱形图可知2006年以来,我国二氧化碳排放量基本成递减趋势,所以二氧化碳排放量与年份负相关,故选D.考点:本题主要考查统计知识及对学生柱形图的理解【此处有视频,请去附件查看】

7.数列中,,,则

(

)A.

B.

C.

D.参考答案:B8.求满足下列条件的方法种数:(1)将4个不同的小球,放进4个不同的盒子,且没有空盒子,共有多少种放法?(2)将4个不同的小球,放进3个不同的盒子,且没有空盒子,共有多少种放法?(最后结果用数字作答)参考答案:(1)没有空盒子的放法有:种.(2)放进3个盒子的放法有:种.9.将编号为1,2,3,4,5,6的六个小球排成一列,要求1号球与2号球必须相邻,5号球与6号球不相邻,则不同的排法种数有(

)(A)36

(B)142

(C)48

(D)144参考答案:D略10.在“矩形ABCD,AC,BD是它的两条对角线,则AC=BD”的推理过程中,大前提是(

)A.矩形ABCD

B.AC,BD是矩形的两条对角线C.AC=BD

D.矩形的两条对角线相等参考答案:D将问题写成三段论的形式即:大前提:矩形的两条对角线相等;小前提:AC,BD是矩形ABCD的两条对角线;结论:AC=BD.即大前提是矩形的两条对角线相等.本题选择D选项.

二、填空题:本大题共7小题,每小题4分,共28分11.已知函数的定义域是,,若对任意,则不等式的解集为

.参考答案:试题分析:令函数,则不等式可等价转化为.因,故函数是单调递减函数,而,所以原不等式可化为,故,应填.考点:导数与函数的单调性等基本性质的综合运用.【易错点晴】本题先构造函数,再运用题设条件及导数与函数的单调性的关系判断出函数是单调递减函数,然后运用假设算出,进而将不等式从进行等价转化为,最后借助函数的单调性,使得问题简捷巧妙地获解.12.函数y=f(x)的图象在点M(1,f(1))处的切线方程是y=3x﹣2,则f(1)+f′(1)=

.参考答案:4【考点】62:导数的几何意义.【分析】由导数的几何意义知,函数y=f(x)的图象在x=a处的切线斜率是f′(a);并且点P(a,f(a))是切点,该点既在函数y=f(x)的图象上,又在切线上,f(a)是当x=a时的函数值,依此问题易于解决.【解答】解:由题意得f′(1)=3,且f(1)=3×1﹣2=1所以f(1)+f′(1)=3+1=4.故答案为4.13.已知在棱长为1的正方体ABCD-A1B1C1D1中,P为正方体内一动点(包括表面),若=x+y+z,且0≤x≤y≤z≤1,则点P所有可能的位置所构成的几何体的体积是__________.参考答案:略14.已知点是椭圆上的在第一象限内的点,又、,是原点,则四边形的面积的最大值是

参考答案:略15.已知4瓶饮料中有且仅有2瓶是果汁饮料,从这4瓶饮料中随机取2瓶,则所取两瓶中至少有一瓶是果汁饮料的概率是_________.参考答案:【分析】先求出从4瓶饮料中随机抽出2瓶的所有的抽法种数,再求出取出的2瓶不是果汁类饮料的种数,利用对立事件的概率即可求得.【详解】从4瓶饮料中随机抽出2瓶,所有的抽法种数为=6(种),取出的2瓶不是果汁类饮料的种数为=1(种).所以所取2瓶中至少有一瓶是果汁类饮料的概率为P=1﹣=.故答案为:.16.若圆锥的表面积是,侧面展开图的圆心角是,则圆锥的体积是____

___。参考答案:略17.(2016?鞍山一模)在区间[﹣5,5]内随机四取出一个实数a,则a∈(0,1)的概率为.参考答案:【考点】几何概型.【专题】整体思想;定义法;概率与统计.【分析】根据几何概型的概率公式进行求解即可.【解答】解:在区间[﹣5,5]内随机四取出一个实数a,则a∈(0,1)的概率P==,故答案为:.【点评】本题主要考查几何概型的概率的计算,比较基础.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.在△ABC中的三内角所对的边分别为,且。(1)求的值(2)若b=2,△ABC的面积S=3,求a.参考答案:、

略19.如图,在ABC中,C=90°,AC=b,BC=a,P为三角形内的一点,且,(Ⅰ)建立适当的坐标系求出P的坐标;(Ⅱ)求证:│PA│2+│PB│2=5│PC│2

(Ⅲ)若a+2b=2,求以PA,PB,PC分别为直径的三个圆的面积之和的最小值,并求出此时的b值.参考答案:以边CA、CB所在直线分别为x轴、y轴建立直角坐标系,,设A()、B(0,b),P点的坐标为(x,y),由条件可知=,可求出x=,y=b,再分别用两点距离公式即可,(3)将a=2-2b代入s的表达式,得到b的一个二次函数.当b=0.8时,s最小.

本试题主要是考查了建立直角坐标系来表示面积,得到二次函数的最值的问题。根据已知条件先以边CA、CB所在直线分别为x轴、y轴建立直角坐标系,,设A()、B(0,b),P点的坐标为(x,y),由条件可知=,可求出x=,y=b,再运用两点距离公式得到关于b的表达式,进而得到面积的最小值。

20.已知顶点在原点,焦点在x轴上的抛物线被直线y=2x+1截得的弦长为.(1)求抛物线的方程;(2)若抛物线与直线y=2x﹣5无公共点,试在抛物线上求一点,使这点到直线y=2x﹣5的距离最短.参考答案:【考点】直线与圆锥曲线的综合问题;抛物线的标准方程.【分析】(1)设抛物线的方程为y2=2px,由,得,由抛物线被直线y=2x+1截得的弦长为能求出抛物线方程.(2)法一、抛物线y2=﹣4x与直线y=2x﹣5无公共点,设点为抛物线y2=﹣4x上的任意一点,点P到直线y=2x﹣5的距离为d,则,故当t=﹣1时,d取得最小值.法二、抛物线y2=﹣4x与直线y=2x﹣5无公共点,设与直线y=2x﹣5平行且与抛物线y2=﹣4x相切的直线方程为y=2x+b,切点为P,则点P即为所求点,由此能求出结果.【解答】解:(1)设抛物线的方程为y2=2px,则,消去y得…2=,…4则,p2﹣4p﹣12=0,∴p=﹣2,或p=6,∴y2=﹣4x,或y2=12x…6(2)解法一、显然抛物线y2=﹣4x与直线y=2x﹣5无公共点,设点为抛物线y2=﹣4x上的任意一点,点P到直线y=2x﹣5的距离为d,则…10当t=﹣1时,d取得最小值,此时为所求的点

…12解法二、显然抛物线y2=﹣4x与直线y=2x﹣5无公共点,设与直线y=2x﹣5平行且与抛物线y2=﹣4x相切的直线方程为y=2x+b,切点为P,则点P即为所求点.…7由,消去y并化简得:4x2+4(b+1)x+b2=0,…9∵直线与抛物线相切,∴△=16(b+1)2﹣16b2=0,解得:把代入方程4x2+4(b+1)x+b2=0并解得:,∴y=﹣1故所求点为.

…1221.已知集合A={x|x≤a+3},B={x|x<-1或x>5}.(1)若a=-2,求A∩?RB;(2)若A?B,求a的取值范围.参考答案:①A∩?RB={x|-1≤x≤1}.

②a﹤-4略22.已知曲线C1:(t为参数),C2:(θ为参数).(1)化C1,C2的方程为普通方程,并说明它们分别表示什么曲线;(2)若C1上的点P对应的参数为t=,Q为C2上的动点,求PQ中点M到直线C1:(t为参数)距离的最小值.参考答案:【考点】QK:圆的参数方程;IT:点到直线的距离公式;QJ:直线的参数方程.【分析】(1)分别消去两曲线参数方程中的参数得到两曲线的普通方程,即可得到曲线C1表示一个圆;曲线C2表示一个椭圆;(2)把t的值代入曲线C1的参数方程得点P的坐标,然后把直线的参数方程化为普通方程,根据曲线C2的参数方程设出Q的坐标,利用中点坐标公式表示出M的坐标,利用点到直线的距离公式表示出M到已知直线的距离,利用两角差的正弦函数公式化简后,利用正弦函数的值域即可得到距离的最小值.【解答】解:(1)把曲线C1:(t为参数)化为普通方程得:(x+4)2+(y﹣3)2=1,所以此曲线表示的曲线为圆心(﹣4,3),半径1的圆;把C2:(θ为参数)化为普通方程得:+=1,所

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论