山西省长治市师力成才学校2023年高一数学文联考试题含解析_第1页
山西省长治市师力成才学校2023年高一数学文联考试题含解析_第2页
山西省长治市师力成才学校2023年高一数学文联考试题含解析_第3页
山西省长治市师力成才学校2023年高一数学文联考试题含解析_第4页
山西省长治市师力成才学校2023年高一数学文联考试题含解析_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省长治市师力成才学校2023年高一数学文联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.(程序如下图)程序的输出结果为(

)A.3,4

B.7,7

C.7,8

D.7,11参考答案:D∵变量初始值X=3,Y=4,∴根据X=X+Y得输出的X=7.又∵Y=X+Y,∴输出的Y=11.

2.(5分)如果奇函数f(x)在区间上是增函数且最大值为5,那么f(x)在区间上是() A. 增函数且最小值为﹣5 B. 增函数且最大值为﹣5 C. 减函数且最大值是﹣5 D. 减函数且最小值是﹣5参考答案:A考点: 奇偶性与单调性的综合.专题: 函数的性质及应用.分析: 根据奇函数的图象关于原点对称,故它在对称区间上的单调性不变,结合题意从而得出结论.解答: 由于奇函数的图象关于原点对称,故它在对称区间上的单调性不变.如果奇函数f(x)在区间上是增函数且最大值为5,那么f(x)在区间上必是增函数且最小值为﹣5,故选A.点评: 本题主要考查函数的奇偶性和单调性的综合应用,奇函数的图象和性质,属于中档题.3.若向量,则与的夹角等于(

)A. B. C. D.参考答案:C,设夹角为,则.

4.已知f(x)=x5+2x3+3x2+x+1,应用秦九韶算法计算x=3时的值时,v3的值为()A.27

B.11

C.109

D.36参考答案:D略5.二次函数y=4x2﹣mx+5的对称轴为x=﹣2,则当x=1时,y的值为(

)A.﹣7 B.1 C.17 D.25参考答案:D【考点】二次函数的性质.【专题】计算题.【分析】根据已知中二次函数y=4x2﹣mx+5的对称轴为x=﹣2,我们可以构造关于m的方程,解方程后,即可求出函数的解析式,代入x=1后,即可得到答案.【解答】解:∵二次函数y=4x2﹣mx+5的对称轴为x=﹣2,∴=﹣2∴m=﹣16则二次函数y=4x2+16x+5当x=1时,y=25故选D【点评】本题考查的知识点是二次函数的性质,其中根据已知及二次函数的性质求出m的值,进而得到函数的解析式是解答本题的关键.6.若不等式对恒成立,则实数a的取值范围是:A.

B.

C.

D.参考答案:B因为,所以时最大值所以选B.

7.已知sin(α)=,则cos(α+)=()A. B. C. D.参考答案:A【考点】GI:三角函数的化简求值.【分析】利用诱导公式化简要求的式子,可得结果.【解答】解:∵sin(α)=,则cos(α+)=cos[+(α﹣)]=﹣sin(α﹣)=﹣,故选:A.8.已知e是自然对数的底数,函数的零点为a,函数的零点为b,则下列不等式中成立的是A. B.C. D.参考答案:A9.已知f(x)=(x-a)(x-b)-2,

m,n是方程f(x)=0的两根,且a<b,m<n,则实数a,b,m,n的大小关系是(

)A.m<a<b<n

B.a<m<n<b

C.a<m<b<n

D.m<a<n<b参考答案:A略10.如图,在长方体ABCD﹣A1B1C1D1中,AB=BC=2,AA1=1,则BC1与平面BB1D1D所成角的正弦值为(

)A. B. C. D.参考答案:D【考点】直线与平面所成的角.【专题】计算题.【分析】由题意,由于图形中已经出现了两两垂直的三条直线所以可以利用空间向量的方法求解直线与平面所成的夹角.【解答】解:以D点为坐标原点,以DA、DC、DD1所在的直线为x轴、y轴、z轴,建立空间直角坐标系(图略),则A(2,0,0),B(2,2,0),C(0,2,0),C1(0,2,1)∴=(﹣2,0,1),=(﹣2,2,0),且为平面BB1D1D的一个法向量.∴cos<,>═=.∴BC1与平面BB1D1D所成角的正弦值为故答案为D.【点评】此题重点考查了利用空间向量,抓住直线与平面所成的角与该直线的方向向量与平面的法向量的夹角之间的关系这一利用向量方法解决了抽象的立体几何问题.二、填空题:本大题共7小题,每小题4分,共28分11.在ABC中,若AB=3,ABC=中,则BC=

。参考答案:12.已知定义在上的偶函数在上为减函数,且,则不等式

的解集为

.参考答案:13.若三个球的表面积之比是,则它们的体积之比是

。参考答案:略14.已知求的取值范围。参考答案:解析:,此时符合题意;,此时亦符合题意。15.已知幂函数的图象过,则=_________.

参考答案:9略16.数学老师给出一个函数,甲、乙、丙、丁四个同学各说出了这个函数的一条性质:甲:在上函数单调递减;乙:在上函数单调递增;丙:在定义域R上函数的图象关于直线x=1对称;丁:不是函数的最小值.老师说:你们四个同学中恰好有三个人说的正确.那么,你认为_________说的是错误的.参考答案:乙17.若为幂函数,且满足,则___.参考答案:64三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(12分)若函数f(x)对于定义域内的任意x都满足,则称f(x)具有性质M.(1)很明显,函数(x∈(0,+∞)具有性质M;请证明(x∈(0,+∞)在(0,1)上是减函数,在(1,+∞)上是增函数.(2)已知函数g(x)=|lnx|,点A(1,0),直线y=t(t>0)与g(x)的图象相交于B、C两点(B在左边),验证函数g(x)具有性质M并证明|AB|<|AC|.(3)已知函数,是否存在正数m,n,k,当h(x)的定义域为[m,n]时,其值域为[km,kn],若存在,求k的范围,若不存在,请说明理由.参考答案:【考点】抽象函数及其应用.【分析】(1)根据函数单调性的定义进行证明即可,(2)根据函数的性质利用作差法进行判断即可,(3)根据函数定义域和值域的关系建立方程,进行求解即可.【解答】解:(1)∵f()=+=x+=f(x),∴函数f(x)具有性质M.任取x1、x2且x1<x2,则f(x1)﹣f(x2)=(x1+)﹣(x2+)=(x1﹣x2)+(﹣)=(x1﹣x2)?,若x1、x2∈(0,1),则0<x1x2<1,x1x2>0,x1﹣x2<0,∴f(x1)﹣f(x2)>0,∴f(x1)>f(x2),∴f(x)在(0,1)上是减函数.若x1、x2∈(1,+∞),则x1x2>1,x1﹣x2<0,∴f(x1)﹣f(x2)<0,∴f(x1)<f(x2),∴f(x)在(1,+∞)上是增函数.(2)∵,∴g(x)具有性质M

(4分)由|lnx|=t得,lnx=﹣t或lnx=t,x=e﹣t或x=et,∵t>0,∴e﹣t<et,∴,∴,∴,∴|AB|2﹣|AC|2=(1﹣e﹣t)2﹣(1﹣et)2=[2﹣(e﹣t+et)](et﹣e﹣t)由(1)知,在x∈(0,+∞)上的最小值为1(其中x=1时)而,故2﹣(e﹣t+et)<0,et﹣e﹣t>0,|AB|<|AC|(7分)(3)∵h(1)=0,m,n,k均为正数,∴0<m<n<1或1<m<n(8分)当0<m<n<1时,0<x<1,=是减函数,值域为(h(n),h(m)),h(n)=km,h(m)=kn,∴,∴,∴1﹣n2=1﹣m2故不存在

(10分)当1<m<n时,x>1,=是增函数,∴h(m)=km,h(n)=kn,∴,∴(1﹣k)m2=1,(1﹣k)n2=1,,不存在综合得,若不存在正数m,n,k满足条件.

(12分)【点评】本题主要考查函数与方程的应用,结合新定义,以及利用函数与方程的关系进行转化是解决本题的关键.综合性较强,难度较大.19.如图,在△ABC中,已知AB=3,BC=4,∠ABC=60°,BD为AC边上的中线.(1)设=,=,用,表示向量;(2)求中线BD的长.参考答案:【考点】平面向量数量积的运算.【专题】计算题;转化思想;向量法;平面向量及应用.【分析】(1)根据向量的平行四边形的法则即可求出,(2)根据向量的模的计算和向量的数量积即可求出.【解答】解:(1)∵设=,=,BD为AC边上的中线.∴=(+)=(+),(2)∵=(+),AB=3,BC=4,∠ABC=60°,∴||2=(||2+||2+2?)=(||2+||2+2||?||cos60°)=(9+16+2×3×4×)=,∴||=,故中线BD的长为.【点评】本题考查了向量的加减几何意义以及向量的模的计算和向量的数量积公式,属于基础题.20.求经过两条直线和的交点,并且与直线垂直的直线方程(一般式).参考答案:略21.已知数列{an}的前n项和为(1)证明:数列{an}是等差数列;(2)设,求数列{cn}的前2020项和.参考答案:(1)见解析;(2)3030【分析】(1)当时,可求出首项,当时,利用即可求出通项公式,进而证明是等差数列;(2)可将奇数项和偶数项合并求和即可得到答案.【详解】(1)当时,当时,综上,.因为,所以是等差数列.(2)法一:,的前2020项和为:法二:,的前2020项和为:.【点睛】本题主要考查等差数列的证明,分组求和的相关计算,意在考查学生的分析能力和计算能力,难度中等.22.如图所示,在三棱柱ABC-A1B1C1中,△ABC与△A1B1C1都为正三角形,且AA1⊥平面ABC,F,F1分别是AC,A1C1的中点.求证:(1)平面平面;(2)平面平面.参考答案:(1)见解析.(2)见解析.【分析】(1)由分别是的中点,证得,由线面平行的判定定理,可得平面,平面,再根据面面平行的判定定理,即可证得平面平面.(2)利用线面垂直的判定定理,可得平面,再利用面面垂直的判定定理,即可得到平面平面.【详解】(1)在三棱柱中,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论