版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年高考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,满足条件(为常数),若目标函数的最大值为9,则()A. B. C. D.2.已知复数,则的虚部为()A. B. C. D.13.若的展开式中的系数之和为,则实数的值为()A. B. C. D.14.正的边长为2,将它沿边上的高翻折,使点与点间的距离为,此时四面体的外接球表面积为()A. B. C. D.5.已知三棱锥中,是等边三角形,,则三棱锥的外接球的表面积为()A. B. C. D.6.抛物线方程为,一直线与抛物线交于两点,其弦的中点坐标为,则直线的方程为()A. B. C. D.7.如图所示,在平面直角坐标系中,是椭圆的右焦点,直线与椭圆交于,两点,且,则该椭圆的离心率是()A. B. C. D.8.复数的虚部为()A. B. C.2 D.9.如图,正方体中,,,,分别为棱、、、的中点,则下列各直线中,不与平面平行的是()A.直线 B.直线 C.直线 D.直线10.已知复数z满足i•z=2+i,则z的共轭复数是()A.﹣1﹣2i B.﹣1+2i C.1﹣2i D.1+2i11.在边长为1的等边三角形中,点E是中点,点F是中点,则()A. B. C. D.12.已知双曲线:的焦距为,焦点到双曲线的渐近线的距离为,则双曲线的渐近线方程为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知向量,,且,则实数m的值是________.14.已知抛物线,点为抛物线上一动点,过点作圆的切线,切点分别为,则线段长度的取值范围为__________.15.函数的图象在处的切线方程为__________.16.已知,记,则的展开式中各项系数和为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)移动支付(支付宝及微信支付)已经渐渐成为人们购物消费的一种支付方式,为调查市民使用移动支付的年龄结构,随机对100位市民做问卷调查得到列联表如下:(1)将上列联表补充完整,并请说明在犯错误的概率不超过0.01的前提下,认为支付方式与年龄是否有关?(2)在使用移动支付的人群中采用分层抽样的方式抽取10人做进一步的问卷调查,从这10人随机中选出3人颁发参与奖励,设年龄都低于35岁(含35岁)的人数为,求的分布列及期望.(参考公式:(其中)18.(12分)已知函数.(Ⅰ)若,求曲线在处的切线方程;(Ⅱ)当时,要使恒成立,求实数的取值范围.19.(12分)选修4-4:坐标系与参数方程:在平面直角坐标系中,曲线:(为参数),在以平面直角坐标系的原点为极点、轴的正半轴为极轴,且与平面直角坐标系取相同单位长度的极坐标系中,曲线:.(1)求曲线的普通方程以及曲线的平面直角坐标方程;(2)若曲线上恰好存在三个不同的点到曲线的距离相等,求这三个点的极坐标.20.(12分)已知函数,.(1)求曲线在点处的切线方程;(2)求函数的单调区间;(3)判断函数的零点个数.21.(12分)设数列的前列项和为,已知.(1)求数列的通项公式;(2)求证:.22.(10分)已知函数.(1)若,证明:当时,;(2)若在只有一个零点,求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
由目标函数的最大值为9,我们可以画出满足条件件为常数)的可行域,根据目标函数的解析式形式,分析取得最优解的点的坐标,然后根据分析列出一个含参数的方程组,消参后即可得到的取值.【详解】画出,满足的为常数)可行域如下图:由于目标函数的最大值为9,可得直线与直线的交点,使目标函数取得最大值,将,代入得:.故选:.【点睛】如果约束条件中含有参数,我们可以先画出不含参数的几个不等式对应的平面区域,分析取得最优解是哪两条直线的交点,然后得到一个含有参数的方程(组,代入另一条直线方程,消去,后,即可求出参数的值.2、C【解析】
先将,化简转化为,再得到下结论.【详解】已知复数,所以,所以的虚部为-1.故选:C【点睛】本题主要考查复数的概念及运算,还考查了运算求解的能力,属于基础题.3、B【解析】
由,进而分别求出展开式中的系数及展开式中的系数,令二者之和等于,可求出实数的值.【详解】由,则展开式中的系数为,展开式中的系数为,二者的系数之和为,得.故选:B.【点睛】本题考查二项式定理的应用,考查学生的计算求解能力,属于基础题.4、D【解析】
如图所示,设的中点为,的外接圆的圆心为,四面体的外接球的球心为,连接,利用正弦定理可得,利用球心的性质和线面垂直的性质可得四边形为平行四边形,最后利用勾股定理可求外接球的半径,从而可得外接球的表面积.【详解】如图所示,设的中点为,外接圆的圆心为,四面体的外接球的球心为,连接,则平面,.因为,故,因为,故.由正弦定理可得,故,又因为,故.因为,故平面,所以,因为平面,平面,故,故,所以四边形为平行四边形,所以,所以,故外接球的半径为,外接球的表面积为.故选:D.【点睛】本题考查平面图形的折叠以及三棱锥外接球表面积的计算,还考查正弦定理和余弦定理,折叠问题注意翻折前后的变量与不变量,外接球问题注意先确定外接球的球心的位置,然后把半径放置在可解的直角三角形中来计算,本题有一定的难度.5、D【解析】
根据底面为等边三角形,取中点,可证明平面,从而,即可证明三棱锥为正三棱锥.取底面等边的重心为,可求得到平面的距离,画出几何关系,设球心为,即可由球的性质和勾股定理求得球的半径,进而得球的表面积.【详解】设为中点,是等边三角形,所以,又因为,且,所以平面,则,由三线合一性质可知所以三棱锥为正三棱锥,设底面等边的重心为,可得,,所以三棱锥的外接球球心在面下方,设为,如下图所示:由球的性质可知,平面,且在同一直线上,设球的半径为,在中,,即,解得,所以三棱锥的外接球表面积为,故选:D.【点睛】本题考查了三棱锥的结构特征和相关计算,正三棱锥的外接球半径求法,球的表面积求法,对空间想象能力要求较高,属于中档题.6、A【解析】
设,,利用点差法得到,所以直线的斜率为2,又过点,再利用点斜式即可得到直线的方程.【详解】解:设,∴,又,两式相减得:,∴,∴,∴直线的斜率为2,又∴过点,∴直线的方程为:,即,故选:A.【点睛】本题考查直线与抛物线相交的中点弦问题,解题方法是“点差法”,即设出弦的两端点坐标,代入抛物线方程相减后可把弦所在直线斜率与中点坐标建立关系.7、A【解析】
联立直线方程与椭圆方程,解得和的坐标,然后利用向量垂直的坐标表示可得,由离心率定义可得结果.【详解】由,得,所以,.由题意知,所以,.因为,所以,所以.所以,所以,故选:A.【点睛】本题考查了直线与椭圆的交点,考查了向量垂直的坐标表示,考查了椭圆的离心率公式,属于基础题.8、D【解析】
根据复数的除法运算,化简出,即可得出虚部.【详解】解:=,故虚部为-2.故选:D.【点睛】本题考查复数的除法运算和复数的概念.9、C【解析】
充分利用正方体的几何特征,利用线面平行的判定定理,根据判断A的正误.根据,判断B的正误.根据与相交,判断C的正误.根据,判断D的正误.【详解】在正方体中,因为,所以平面,故A正确.因为,所以,所以平面故B正确.因为,所以平面,故D正确.因为与相交,所以与平面相交,故C错误.故选:C【点睛】本题主要考查正方体的几何特征,线面平行的判定定理,还考查了推理论证的能力,属中档题.10、D【解析】
两边同乘-i,化简即可得出答案.【详解】i•z=2+i两边同乘-i得z=1-2i,共轭复数为1+2i,选D.【点睛】的共轭复数为11、C【解析】
根据平面向量基本定理,用来表示,然后利用数量积公式,简单计算,可得结果.【详解】由题可知:点E是中点,点F是中点,所以又所以则故选:C【点睛】本题考查平面向量基本定理以及数量积公式,掌握公式,细心观察,属基础题.12、A【解析】
利用双曲线:的焦点到渐近线的距离为,求出,的关系式,然后求解双曲线的渐近线方程.【详解】双曲线:的焦点到渐近线的距离为,可得:,可得,,则的渐近线方程为.故选A.【点睛】本题考查双曲线的简单性质的应用,构建出的关系是解题的关键,考查计算能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】
根据即可得出,从而求出m的值.【详解】解:∵;∴;∴m=1.故答案为:1.【点睛】本题考查向量垂直的充要条件,向量数量积的坐标运算.14、【解析】
连接,易得,可得四边形的面积为,从而可得,进而求出的取值范围,可求得的范围.【详解】如图,连接,易得,所以四边形的面积为,且四边形的面积为三角形面积的两倍,所以,所以,当最小时,最小,设点,则,所以当时,,则,当点的横坐标时,,此时,因为随着的增大而增大,所以的取值范围为.故答案为:.【点睛】本题考查直线与圆的位置关系的应用,考查抛物线上的动点到定点的距离的求法,考查学生的计算求解能力,属于中档题.15、【解析】
利用导数的几何意义,对求导后在计算在处导函数的值,再利用点斜式列出方程化简即可.【详解】,则切线的斜率为.又,所以函数的图象在处的切线方程为,即.故答案为:【点睛】本题主要考查了根据导数的几何意义求解函数在某点处的切线方程问题,需要注意求导法则与计算,属于基础题.16、【解析】
根据定积分的计算,得到,令,求得,即可得到答案.【详解】根据定积分的计算,可得,令,则,即的展开式中各项系数和为.【点睛】本题主要考查了定积分的应用,以及二项式定理的应用,其中解答中根据定积分的计算和二项式定理求得的表示是解答本题的关键,着重考查了运算与求解能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)列联表见解析,在犯错误的概率不超过0.01的前提下,认为支付方式与年龄有关;(2)分布列见解析,期望为.【解析】
(1)根据题中所给的条件补全列联表,根据列联表求出观测值,把观测值同临界值进行比较,得到能在犯错误的概率不超过0.01的前提下,认为支付方式与年龄有关.(2)首先确定的取值,求出相应的概率,可得分布列和数学期望.【详解】(1)根据题意及列联表可得完整的列联表如下:35岁以下(含35岁)35岁以上合计使用移动支付401050不使用移动支付104050合计5050100根据公式可得,所以在犯错误的概率不超过0.01的前提下,认为支付方式与年龄有关.(2)根据分层抽样,可知35岁以下(含35岁)的人数为8人,35岁以上的有2人,所以获得奖励的35岁以下(含35岁)的人数为,则的可能为1,2,3,且,,,其分布列为123.【点睛】独立性检验依据的值结合附表数据进行判断,另外,离散型随机变量的分布列,在求解的过程中,注意变量的取值以及对应的概率要计算正确,注意离散型随机变量的期望公式的使用,属于中档题目.18、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)求函数的导函数,即可求得切线的斜率,则切线方程得解;(Ⅱ)构造函数,对参数分类讨论,求得函数的单调性,以及最值,即可容易求得参数范围.【详解】(Ⅰ)当时,,则.所以.又,故所求切线方程为,即.(Ⅱ)依题意,得,即恒成立.令,则.①当时,因为,不合题意.②当时,令,得,,显然.令,得或;令,得.所以函数的单调递增区间是,,单调递减区间是.当时,,,所以,只需,所以,所以实数的取值范围为.【点睛】本题考查利用导数的几何意义求切线方程,以及利用导数研究恒成立问题,属综合中档题.19、(1),;(2),,.【解析】
(1)把曲线的参数方程与曲线的极坐标方程分别转化为直角坐标方程;(2)利用图象求出三个点的极径与极角.【详解】解:(1)由消去参数得,即曲线的普通方程为,又由得即为,即曲线的平面直角坐标方程为(2)∵圆心到曲线:的距离,如图所示,所以直线与圆的切点以及直线与圆的两个交点,即为所求.∵,则,直线的倾斜角为,即点的极角为,所以点的极角为,点的极角为,所以三个点的极坐标为,,.【点睛】本题考查圆的参数方程和普通方程的转化、直线极坐标方程和直角坐标方程的转化,消去参数方程中的参数,就可把参数方程化为普通方程,消去参数的常用方法有:①代入消元法;②加减消元法;③乘除消元法;④三角恒等式消元法,极坐标方程化为直角坐标方程,只要将和换成和即可.20、(1)(2)答案见解析(3)答案见解析【解析】
(1)设曲线在点,处的切线的斜率为,可求得,,利用直线的点斜式方程即可求得答案;(2)由(Ⅰ)知,,分时,,三类讨论,即可求得各种情况下的的单调区间为;(3)分与两类讨论,即可判断函数的零点个数.【详解】(1),,设曲线在点,处的切线的斜率为,则,又,曲线在点,处的切线方程为:,即;(2)由(1)知,,故当时,,所以在上单调递增;当时,,;,,;的递减区间为,递增区间为,;当时,同理可得的递增区间为,递减区间为,;综上所述,时,单调递增为,无递减区间;当时,的递减区间为,递增区间为,;当时,的递增区间为,递减区间为,;(3)当时,恒成立,所以无零点;当时,由,得:,只有一个零点.【点睛】本题考查利用导数研究曲线上某点的切线方程,利用导数研究函数的单调性,考查分类讨论思想与推理、运算能力,属于中档题.21、(1)(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025护理学院学生工作计划样文
- 幼儿中班教师工作计划范文模板
- 吴建旭“互联网+”大学生创新创业大赛项目计划书
- 2025白酒销售月工作计划范文
- 切实加强行风建设努力做好计划生育工作的讲话
- 城管科科长述职报告总结计划
- 2025关于小学班主任工作计划
- 《机械制图与CAD含习题集》课件-第5章3
- 合伙种植沃柑合同模板
- 铁路客运合同案例简短
- 2024年度上海浦东国际机场免税店经营合同2篇
- 2024-2030年中国建筑施工行业发展状况规划分析报告
- 2024版智能水务管理系统设计与施工合同3篇
- 华为经营管理-华为的股权激励(6版)
- 学校比学赶超实施方案样本(3篇)
- 2024年度餐饮业智能点餐系统合同
- 《红楼梦》十二讲知到智慧树期末考试答案题库2024年秋安徽师范大学
- 小学劳动知识试题及答案
- 分布式光伏危险源辨识清单
- 《CRRT操作方法》课件
- EPC工程项目管理职责及工作范围
评论
0/150
提交评论