下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省朔州市马营中学2021-2022学年高一数学理期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.圆的周长是(
)A.25πB.10πC.8πD.5π参考答案:B【分析】通过配方法把圆的一般方程化成标准方程求出圆的半径,进而求出圆的周长.【详解】,所以圆的半径为,因此圆的周长为,故本题选B.【点睛】本题考查了通过圆的一般式方程化为普通方程求半径问题,考查了配方法.2.下列集合与表示同一集合的是(
)A.
B. C.
D.
参考答案:D3.已知集合M={(x,y)|x+y=2},P={(x,y)|x-y=4},则M∩P=(
) A.{(3,-1)} B.(3,-1) C.{3,-1}
D.x=3,y=-1参考答案:A略4.下列叙述中错误的是()A.若点P∈α,P∈β且α∩β=l,则P∈lB.三点A,B,C能确定一个平面C.若直线a∩b=A,则直线a与b能够确定一个平面D.若点A∈l,B∈l,且A∈α,B∈α,则l?α参考答案:B【考点】空间中直线与平面之间的位置关系.【分析】在A中,由公理二知P∈l;在B中,三点A,B,C共线时,不能确定一个平面;在C中,由公理三知直线a与b能够确定一个平面;在D中,由公理一知l?α.【解答】解:在A中,若点P∈α,P∈β且α∩β=l,则由公理二知P∈l,故A正确;在B中,三点A,B,C不共线时,能确定一个平面;三点A,B,C共线时,不能确定一个平面,故B错误;在C中,若直线a∩b=A,则由公理三知直线a与b能够确定一个平面,故C正确;在D中,若点A∈l,B∈l,且A∈α,B∈α,则由公理一知l?α,故D正确.故选:B.【点评】本题考查命题真判断,是中档题,解题时要认真审题,注意平面的基本定理及推论的合理运用.5.右图是求样本,,,平均数的程序框图,图中空白框中应填入的内容的().A. B. C. D.参考答案:A解:该程序的作用是求样本,,平均数,∵“输出”的前一步是“”,∴循环体的功能是累加个样本的值,应为.故选.6.已知是定义在R上的奇函数,且当时,,则A.1
B.
C.
D.参考答案:B7.不等式的解集是
▲
参考答案:略8.设集合A={x|x2﹣4x+3<0},B={x|2x﹣3>0},则A∩B=()A.(﹣3,﹣) B.(﹣3,) C.(1,) D.(,3)参考答案:D【考点】交集及其运算.【分析】解不等式求出集合A,B,结合交集的定义,可得答案.【解答】解:∵集合A={x|x2﹣4x+3<0}=(1,3),B={x|2x﹣3>0}=(,+∞),∴A∩B=(,3),故选:D9.设集合M={x|0≤x≤2},N={y|0≤y≤2},给出如下四个图形,其中能表示从集合M到集合N的函数关系的是(
)A. B. C. D.参考答案:D【考点】函数的概念及其构成要素.【专题】计算题.【分析】有函数的定义,集合M={x|0≤x≤2}中的每一个x值,在N={y|0≤y≤2}中都有唯一确定的一个y值与之对应,结合图象得出结论.【解答】解:从集合M到集合能构成函数关系时,对于集合M={x|0≤x≤2}中的每一个x值,在N={y|0≤y≤2}中都有唯一确定的一个y值与之对应.图象A不满足条件,因为当1<x≤2时,N中没有y值与之对应.图象B不满足条件,因为当x=2时,N中没有y值与之对应.图象C不满足条件,因为对于集合M={x|0<x≤2}中的每一个x值,在集合N中有2个y值与之对应,不满足函数的定义.只有D中的图象满足对于集合M={x|0≤x≤2}中的每一个x值,在N={y|0≤y≤2}中都有唯一确定的一个y值与之对应.故选D.【点评】本题主要考查函数的定义,函数的图象特征,属于基础题.10.下列命题正确的是(
)A.若,则 B.若,则C.若,则
D.若,则参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.若一个扇形的圆心角为2,周长为4cm,则该扇形的面积为
.参考答案:112.为了解某地高一年级男生的身高情况,从其中的一个学校选取容量为60的样本(60名男生的身高,单位:),分组情况如下:则表中的
,
。分组
151.5~158.5
158.5~165.5
165.5~172.5
172.5~179.5
频数
6
2l
频率
0.1
参考答案:
6
,
0.45
略13.(5分)已知函数f(x)=则f(f())=
.参考答案:2考点: 函数的值.专题: 函数的性质及应用.分析: 根据分段函数的表达式代入求解即可.解答: f()=ln=,f()=,则f(f())=2,故答案为:2点评: 本题主要考查函数值的计算,比较基础.14.在△ABC中,角A,B,C所对的边分别为a,b,c.已知,,,则角C=________.参考答案:由1+=和正弦定理得,cosA=,∴A=60°.由正弦定理得,=,∴sinC=.又c<a,∴C<60°,∴C=45°.
15.正项等比数列其中,则.
参考答案:1略16.两个等差数列{an}和{bn}的前n项和分别为Sn和Tn,若,则=.参考答案:【考点】等差数列的前n项和.【分析】利用等差数列{an}和{bn}的前n项和的性质可得:=,即可得出.【解答】解:∵两个等差数列{an}和{bn}的前n项和分别为Sn和Tn,若,∴===.故答案为:.17.已知f(x﹣1)=2x+3,f(m)=6,则m=.参考答案:﹣【考点】函数的值;函数解析式的求解及常用方法.
【专题】计算题.【分析】先用换元法,求得函数f(x)的解析式,再由f(m)=6求解.【解答】解:令t=x﹣1,∴x=2t+2f(t)=4t+7又∵f(m)=6即4m+7=6∴m=故答案为:【点评】本题主要考查用换元法求函数解析式已知函数值求参数的值.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.化简与求值:(1)(x>0,y>0)(2).参考答案:【考点】对数的运算性质;根式与分数指数幂的互化及其化简运算.【分析】(1)利用指数幂的运算性质即可得出.(2)利用对数的运算性质即可得出.【解答】解:(1)原式==.(2)原式=5+=5+1=6.19.先化简再计算:,其中x是一元二次方程的正数根.参考答案:20.已知向量,,.(1)求的单调减区间;(2)当时,求的值域.参考答案:(1);(2)分析】(1)先将函数的解析式利用平面向量数量积的坐标运算,二倍角降幂公式以及辅助角公式化简得,再由,解出该不等式可得出函数的单调递减区间;(2)由,计算出的范围,可得出的取值范围,于此得出函数的值域。【详解】(1)
,由于函数的单调递减区间为,解不等式,得,因此,函数的单调递减区间为;(2),,,,因此,函数的值域为。【点睛】本题考查正弦型函数的单调区间和值域的求解,考查平面向量数量积的坐标运算,在解这类问题时,首先应该利用二倍角降幂公式、两角和差公式以及辅助角公式将函数解析式进行化简,并将角视为一个整体,结合正弦函数的性质求解,属于常考题。21.已知.(1)化简;(2)若是第三象限角,且,求的值.参考答案:(1);(2).【分析】(1)根据诱导公式进行化简即可得到结果.(2)由求得,再结合(1)中的结论可得所求.【详解】(1)由题意得.(2)∵,∴.又为第三象限角,∴,∴.【点睛】应用诱导公式解题时,容易出现的错误是三角函数名是否改变和结果的符号问题,解题时一定要强化对公式的理解,正确掌握“奇变偶不变,符号看象限”的含义,并熟练地应用到解题中,考查变换能力和对公式的掌握情况,属于基础题.22.(10分)已知函数f(x)=sin2x+sin2x+3cos2x,求(Ⅰ)函数f(x)的最小值及此时的x的集合;(Ⅱ)函数f(x)的单调递减区间.参考答案:考点: 三角函数中的恒等变换应用.专题: 三角函数的图像与性质.分析: (Ⅰ)由三角函数中的恒等变换应用化简函数解析式可得f(x)=sin(2x+)+2,由正弦函数的图象和性质可得f(x)的最小值及此时的x的集合;(Ⅱ)由2kπ+≤2x+≤2kπ+,k∈Z可解得函数f(x)的单调递减区间.解答: (Ⅰ)∵f(x)=sin2x+sin2x+3c
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 贵州财经职业学院《电路实验A》2023-2024学年第一学期期末试卷
- 贵阳幼儿师范高等专科学校《强化传热》2023-2024学年第一学期期末试卷
- 2025海南建筑安全员考试题库附答案
- 2025年海南建筑安全员知识题库
- 2025年山西省安全员B证考试题库附答案
- 广州幼儿师范高等专科学校《数字逻辑与计算机组成原理》2023-2024学年第一学期期末试卷
- 广州卫生职业技术学院《作物栽培学》2023-2024学年第一学期期末试卷
- 2025年贵州省建筑安全员知识题库附答案
- 2025青海建筑安全员考试题库附答案
- 2025上海市建筑安全员考试题库及答案
- 校长在2024-2025年秋季第一学期期末教师大会上的讲话
- 班级管理方法及措施
- 2024年道路运输安全生产管理制度样本(3篇)
- DB11-T 693-2024 施工现场临建房屋应用技术标准
- GB/T 45089-20240~3岁婴幼儿居家照护服务规范
- 统编版2024-2025学年三年级上册语文期末情景试卷(含答案)
- 股权原值证明-文书模板
- 中国近代史纲要中国计量大学现代科技学院练习题复习资料
- 2024-2025学年上学期重庆四年级英语期末培优卷3
- 2024年01月11344金融风险管理期末试题答案
- 绍兴文理学院元培学院《操作系统》2022-2023学年第一学期期末试卷
评论
0/150
提交评论