版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年镇江市高等专科学校高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.若向量a=(4,2,-4),b=(6,-3,2),则(2a-3b)•(a+2b)=______.答案:∵2a-3b=(-10,13,-14),a+2b=(16,-4,0)∴(2a-3b)•(a+2b)=-10×16+13×(-4)=-212故为-2122.将一个总体分为A、B、C三层,其个体数之比为5:3:2,若用分层抽样的方法抽取容量为180的样本,则应从C中抽取样本的个数为______个.答案:由分层抽样的定义可得应从B中抽取的个体数为180×25+3+2=36,故为:36.3.给出下列四个命题:
①若两个向量相等,则它们的起点相同,终点相同;
②在平行四边形ABCD中,一定有;
③若则
④若则
其中正确的命题个数是()
A.1
B.2
C.3
D.4答案:C4.(几何证明选讲选选做题)如图,圆的两条弦AC、BD相交于P,弧AB、BC、CD、DA的度数分别为60°、105°、90°、105°,则PAPC=______.答案:连接AB,CD∵弧AB、CD、的度数分别为60°、90°,∴弦AB的长度等于半径,弦CD的长度等于半径的2倍,即ABCD=12,∵∠A=∠D,∠C=∠B,∴△ABP∽△CDP∴ABCD=PAPC∴PAPC=12=22,故为:225.若向量=(2,-3,1),=(2,0,3),=(0,2,2),则(+)=()
A.4
B.15
C.7
D.3答案:D6.如图,圆心角∠AOB=120°,P是AB上任一点(不与A,B重合),点C在AP的延长线上,则∠BPC等于______.
答案:解:设点E是优弧AB(不与A、B重合)上的一点,∵∠AOB=120°,∴∠AEB=60°,∵∠BPA=180°-∠AEB=180°-∠BPC,∴∠BPC=∠AEB.∴∠BPC=60°.故为60°.7.要从已编号(1~60)的60枚最新研制的某型导弹中随机抽取6枚来进行发射试验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的6枚导弹的编号可能是()
A.5、10、15、20、25、30
B.3、13、23、33、43、53
C.1、2、3、4、5、6
D.2、4、8、16、32、48答案:B8.参数方程中当t为参数时,化为普通方程为(
)。答案:x2-y2=19.抛物线y2=8x的焦点坐标是______答案:抛物线y2=8x,所以p=4,所以焦点(2,0),故为(2,0)..10.一个长方体的长、宽、高之比为2:1:3,全面积为88cm2,则它的体积为
______cm3.答案:由长方体的长、宽、高之比为2:1:3,不妨设长、宽、高分别为2x,x,3x;则长方体的全面积为:2(2x?x+2x?3x+x?3x)=2×11x2=88,∴x=±2,这里取x=2;所以,长方体的体积为:V=2x?x?3x=4×2×6=48.故为:4811.设F1,F2是双曲线x29-y216=1的两个焦点,点P在双曲线上,且∠F1PF2=90°,求△F1PF2的面积.答案:双曲线x29-y216=1的a=3,c=5,不妨设PF1>PF2,则PF1-PF2=2a=6F1F22=PF12+PF22,而F1F2=2c=10得PF12+PF22=(PF1-PF2)2+2PF1•PF2=100∴PF1•PF2=32∴S=12PF1•PF2=16△F1PF2的面积16.12.设四边形ABCD中,有DC=12AB,且|AD|=|BC|,则这个四边形是
______.答案:由DC=12AB知四边形ABCD是梯形,又|AD|=|BC|,即梯形的对角线相等,所以,四边形ABCD是等腰梯形.故为:等腰梯形.13.下列给变量赋值的语句正确的是()
A.5=a
B.a+2=a
C.a=b=4
D.a=2*a答案:D14.
如图,已知平行六面体OABC-O1A1B1C1,点G是上底面O1A1B1C1的中心,且,则用
表示向量为(
)
A.
B.
C.
D.
答案:A15.频率分布直方图的重心是()
A.众数
B.中位数
C.标准差
D.平均数答案:D16.(坐标系与参数方程)
从极点O作直线与另一直线ρcosθ=4相交于点M,在OM上取一点P,使OM•OP=12.
(1)求点P的轨迹方程;
(2)设R为直线ρcosθ=4上任意一点,试求RP的最小值.答案:(1)设动点P的坐标为(ρ,θ),M的坐标为(ρ0,θ),则ρρ0=12.∵ρ0cosθ=4,∴ρ=3cosθ即为所求的轨迹方程.(2)由(1)知P的轨迹是以(32,0)为圆心,半径为32的圆,而直线l的解析式为x=4,所以圆与x轴的交点坐标为(3,0),易得RP的最小值为117.设和为不共线的向量,若2-3与k+6(k∈R)共线,则k的值为()
A.k=4
B.k=-4
C.k=-9
D.k=9答案:B18.已知直线l1:y=kx+(k<0=被圆x2+y2=4截得的弦长为,则l1与直线l2:y=(2+)x的夹角的大小是()
A.30°
B.45°
C.60°
D.75°答案:B19.已知向量a=(3,4),b=(8,6),c=(2,k),其中k为常数,如果<a,c>=<b,c>,则k=______.答案:由题意可得cos<a,c>=cos<b,c>,∴a?c|a|?|c|=b?c|b|?|c|,∴6+4k54+k
2=16+6k104+k
2.解得k=2,故为2.20.已知矩阵A将点(1,0)变换为(2,3),且属于特征值3的一个特征向量是11,(1)求矩阵A.(2)β=40,求A5β.答案:(1)设A=abcd,由abcd10=23得,a=2c=3,由abcd11=311=33得,a+b=3c+d=3,所以b=1d=0所以A=2130.
7分(2)A=2130的特征多项式为f(λ)=.λ-2-1-3λ.=
(λ
-3)(λ+1)令f(λ)=0,可得λ1=3,λ2=-1,λ1=3时,α1=11,λ2=-1时,α2=1-3令β=mα1+α2,则β=40=3α1+α2,A5β=3×35α1-α2=36-136+3…14分.21.如图,弯曲的河流是近似的抛物线C,公路l恰好是C的准线,C上的点O到l的距离最近,且为0.4千米,城镇P位于点O的北偏东30°处,|OP|=10千米,现要在河岸边的某处修建一座码头,并修建两条公路,一条连接城镇,一条垂直连接公路l,以便建立水陆交通网.
(1)建立适当的坐标系,求抛物线C的方程;
(2)为了降低修路成本,必须使修建的两条公路总长最小,请给出修建方案(作出图形,在图中标出此时码头Q的位置),并求公路总长的最小值(精确到0.001千米)答案:(1)过点O作准线的垂线,垂足为A,以OA所在直线为x轴,OA的垂直平分线为y轴,建立平面直角坐标系…(2分)由题意得,p2=0.4…(4分)所以,抛物线C:y2=1.6x…(6分)(2)设抛物线C的焦点为F由题意得,P(5,53)…(8分)根据抛物线的定义知,公路总长=|QF|+|QP|≥|PF|≈9.806…(12分)当Q为线段PF与抛物线C的交点时,公路总长最小,最小值为9.806千米…(16分)22.直线3x+4y-12=0和3x+4y+3=0间的距离是
______.答案:由两平行线间的距离公式得直线3x+4y-12=0和3x+4y+3=0间的距离是|-12-3|5=3,故为3.23.若实数X、少满足,则的范围是()
A.[0,4]
B.(0,4)
C.(-∝,0]U[4,+∝)
D.(-∝,0)U(4,+∝))答案:D24.在平面直角坐标系中,横坐标、纵坐标均为有理数的点称为有理点.试根据这一定义,证明下列命题:若直线y=kx+b(k≠0)经过点M(2,1),则此直线不能经过两个有理点.答案:证明:假设此直线上有两个有理点A(x1,y1),B(x2,y2),其中x1、y1、x2、y2均为有理数,则有y1=kx1+b,y2=kx2+b,两式相减,得y1-y2=k(x1-x2).∵斜率k存在,∴x1≠x2,得k=y1-y2x1-x2.而有理数经过四则运算后还是有理数,故k为有理数.又由y1=kx1+b知,b也是有理数.又∵点M(2,1)在此直线上,∴1=2k+b,于是有2=1-bk(k≠0).此式左端为无理数,右端为有理数,显然矛盾,故此直线不能经过两个有理点.25.某小组有3名女生、4名男生,从中选出3名代表,要求至少女生与男生各有一名,共有______种不同的选法.(要求用数字作答)答案:由题意知本题是一个分类计数问题,要求至少女生与男生各有一名有两个种不同的结果,即一个女生两个男生和一个男生两个女生,∴共有C31C42+C32C41=30种结果,故为:3026.(a+b)6的展开式的二项式系数之和为______.答案:根据二项式系数的性质:二项式系数和为2n所以(a+b)6展开式的二项式系数之和等于26=64故为:64.27.椭圆x29+y216=1上一动点P到两焦点距离之和为()A.10B.8C.6D.不确定答案:根据椭圆的定义,可知动点P到两焦点距离之和为2a=8,故选B.28.x=5
y=6
x+y=11
END
上面程序运行时输出的结果是()
A.x+y=11
B.11
C.x+y
D.出错信息答案:B29.在样本的频率分布直方图中,共有11个小长方形,若中间一个长方形的面积等于其他十个小长方形面积的和的14,且样本容量是160,则中间一组的频数为()A.32B.0.2C.40D.0.25答案:设间一个长方形的面积S则其他十个小长方形面积的和为4S,所以频率分布直方图的总面积为5S所以中间一组的频率为S5S=0.2所以中间一组的频数为160×0.2=32故选A30.O是正六边形ABCDE的中心,且OA=a,OB=b,AB=c,在以A,B,C,D,E,O为端点的向量中:
(1)与a相等的向量有
______;
(2)与b相等的向量有
______;
(3)与c相等的向量有
______.答案:如图,在O是正六边形ABCDE的中心,以A,B,C,D,E,O为端点的向量中(1)与a相等的向量有EF,DO,CB;(2)与b相等的向量有DC,EO,FA;(3)与c相等的向量有FO,OC,ED.故三个空依次应填EF,DO,CB;DC,EO,FA;FO,OC,ED.31.一个类似于细胞分裂的物体,一次分裂为二,两次分裂为四,如此继续分裂有限多次,而随机终止.设分裂n次终止的概率是(n=1,2,3,…).记X为原物体在分裂终止后所生成的子块数目,则P(X≤10)=()
A.
B.
C.
D.以上均不对答案:A32.已知a=(1,0),b=(m,m)(m>0),则<a,b>=______.答案:∵b=(m,m)(m>0),∴b与第一象限的角平分线同向,且由原点指向远处,而a=(1,0)同横轴的正方向同向,∴<a,b>=45°,故为:45°33.有外形相同的球分装三个盒子,每盒10个.其中,第一个盒子中7个球标有字母A、3个球标有字母B;第二个盒子中有红球和白球各5个;第三个盒子中则有红球8个,白球2个.试验按如下规则进行:先在第一号盒子中任取一球,若取得标有字母A的球,则在第二号盒子中任取一个球;若第一次取得标有字母B的球,则在第三号盒子中任取一个球.如果第二次取出的是红球,则称试验成功,那么试验成功的概率为()
A.0.59
B.0.54
C.0.8
D.0.15答案:A34.若抛物线y2=2px(p>0)的焦点与双曲线的右焦点重合,则p的值为()
A.2
B.4
C.8
D.4答案:C35.有以下四个结论:
①lg(lg10)=0;
②lg(lne)=0;
③若e=lnx,则x=e2;
④ln(lg1)=0.
其中正确的是()
A.①②
B.①②③
C.①②④
D.②③④答案:A36.点P(1,2,2)到原点的距离是()
A.9
B.3
C.1
D.5答案:B37.某程序框图如图所示,该程序运行后输出的k的值是()A.4B.5C.6D.7答案:根据流程图所示的顺序,程序的运行过程中各变量值变化如下表:是否继续循环
S
K循环前/0
0第一圈
是
1
1第二圈
是
3
2第三圈
是
11
3第四圈
是
20594第五圈
否∴最终输出结果k=4故为A38.设a=log
132,b=log123,c=(12)0.3,则()A.a<b<cB.a<c<bC.b<c<aD.b<a<c答案:c=(12)0.3>0,a=log
132<0,b=log123
<0并且log
132>log133,log
133>log123所以c>a>b故选D.39.某市为研究市区居民的月收入调查了10000人,并根据所得数据绘制了样本的频率分布直方图(如图).
(Ⅰ)求月收入在[3000,3500)内的被调查人数;
(Ⅱ)估计被调查者月收入的平均数(同一组中的数据用该组区间的中点值作代表).
答案:(I)10000×0.0003×500=1500(人)∴月收入在[3000,3500)内的被调查人数1500人(II).x=1250×0.1+1750×0.2+2250×0.25+2750×0.25+3250×0.15+3750×0.05=2400∴估计被调查者月收入的平均数为240040.已知函数f(x)=|log2x-1|+|log2x-2|,解不等式f(x)>4.答案:f(x)=|log2x-1|+|log2x-2|,取绝对值得:f(x)=3-2log2x,0<x<21,2≤x≤42log2x-3,x>4所以f(x)>4等价于:0<x≤23-2log2x>4或x≥42log2x-3>4,解得:0<x<22或x>82.41.将6位志愿者分成4组,每组至少1人,分赴世博会的四个不同场馆服务,不同的分配方案有______种(用数字作答).答案:由题意,六个人分为四组,若有三个人一组,则四组人数为3,1,1,1,则不同的分法为C63=20种,若存在两人一组,则分法为2,2,1,1,不同的分法有C26×C24A22=45分赴世博会的四个不同场馆服务,不同的分配方案有(20+45)×A44=1560种故为:1560.42.曲线(θ为参数)上的点到两坐标轴的距离之和的最大值是()
A.
B.
C.1
D.答案:D43.如图所示,已知点P在正方体ABCD—A′B′C′D′的对角线
BD′上,∠PDA=60°.
(1)求DP与CC′所成角的大小;
(2)求DP与平面AA′D′D所成角的大小.答案:(1)DP与CC′所成的角为45°(2)DP与平面AA′D′D所成的角为30°解析:如图所示,以D为原点,DA为单位长度建立空间直角坐标系D—xyz.则=(1,0,0),=(0,0,1).连接BD,B′D′.在平面BB′D′D中,延长DP交B′D′于H.设="(m,m,1)"(m>0),由已知〈,〉=60°,由·=||||cos〈,〉,可得2m=.解得m=,所以=(,,1).(1)因为cos〈,〉==,所以〈,〉=45°,即DP与CC′所成的角为45°.(2)平面AA′D′D的一个法向量是=(0,1,0).因为cos〈,〉==,所以〈,〉=60°,可得DP与平面AA′D′D所成的角为30°.44.球的表面积与它的内接正方体的表面积之比是()A.π3B.π4C.π2D.π答案:设:正方体边长设为:a则:球的半径为3a2所以球的表面积S1=4?π?R2=4π34a2=3πa2而正方体表面积为:S2=6a2所以比值为:S1S2=π2故选C45.规定符号“△”表示一种运算,即a△b=ab+a+b,其中a、b∈R+;若1△k=3,则函数f(x)=k△x的值域______.答案:1△k=k+1+k=3,解得k=1,∴k=1∴f(x)=k△x=kx+k+x=x+x+1对于x需x≥0,∴对于f(x)=x+x+1=(x+12)2+34≥1故函数f(x)的值域为[1,+∞)故为:[1,+∞)46.函数y=f(x)的图象如图所示,在区间[a,b]上可找到n(n≥2)个不同的数x1,x2,…xn,使得f(x1)x1=f(x2)x2=…=f(xn)xn,则n的取值范围为()A.{2,3}B.{2,3,4}C.{3,4}D.{3,4,5}答案:令y=f(x),y=kx,作直线y=kx,可以得出2,3,4个交点,故k=f(x)x(x>0)可分别有2,3,4个解.故n的取值范围为2,3,4.故选B.47.若集合S={a,b,c}(a、b、c∈R)中三个元素为边可构成一个三角形,那么该三角形一定不可能是()
A.锐角三角形
B.直角三角形
C.钝角三角形
D.等腰三角形答案:D48.对于一组数据的两个函数模型,其残差平方和分别为153.4
和200,若从中选取一个拟合程度较好的函数模型,应选残差平方和为______的那个.答案:残差的平方和是用来描述n个点与相应回归直线在整体上的接近程度残差的平方和越小,拟合效果越好,由于153.4<200,故拟合效果较好的是残差平方和是153.4的那个模型.故为:153.4.49.如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,⊙O交直线OB于E、D,连接EC、CD.
(1)求证:直线AB是⊙O的切线;
(2)若tan∠CED=12,⊙O的半径为3,求OA的长.答案:(1)如图,连接OC,∵OA=OB,CA=CB,∴OC⊥AB.∴AB是⊙O的切线;(2)∵BC是圆O切线,且BE是圆O割线,∴BC2=BD?BE,∵tan∠CED=12,∴CDEC=12.∵△BCD∽△BEC,∴BDBC=CDEC=12,设BD=x,BC=2x.又BC2=BD?BE,∴(2x)2=x?(x+6),解得x1=0,x2=2,∵BD=x>0,∴BD=2,∴OA=OB=BD+OD=3+2=5.(10分).50.点M的直角坐标为(,1,-2),则它的柱坐标为()
A.(2,,2)
B.(2,,2)
C.(2,,-2)
D.(2,-,-2)答案:C第2卷一.综合题(共50题)1.若m∈{-2,-1,1,2},n∈{-2,-1,1,2,3},则方程x2m+y2n=1表示的是双曲线的概率为______.答案:由题意,方程x2m+y2n=1表示双曲线时,mn<0,m>0,n<0时,有2×2=4种,m<0,n>0时,有2×3=6种∵m,n的取值共有4×5=20种∴方程x2m+y2n=1表示的是双曲线的概率为4+620=12故为:122.
如图,已知平行六面体OABC-O1A1B1C1,点G是上底面O1A1B1C1的中心,且,则用
表示向量为(
)
A.
B.
C.
D.
答案:A3.频率分布直方图的重心是()
A.众数
B.中位数
C.标准差
D.平均数答案:D4.已知方程x2-(k2-9)x+k2-5k+6=0的一根小于1,另一根大于2,求实数k的取值范围.答案:令f(x)=x2-(k2-9)x+k2-5k+6,则∵方程x2-(k2-9)x+k2-5k+6=0的一根小于1,另一根大于2,∴f(1)<0
且f(2)<0,∴12-(k2-9)+k2-5k+6<0且22-2(k2-9)+k2-5k+6<0,即16-5k<0且k2+5k-28>0,解得k>137-52.5.已知f(x)=,a≠b,
求证:|f(a)-f(b)|<|a-b|.答案:证明略解析:方法一
∵f(a)=,f(b)=,∴原不等式化为|-|<|a-b|.∵|-|≥0,|a-b|≥0,∴要证|-|<|a-b|成立,只需证(-)2<(a-b)2.即证1+a2+1+b2-2<a2-2ab+b2,即证2+a2+b2-2<a2-2ab+b2.只需证2+2ab<2,即证1+ab<.当1+ab<0时,∵>0,∴不等式1+ab<成立.从而原不等式成立.当1+ab≥0时,要证1+ab<,只需证(1+ab)2<()2,即证1+2ab+a2b2<1+a2+b2+a2b2,即证2ab<a2+b2.∵a≠b,∴不等式2ab<a2+b2成立.∴原不等式成立.方法二
∵|f(a)-f(b)|=|-|==,又∵|a+b|≤|a|+|b|=+<+,∴<1.∵a≠b,∴|a-b|>0.∴|f(a)-f(b)|<|a-b|.6.点P(1,3,5)关于平面xoz对称的点是Q,则向量=()
A.(2,0,10)
B.(0,-6,0)
C.(0,6,0)
D.(-2,0,-10)答案:B7.给出以下命题:(1)若非零向量a与b互为负向量,则a∥b;(2)|a|=0是a=0的充要条件;(3)若|a|=|b|,则a=±b;(4)物理学中的作用力和反作用力互为负向量.其中为真命题的是______.答案:(1)若非零向量a与b互为负向量,根据相反向量的定义可知a∥b,故正确;(2)|a|=0则a=0,a=0则|a|=0,故|a|=0是a=0的充要条件,故正确;(3)若|a|=|b|,则两向量模等,方向任意,故不正确;(4)物理学中的作用力和反作用力大小相等,方向相反,故互为负向量,故正确故为:(1)(2)(4)8.若直线x=1的倾斜角为α,则α等于()A.0°B.45°C.90°D.不存在答案:直线x=1与x轴垂直,故直线的倾斜角是90°,故选C.9.已知函数f(x)=(12)x,a,b∈R*,A=f(a+b2),B=f(ab),C=f(2aba+b),则A、B、C的大小关系为______.答案:∵a+b2≥ab,2aba+b=21a+1b≤221ab=ab,∴a+b2≥ab≥2aba+b>0又
f(x)=(12)x在R上是减函数,∴f(a+b2)≤f(ab)
≤f(2aba+b)即A≤B≤C故为:A≤B≤C.10.已知函数f(x)=ax2+(a+3)x+2在区间[1,+∞)上为增函数,则实数a的取值范围是______.答案:∵f(x)=ax2+(a+3)x+2,∴f′(x)=2ax+a+3,∵函数f(x)=ax2+x+1在区间[1,+∞)上为增函数,∴f′(x)=2ax+a+3≥0在区间[1,+∞)恒成立.∴a≥02a×1+a+3≥0,解得a≥0,故为:a≥0.11.已知P为抛物线y2=4x上一点,设P到准线的距离为d1,P到点A(1,4)的距离为d2,则d1+d2的最小值为______.答案:∵y2=4x,焦点坐标为F(1,0)根据抛物线定义可知P到准线的距离为d1=|PF|d1+d2=|PF|+|PA|进而可知当A,P,F三点共线时,d1+d2的最小值=|AF|=4故为412.已知函数f(x)=x21+x2.
(1)求f(2)与f(12),f(3)与f(13);
(2)由(1)中求得结果,你能发现f(x)与f(1x)有什么关系?并证明你的结论;
(3)求f(1)+f(2)+f(3)+…+f(2013)+f(12)+f(13)+…+f(12013)的值.答案:(1)f(2)=45,f(12)=15…1分f(3)=910,f(13)=110…2分(2)f(x)+f(1x)=1…5分证:f(x)+f(1x)=x21+x2+(1x)21+(1x)2=x21+x2+11+x2=1…8分(3)f(1)+f(2)+f(3)+…+f(2013)+f(12)+f(13)+…+f(12013)=f(1)+[f(2)+f(12)]+[f(3)+f(13)]+…+[f(2013)+f(12013)]=12+2012=40252…12分13.圆x2+y2=1和圆x2+y2-6y+5=0的位置关系是()
A.外切
B.内切
C.外离
D.内含答案:A14.如图,已知PA是圆O的切线,切点为A,PO交圆O于B、C两点,PA=3,PB=1,则∠C=______.答案:∵PA切圆O于A点,PBC是圆O的割线∴PA2=PB?PC,可得(3)2=1×PC,得PC=3∵点O在BC上,即BC是圆O的直径,∴∠ABC=90°,由弦切角定理,得∠PAB=∠C,∠PAC=90°+∠C∴△PAC中,根据正弦定理,得PAsinC=PCsin∠PAC即3sinC=3sin(90°+C),整理得tanC=33∵∠C是锐角,∴∠C=30°.故为:30°15.抛掷两颗骰子,所得点数之和为ξ,那么ξ=4表示的随机试验结果是()
A.一颗是3点,一颗是1点
B.两颗都是2点
C.两颗都是4点
D.一颗是3点,一颗是1点或两颗都是2点答案:D16.抛物线y2=4x,O为坐标原点,A,B为抛物线上两个动点,且OA⊥OB,当直线AB的倾斜角为45°时,△AOB的面积为______.答案:设直线AB的方程为y=x-m,代入抛物线联立得x2-(2m+4)x+m2=0,则x1+x2=2m+4,x1x2=m2,∴|x1-x2|=16m+16∵三角形的面积为S△AOB=|12my1-12my2|=12m(|x1-x2|)=12m16m+16;又因为OA⊥OB,设A(x1,2x1),B(x2,-2x2)所以2x1x1•-2x2x2=-1,求的m=4,代入上式可得S△AOB=12m16m+16=12×4×64+16=85故为:8517.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“是乙或丙获奖.”乙说:“甲、丙都未获奖.”丙说:“我获奖了.”丁说:“是乙获奖.”四位歌手的话只有两句是对的,则获奖的歌手是()A.甲B.乙C.丙D.丁答案:若甲是获奖的歌手,则都说假话,不合题意.若乙是获奖的歌手,则甲、乙、丁都说真话,丙说假话,不符合题意.若丁是获奖的歌手,则甲、丁、丙都说假话,乙说真话,不符合题意.故获奖的歌手是丙故先C18.若向量a,b,c满足a∥b且a⊥c,则c(a+2b)=______.答案:∵a∥b∴存在λ使b=λa∵a⊥c∴a?c=0∴c?(a+2b)=c?a+2c?b=2c?λa=0故为:0.19.已知向量表示“向东航行1km”,向量表示“向南航行1km”,则向量表示()
A向东南航行km
B.向东南航行2km
C.向东北航行km
D.向东北航行2km答案:A20.天气预报说,在今后的三天中每一天下雨的概率均为40%,用随机模拟的方法进行试验,由1、2、3、4表示下雨,由5、6、7、8、9、0表示不下雨,利用计算器中的随机函数产生0~9之间随机整数的20组如下:
907966191925271932812458569683
431257393027556488730113537989
通过以上随机模拟的数据可知三天中恰有两天下雨的概率近似为(
)。答案:0.2521.直线l只经过第一、三、四象限,则直线l的斜率k()
A.大于零
B.小于零
C.大于零或小于零
D.以上结论都有可能答案:A22.①附中高一年级聪明的学生;
②直角坐标系中横、纵坐标相等的点;
③不小于3的正整数;
④3的近似值;
考察以上能组成一个集合的是______.答案:因为直角坐标系中横、纵坐标相等的点是确定的,所以②能构成集合;不小于3的正整数是确定的,所以③能构成集合;附中高一年级聪明的学生,不是确定的,原因是没法界定什么样的学生为聪明的,所以①不能构成集合;3的近似值没说明精确到哪一位,所以是不确定的,故④不能构成集合.23.复数Z=arccosx-π+(-2x)i(x∈R,i是虚数单位),在复平面上的对应点只可能位于()A.第一象限B.第二象限C.第三象限D.第四象限答案:∵a=arccosx-π,arccosx∈[0,π],∴a<0,∵b=-2x<0,∴复数Z对应的点的实部和虚部都小于零,∴复数在第三象限,故选C.24.下列点在x轴上的是()
A.(0.1,0.2,0.3)
B.(0,0,0.001)
C.(5,0,0)
D.(0,0.01,0)答案:C25.选做题:如图,点A、B、C是圆O上的点,且AB=4,∠ACB=30°,则圆O的面积等于______.答案:连接OA,OB,∵∠ACB=30°,∴∠AoB=60°,∴△AOB是一个等边三角形,∴OA=AB=4,∴⊙O的面积是16π故为16π26.写出按从小到大的顺序重新排列x,y,z三个数值的算法.答案:算法如下:(1).输入x,y,z三个数值;(2).从三个数值中挑出最小者并换到x中;(3).从y,z中挑出最小者并换到y中;(4).输出排序的结果.27.用0,1,2,3组成没有重复数字的四位数,其中奇数有()
A.8个
B.10个
C.18个
D.24个答案:A28.已知f(1,1)=1,f(m,n)∈N*(m、n∈N*),且对任意m、n∈N*都有:
①f(m,n+1)=f(m,n)+2;②f(m+1,1)=2f(m,1).给出以下四个结论:
(1)f(1,2)=3;
(2)f(1,5)=9;
(3)f(5,1)=16;
(4)f(5,6)=26.其中正确的为______.答案:∵f(1,1)=1,f(m,n+1)=f(m,n)+2;f(m+1,1)=2f(m,1)(1)f(1,2)=f(1,1)+2=3;故(1)正确(2)f(1,5)=f(1,4)+2=f(1,3)+4=f(1,2)+6=f(1,1)+8=9;故(2)正确(3)f(5,1)=2f(4,1)=4f(3,1)=8f(2,1)=16f(1,1)=16;故(3)正确(4)f(5,6)=f(5,5)+2=f(5,4)+4=f(5,3)+6=f(5,2)=8=f(5,1)+10=16+10=26;故(4)正确故为(1)(2)(3)(4)29.已知直线l的参数方程为x=12ty=22+32t(t为参数),若以直角坐标系xOy的O点为极点,Ox方向为极轴,选择相同的长度单位建立极坐标系,得曲线C的极坐标方程为ρ=2cos(θ-π4)
(1)求直线l的倾斜角;
(2)若直线l与曲线C交于A,B两点,求|AB|.答案:(1)直线参数方程可以化x=tcos60°y=22+tsin60°,根据直线参数方程的意义,这条经过点(0,22),倾斜角为60°的直线.(2)l的直角坐标方程为y=3x+22,ρ=2cos(θ-π4)的直角坐标方程为(x-22)2+(y-22)2=1,所以圆心(22,22)到直线l的距离d=64,∴|AB|=102.30.圆x=1+cosθy=1+sinθ(θ为参数)的标准方程是
______,过这个圆外一点P(2,3)的该圆的切线方程是
______;答案:∵圆x=1+cosθy=1+sinθ(θ为参数)消去参数θ,得:(x-1)2+(y-1)2=1,即圆x=1+cosθy=1+sinθ(θ为参数)的标准方程是(x-1)2+(y-1)2=1;∵这个圆外一点P(2,3)的该圆的切线,当切线斜率不存在时,显然x=2符合题意;当切线斜率存在时,设切线方程为:y-3=k(x-2),由圆心到切线的距离等于半径,得|k-1+3-2k|k2+1=
1,解得:k=34,故切线方程为:3x-4y+6=0.故为:(x-1)2+(y-1)2=1;x=2或3x-4y+6=0.31.如图,空间四边形ABCD中,M、G分别是BC、CD的中点,则AB+12BC+12BD等()A.ADB.GAC.AGD.MG答案:∵M、G分别是BC、CD的中点,∴12BC=BM,12BD=MC∴AB+12BC+12BD=AB+BM+MC=AM+MC=AC故选C32.对任意的实数k,直线y=kx+1与圆x2+y2=2
的位置关系一定是()
A.相离
B.相切
C.相交但直线不过圆心
D.相交且直线过圆心答案:C33.如图是用来求2+32+43+54+…+101100的计算程序,请补充完整:______.
答案:2+32+43+54+…+101100=(1+1)+(1+12)+(1+13)+…+(1+1100)故循环体中应是S=S+(1+1i)故为:S=S+(1+1i)34.求证:若圆内接四边形的两条对角线互相垂直,则从对角线交点到一边中点的线段长等于圆心到该边对边的距离.答案:以两条对角线的交点为原点O、对角线所在直线为坐标轴建立直角坐标系,(如图所示)
设A(-a,0),B(0,-b),C(c,0),D(0,d),则CD的中点E(c2,d2),AB的中点H(-a2,-b2).又圆心G到四个顶点的距离相等,故圆心G的横坐标等于AC中点的横坐标,等于c-a2,圆心G的纵坐标等于BD中点的纵坐标,等于d-b2.即圆心G(c-a2,d-b2),∴|OE|2=c2+d24,|GH|2=(c-a2+a2)2+(d-b2+b2)2=c2+d24,∴|OE|=|GH|,故要证的结论成立.35.给定两个长度为1且互相垂直的平面向量OA和OB,点C在以O为圆心的圆弧AB上变动.若OC=2xOA+yOB,其中x,y∈R,则x+y的最大值是______.答案:由题意|OC|=1,即4x2+y2=1,令x=12cosθ,y=sinθ则x+y=12cosθ+sinθ=(12)2+1sin(θ+φ)≤52故x+y的最大值是52故为:5236.已知命题p:“有的实数没有平方根.”,则非p是______.答案:∵命题p:“有的实数没有平方根.”,是一个特称命题,非P是它的否定,应为全称命题“所有实数都有平方根”故为:所有实数都有平方根.37.如图为△ABC和一圆的重迭情形,此圆与直线BC相切于C点,且与AC交于另一点D.若∠A=70°,∠B=60°,则的度数为何()
A.50°
B.60°
C.100°
D.120°
答案:C38.如图所示的程序框图,运行相应的程序,若输出S的值为254,则判断框①中应填入的条件是()A.n≤5B.n≤6C.n≤7D.n≤8答案:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是输出满足条件S=2+22+23+…+2n=126时S的值∵2+22+23+…+27=254,故最后一次进行循环时n的值为7,故判断框中的条件应为n≤7.故选C.39.已知200辆汽车通过某一段公路时的时速的频率分布直方图如图所示,则时速在[60,70]的汽车大约有()辆.A.90B.80C.70D.60答案:由已知可得样本容量为200,又∵数据落在区间[60,70]的频率为0.04×10=0.4∴时速在[60,70]的汽车大约有200×0.4=80故选B.40.如果双曲线的焦距为6,两条准线间的距离为4,那么该双曲线的离心率为()
A.
B.
C.
D.2答案:C41.函数f(x)=x2+2的单调递增区间为
______.答案:如图所示:函数的递增区间是:[0,+∞)故为:[0,+∞)42.①平行向量一定相等;②不相等的向量一定不平行;③相等向量一定共线;④共线向量一定相等;⑤长度相等的向量是相等向量;⑥平行于同一个向量的两个向量是共线向量,其中正确的命题是______.答案:∵平行向量即为共线向量其定义是方向相同或相反;相等向量的定义是模相等、方向相同;①平行向量不一定相等;故错;②不相等的向量也可能不平行;故错;③相等向量一定共线;正确;④共线向量不一定相等;故错;⑤长度相等的向量方向相反时不是相等向量;故错;⑥平行于零向量的两个向量是不一定是共线向量,故错.其中正确的命题是③.故为:③.43.已知正数x,y,且x+4y=1,则xy的最大值为()
A.
B.
C.
D.答案:C44.已知=1-ni,其中m,n是实数,i是虚数单位,则m+ni=(
)
A.1+2i
B.1-2i
C.2+i
D.2-i答案:C45.若圆C过点M(0,1)且与直线l:y=-1相切,设圆心C的轨迹为曲线E,A、B为曲线E上的两点,点P(0,t)(t>0),且满足AP=λPB(λ>1).
(I)求曲线E的方程;
(II)若t=6,直线AB的斜率为12,过A、B两点的圆N与抛物线在点A处共同的切线,求圆N的方程;
(III)分别过A、B作曲线E的切线,两条切线交于点Q,若点Q恰好在直线l上,求证:t与QA•QB均为定值.答案:【解】(Ⅰ)依题意,点C到定点M的距离等于到定直线l的距离,所以点C的轨迹为抛物线,曲线E的方程为x2=4y.(Ⅱ)直线AB的方程是y=12x+6,即x-2y+12=0.由{_x2=4y,x-2y+12=0,及AP=λPB(λ>1)知|AP|>|PB|,得A(6,9)和B(-4,4)由x2=4y得y=14x2,y′=12x.所以抛物线x2=4y在点A处切线的斜率为y'|x=6=3.直线NA的方程为y-9=-13(x-6),即y=-13x+11.①线段AB的中点坐标为(1,132),线段AB中垂线方程为y-132=-2(x-1),即y=-2x+172.②由①、②解得N(-32,232).于是,圆C的方程为(x+32)2+(y-232)2=(-4+32)2+(4-232)2,即(x+32)2+(y-232)2=1252.(Ⅲ)设A(x1,x124),B(x2,x224),Q(a,-1).过点A的切线方程为y-x214=x12(x-x1),即x12-2ax1-4=0.同理可得x22-2ax2-4=0,所以x1+x2=2a,x1x2=-4.又kAB=x124-x224x1-x2=x1+x24,所以直线AB的方程为y-x124=x1+x24(x-x
1),即y=x1+x24x-x1x24,亦即y=a2x+1,所以t=-1.而QA=(x1-a,x124+1),QB=(x2-a,x224+1),所以QA•QB=(x1-a)(x2-a)+(x214+1)(x224+1)=x1x2-a(x1+x2)+a2+x21x2216+(x1+x2)2-2x1x24+1=-4-2a2+a2+1+4a2+84+1=0.46.有外形相同的球分装三个盒子,每盒10个.其中,第一个盒子中7个球标有字母A、3个球标有字母B;第二个盒子中有红球和白球各5个;第三个盒子中则有红球8个,白球2个.试验按如下规则进行:先在第一号盒子中任取一球,若取得标有字母A的球,则在第二号盒子中任取一个球;若第一次取得标有字母B的球,则在第三号盒子中任取一个球.如果第二次取出的是红球,则称试验成功,那么试验成功的概率为()
A.0.59
B.0.54
C.0.8
D.0.15答案:A47.若一次函数y=mx+b在(-∞,+∞)上是增函数,则有()A.b>0B.b<0C.m>0D.m<0答案:∵一次函数y=mx+b在(-∞,+∞)上是增函数,∴一次项系数m>0,故选C.48.设A、B、C表示△ABC的三个内角的弧度数,a,b,c表示其对边,求证:aA+bB+cCa+b+c≥π3.答案:证明:法一、不妨设A>B>C,则有a>b>c由排序原理:顺序和≥乱序和∴aA+bB+cC≥aB+bC+cAaA+bB+cC≥aC+bA+cBaA+bB+cC=aA+bB+cC上述三式相加得3(aA+bB+cC)≥(A+B+C)(a+b+c)=π(a+b+c)∴aA+bB+cCa+b+c≥π3.法二、不妨设A>B>C,则有a>b>c,由排序不等式aA+bB+cC3≥A+B+C3?a+b+c3,即aA+bB+cC≥π3(a+b+c),∴aA+bB+cCa+b+c≥π3.49.设双曲线C:x2a2-y2=1(a>0)与直线l:x+y=1相交于两个不同的点A、B.
(I)求双曲线C的离心率e的取值范围:
(II)设直线l与y轴的交点为P,且PA=512PB.求a的值.答案:(I)由C与l相交于两个不同的点,故知方程组x2a2-y2=1x+y=1.有两个不同的实数解.消去y并整理得(1-a2)x2+2a2x-2a2=0.①所以1-a2≠0.4a4+8a2(1-a2)>0.解得0<a<2且a≠1.双曲线的离心率e=1+a2a=1a2+1.∵0<a<2且a≠1,∴e>62且e≠2即离心率e的取值范围为(62,2)∪(2,+∞).(II)设A(x1,y1),B(x2,y2),P(0,1)∵PA=512PB,∴(x1,y1-1)=512(x2,y2-1).由此得x1=512x2.由于x1和x2都是方程①的根,且1-a2≠0,所以1712x2=-2a21-a2.x1•x2=512x22=-2a21-a2.消去x2,得-2a21-a2=28960由a>0,所以a=1713.50.从1,2,3,4,5中不放回地依次取2个数,事件A=“第一次取到的是奇数”,B=“第二次取到的是奇数”,则P(B|A)=()
A.
B.
C.
D.答案:D第3卷一.综合题(共50题)1.平面向量a与b的夹角为,若a=(2,0),|b|=1,则|a+2b|=()
A.
B.2
C.4
D.12答案:B2.①学校为了了解高一学生的情况,从每班抽2人进行座谈;②一次数学竞赛中,某班有10人在110分以上,40人在90~100分,12人低于90分.现在从中抽取12人了解有关情况;③运动会服务人员为参加400m决赛的6名同学安排跑道.就这三件事,合适的抽样方法为()A.分层抽样,分层抽样,简单随机抽样B.系统抽样,系统抽样,简单随机抽样C.分层抽样,简单随机抽样,简单随机抽样D.系统抽样,分层抽样,简单随机抽样答案:①是从较多的一个总体中抽取样本,且总体之间没有差异,故用系统抽样,②是从不同分数的总体中抽取样本,总体之间的差异比较大,故用分层抽样,③是六名运动员选跑道,用简单随机抽样,故选D.3.
若向量
=(3,2),=(0,-1),=(-1,2),则向量2-的坐标坐标是(
)
A.(3,-4)
B.(-3,4)
C.(3,4)
D.(-3,-4)答案:D4.已知e1
,
e2是夹角为60°的两个单位向量,且向量a=e1+2e2,则|a|=______.答案:由题意可得e21=1,e22=1,e1?e2=12,所以a2=(e1+2e2)2=1+2+4=7,所以|a|=7,故为:75.在repeat语句的一般形式中有“until
A”,其中A是
(
)A.循环变量B.循环体C.终止条件D.终止条件为真答案:D解析:此题考查程序语句解:Until标志着直到型循环,直到终止条件为止,因此until后跟的是终止条件为真的语句.答案:D.6.已知A(k,12,1),B(4,5,1),C(-k,10,1),且A、B、C三点共线,则k=______.答案:∵AB=(4-k,-7,0),BC=(-k-4,5,0),且A、B、C三点共线,∴存在实数λ满足AB=λBC,即4-k=λ(-k-4)-7=5λ0=0,解得k=-23.故为-23.7.有一个正四棱台形状的油槽,可以装油190L,假如它的两底面边长分别等于60cm和40cm,求它的深度.答案:由于台体的体积V=13(S+SS′+S′)h,则h=3VS+SS′+S′=3×1900003600+2400+1600=75cm.故它的深度为75cm.8.圆x2+y2=1上的点到直线x=2的距离的最大值是
______.答案:根据题意,圆上点到直线距离最大值为:半径+圆心到直线的距离.而根据圆x2+y2=1圆心为(0,0),半径为1∴dmax=1+2=3故为:39.如图,割线PAB经过圆心O,PC切圆O于点C,且PC=4,PB=8,则△PBC的外接圆的面积为______.答案:∵PC切圆O于点C,∴根据切割线定理即可得出PC2=PA?PB,∴42=8PA,解得PA=2.∴ACCB=PAPC=12∴tanB=12∴sinB=55设△PBC的外接圆的半径为R,则455=2R,解得R=25.∴△PBC的外接圆的面积为20π故为:20π10.斜二测画法的规则是:
(1)在已知图形中建立直角坐标系xoy,画直观图
时,它们分别对应x′和y′轴,两轴交于点o′,使∠x′o′y′=______,它们确定的平面表示水平平面;
(2)
已知图形中平行于x轴或y轴的线段,在直观图中分别画成
______;
(3)已知图形中平行于x轴的线段的长度,在直观图中
______;平行于y轴的线段,在直观图中
______.答案:按照斜二测画法的规则填空故为:(1)45°或135°;(2)平行于x′轴和y′轴;(3)长度不变;长度减半11.一个水平放置的平面图形,其斜二测直观图是一个等腰三角形,腰AB=AC=1,如图,则平面图形的实际面积为()
A.1
B.2
C.
D.
答案:A12.已知某一随机变量ξ的分布列如下,且Eξ=6.3,则a的值为()
ξ
4
a
9
P
0.5
0.1
b
A.5
B.6
C.7
D.8答案:C13.在极坐标系下,圆C:ρ2+4ρsinθ+3=0的圆心坐标为()
A.(2,0)
B.
C.(2,π)
D.答案:D14.在平面直角坐标系xOy中,已知抛物线关于x轴对称,顶点在原点O,且过点P(2,4),则该抛物线的方程是______.答案:设所求抛物线方程为y2=ax,依题意42=2a∴a=8,故所求为y2=8x.故为:y2=8x15.现有含盐7%的食盐水为200g,需将它制成工业生产上需要的含盐5%以上且在6%以下(不含5%和6%)的食盐水,设需要加入4%的食盐水xg,则x的取值范围是(
)。答案:(100,400)16.已知A(4,1,3),B(2,-5,1),C是线段AB上一点,且,则C点的坐标为()
A.
B.
C.
D.答案:C17.从一批产品中取出三件,设A=“三件产品全不是次品”,B=“三件产品全是次品”,C=“三件产品不全是次品”,则下列结论正确的是()
A.A与C互斥
B.B与C互斥
C.任两个均互斥
D.任两个均不互斥答案:B18.如图,AB,CD是半径为a的圆O的两条弦,他们相交于AB的中点P,PD=2a3,∠OAP=30°,则CP=______.答案:因为点P是AB的中点,由垂径定理知,OP⊥AB.在Rt△OPA中,BP=AP=acos30°=32a.由相交弦定理知,BP?AP=CP?DP,即32a?32a=CP?23a,所以CP=98a.故填:98a.19.设a,b,c∈R,则复数(a+bi)(c+di)为实数的充要条件是()
A.ad-bc=0
B.ac-bd=0
C.ac+bd=0
D.ad+bc=0答案:D20.中心在坐标原点,离心率为的双曲线的焦点在y轴上,则它的渐近线方程为()
A.
B.
C.
D.答案:D21.数据:1,1,3,3的众数和中位数分别是()
A.1或3,2
B.3,2
C.1或3,1或3
D.3,3答案:A22.对某种花卉的开放花期追踪调查,调查情况如表:
花期(天)11~1314~1617~1920~22个数20403010则这种卉的平均花期为______天.答案:由表格知,花期平均为12天的有20个,花期平均为15天的有40个,花期平均为18天的有30个,花期平均为21天的有10个,∴这种花卉的评价花期是12×20+15×40+18×30+21×10100=16,故为:1623.不等式-x≤1的解集是(
)。答案:{x|0≤x≤2}24.已知圆O:x2+y2=5和点A(1,2),则过A且与圆O相切的直线与两坐标轴围成的三角形的面积=______.答案:由题意知,点A在圆上,切线斜率为-1KOA=-121=-12,用点斜式可直接求出切线方程为:y-2=-12(x-1),即x+2y-5=0,从而求出在两坐标轴上的截距分别是5和52,所以,所求面积为12×52×5=254.25.设抛物线C:y2=3px(p>0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为()
A.y2=4x或y2=8x
B.y2=2x或y2=8x
C.y2=4x或y2=16x
D.y2=2x或y2=16x答案:C26.参数方程,(θ为参数)表示的曲线是()
A.直线
B.圆
C.椭圆
D.抛物线答案:C27.设抛物线y2=2px(p>0)上一点A(1,2)到点B(x0,0)的距离等于到直线x=-1的距离,则实数x0的值是______.答案:∵点A(1,2)在抛物线y2=2px(p>0)上,∴4=2p,p=2,故抛物线方程为y2=4x,准线方程为x=1.由点A(1,2)到点B(x0,0)的距离等于到直线x=-1的距离,故点B(x0,0)为抛物线y2=4x的焦点,故x0=1.故为1.28.一个底面是正三角形的三棱柱的侧视图如图所示,则该几何体的侧面积等于()A.3B.6C.23D.2答案:由正视图知:三棱柱是以底面边长为2,高为1的正三棱柱,侧面积为3×2×1=6,故为:B.29.下面玩掷骰子放球游戏,若掷出1点或6点,甲盒放一球;若掷出2点,3点,4点或5点,乙盒放一球,设掷n次后,甲、乙盒内的球数分别为x、y.
(1)当n=3时,设x=3,y=0的概率;
(2)当n=4时,求|x-y|=2的概率.答案:由题意知,在甲盒中放一球概率为13,在乙盒放一球的概率为23(3分)(1)当n=3时,x=3,y=0的概率为C03(13)3(23)0=127(6分)(2)|x-y|=2时,有x=3,y=1或x=1,y=3,它的概率为C14
(13)3(23)1+C34(13)1(23)3=4081(12分).30.在直角坐标系xOy中,直线l的参数方程为x=3-22ty=5+22t(t为参数).在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为ρ=25sinθ.
(I)求圆C的参数方程;
(II)设圆C与直线l交于点A,B,求弦长|AB|答案:(Ⅰ)∵ρ=25sinθ,∴ρ2=25ρsinθ…(1分)所以,圆C的直角坐标方程为x2+y2-25y=0,即x2+(y-5)2=5…(3分)所以,圆C的参数方程为x=5cosθy=5+5sinθ(θ为参数)
…(4分)(Ⅱ)将直线l的参数方程代入圆C的直角坐标方程,得(3-22t)2+(22t)2=5即t2-32t+4=0…(5分)设两交点A,B所对应的参数分别为t1,t2,则t1+t2=32t1t2=4…(7分)∴|AB|=|t1-t2|=(t1+t2)2-4t1t2=18-16=2…(8分)31.如图是一个实物图形,则它的左视图大致为()A.
B.
C.
D.
答案:∵左视图是指由物体左边向右做正投影得到的视图,并且在左视图中看到的线用实线,看不到的线用虚线,∴该几何体的左视图应当是包含一条从左上到右下的对角线的矩形,并且对角线在左视图中为实线,故选D.32.如图,平行四边形ABCD中,AE:EB=1:2,若△AEF的面积等于1cm2,则△CDF的面积等于______cm2.答案:平行四边形ABCD中,有△AEF~△CDF∴△AEF与△CDF的面积之比等于对应边长之比的平方,∵AE:EB=1:2,∴AE:CD=1:3∵△AEF的面积等于1cm2,∴∵△CDF的面积等于9cm2故为:933.平面内有两个定点F1(-5,0)和F2(5,0),动点P满足条件|PF1|-|PF2|=6,则动点P的轨迹方程是()A.x216-y29=1(x≤-4)B.x29-y216=1(x≤-3)C.x216-y29=1(x>≥4)D.x29-y216=1(x≥3)答案:由|PF1|-|PF2|=6<|F1F2|知,点P的轨迹是以F1、F2为焦点的双曲线右支,得c=5,2a=6,∴a=3,∴b2=16,故动点P的轨迹方程是x29-y216=1(x≥3).故选D.34.过点P(4,-1)且与直线3x-4y+6=0垂直的直线方程是(
)
A.4x+3y-13=0
B.4x-3y-19=0
C.3x-4y-16=0
D.3x+4y-8=0答案:A35.直线l1:a1x+b1y+1=0直线l2:a2x+b2y+1=0交于一点(2,3),则经过A(a1,b1),B(a2,b2)两点的直线方程为______.答案:∵直线l1:a1x+b1y+1=0直线l2:a2x+b2y+1=0交于一点(2,3),∴2a1+3b1+1=0,2a2+3b2+2=0.∴A(a1,b1),B(a2,b2)两点都在直线2x+3y+1=0上,由于两点确定一条直线,因此经过A(a1,b1),B(a2,b2)两点的直线方程即为2x+3y+1=0.故为:2x+3y+1=0.36.
如图,平面内向
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 物业水电安装工程合同范例
- 社区和物业公司合同范例
- 大树截顶合同范例
- 陕西科技大学《病原生物学实验(Ⅱ)》2023-2024学年第一学期期末试卷
- 鱼船出租合同范例
- 抵押黄金合同范例
- 畜牧用品销售合同范例
- 苗木采购和合同范例
- 回购合同范例
- 室内广告施工合同范例
- 人教版九年级道德与法治上册-第八课-中国人-中国梦-复习课件(27张幻灯片)
- 小学图书目录
- 儒家《十三经》剖析课件
- 关于产教融合与校企合作的相关政策
- 《脚手架规范》JGJ130-2011(新)课件
- 《唐代诗歌李贺》课件
- 高速公路服务区环境管理整顿
- 《物联网系统安装与调试》期末复习试题
- Unit4UnderstandingIdeasClickforafriend教学设计-2023-2024学年高中英语
- GB/T 43417-2023儿童青少年脊柱侧弯矫形器的配置
- 品管圈QCC成果汇报提高瞳孔测量准确率(近距瞳孔测量指引)
评论
0/150
提交评论