2023年重庆文化艺术职业学院高职单招(数学)试题库含答案解析_第1页
2023年重庆文化艺术职业学院高职单招(数学)试题库含答案解析_第2页
2023年重庆文化艺术职业学院高职单招(数学)试题库含答案解析_第3页
2023年重庆文化艺术职业学院高职单招(数学)试题库含答案解析_第4页
2023年重庆文化艺术职业学院高职单招(数学)试题库含答案解析_第5页
已阅读5页,还剩42页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年重庆文化艺术职业学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.如图所示,正方体的棱长为1,点A是其一棱的中点,则点A在空间直角坐标系中的坐标是()

A.(,,1)

B.(1,1,)

C.(,1,)

D.(1,,1)

答案:B2.如图,中心均为原点O的双曲线与椭圆有公共焦点,M,N是双曲线的两顶点.若M,O,N将椭圆长轴四等分,则双曲线与椭圆的离心率的比值是()A.3B.2C.3D.2答案:∵M,N是双曲线的两顶点,M,O,N将椭圆长轴四等分∴椭圆的长轴长是双曲线实轴长的2倍∵双曲线与椭圆有公共焦点,∴双曲线与椭圆的离心率的比值是2故选B.3.如图,四面体ABCD中,点E是CD的中点,记=(

A.

B.

C.

D.

答案:B4.下列说法中正确的是()

A.以直角三角形的一边为轴旋转所得的旋转体是圆锥

B.以直角梯形的一腰为轴旋转所得的旋转体是圆台

C.圆柱、圆锥、圆台的底面都是圆

D.圆锥侧面展开图为扇形,这个扇形所在圆的半径等于圆锥的底面圆的半径答案:C5.(坐标系与参数方程选做题)

直线x=-2+ty=1-t(t为参数)被圆x=3+5cosθy=-1+5sinθ(θ为参数,θ∈[0,2π))所截得的弦长为______.答案:直线和圆的参数方程化为普通方程得x+y+1=0,(x-3)2+(y+1)2=25,于是弦心距d=322,弦长l=225-92=82.故为:826.用A、B、C三类不同的元件连接成两个系统N1、N2当元件A、B、C都正常工作时,系统N1正常工作,当元件A正常工作且元件B、C至少有一个正常工作时,系统N2正常工作。已知元件A、B、C正常工作的概率依次为0.80,0.90,0.90,分别求系统N1、N2正常工作的概率.

答案:0.792解析:解:分别记三个元件A、B、C能正常工作为事件A、B、C,由题意,这三个事件相互独立,系统N1正常工作的概率为P(A·B·C)=P(A)·P(B)·P(C)=0.8´0.9´0.9=0.648系统N2中,记事件D为B、C至少有一个正常工作,则P(D)=1–P()="1–"P()·P()=1–(1–0.9)´(1–0.9)=0.99系统N2正常工作的概率为P(A·D)=P(A)·P(D)=0.8´0.99=0.792。7.圆的极坐标方程为ρ=2cos(θ+π3),则该圆的圆心的极坐标是______.答案:∵ρ=2cos(θ+π3),展开得ρ=cosθ-3sinθ,∴ρ2=ρcosθ-3ρsinθ,∴x2+y2=x-3y,∴(x-12)2+(y+32)2=1.∴圆心(12,-32).∴ρ=(12)2+(-32)2=1,tanθ=-3212=-3,∴θ=-π3.故圆心的极坐标是(1,-π3).故为(1,-π3).8.有一段“三段论”推理是这样的:对于可导函数f(x),如果f'(x0)=0,那么x=x0是函数f(x)的极值点,因为函数f(x)=x3在x=0处的导数值f'(0)=0,所以,x=0是函数f(x)=x3的极值点.以上推理中()

A.大前提错误

B.小前提错误

C.推理形式错误

D.结论正确答案:A9.从⊙O外一点P引圆的两条切线PA,PB及一条割线PCD,A、B为切点.求证:ACBC=ADBD.

答案:证明:∠CAP=∠ADP∠CPA=∠APD?△CAP∽△ADP?ACAD=APDP,①∠CBP=∠BDP∠CPB=∠BPD?△CBP∽△BDP?BCDB=BPDP,②又AP=BP,③由①②③知:ACAD=BCBD,故ACBC=ADBD.得证.10.知x、y、z均为实数,

(1)若x+y+z=1,求证:++≤3;

(2)若x+2y+3z=6,求x2+y2+z2的最小值.答案:(1)证明略(2)x2+y2+z2的最小值为解析:(1)证明

因为(++)2≤(12+12+12)(3x+1+3y+2+3z+3)=27.所以++≤3.

7分(2)解

因为(12+22+32)(x2+y2+z2)≥(x+2y+3z)2=36,即14(x2+y2+z2)≥36,所以x2+y2+z2的最小值为.

14分11.三直线ax+2y+8=0,4x+3y=10,2x-y=10相交于一点,则a的值是(

A.-2

B.-1

C.0

D.1答案:B12.抛物线y=4x2的焦点坐标是()

A.(0,1)

B.(0,)

C.(1,0)

D.(,0)答案:B13.已知函数f(x)=2x,x≥01,

x<0,若f(1-a2)>f(2a),则实数a的取值范围是______.答案:函数f(x)=2x,x≥01,

x<0,x<0时是常函数,x≥0时是增函数,由f(1-a2)>f(2a),所以2a<1-a21-a2>0,解得:-1<a<2-1,故为:-1<a<2-1.14.某学校准备调查高三年级学生完成课后作业所需时间,采取了两种抽样调查的方式:第一种由学生会的同学随机对24名同学进行调查;第二种由教务处对年级的240名学生编号,由001到240,请学号最后一位为3的同学参加调查,则这两种抽样方式依次为()A.分层抽样,简单随机抽样B.简单随机抽样,分层抽样C.分层抽样,系统抽样D.简单随机抽样,系统抽样答案:学生会的同学随机对24名同学进行调查,是简单随机抽样,对年级的240名学生编号,由001到240,请学号最后一位为3的同学参加调查,是系统抽样,故选D15.对总数为N的一批零件抽取一个容量为30的样本,若每个零件被抽取的概率为0.25,则N等于()A.150B.200C.120D.100答案:∵每个零件被抽取的概率都相等,∴30N=0.25,∴N=120.故选C.16.在下列各图中,每个图的两个变量具有线性相关关系的图是()

A.(1)(2)

B.(1)(3)

C.(2)(4)

D.(2)(3)答案:D17.若过点A(4,0)的直线l与曲线(x-2)2+y2=1有公共点,则直线l的斜率的取值范围为______.答案:设直线l的方程为y=k(x-4),即kx-y-4k=0∵直线l与曲线(x-2)2+y2=1有公共点,∴圆心到直线l的距离小于等于半径即|2k-4k|k2+1≤1,解得-33≤

k≤33∴直线l的斜率的取值范围为[-33,33]故为[-33,33]18.在平面直角坐标系xOy中,若抛物线C:x2=2py(p>0)的焦点为F(q,1),则p+q=______.答案:抛物线C:x2=2py(p>0)的焦点坐标为(0,p2),又已知焦点为为F(q,1),∴q=0,p2=1,故p+q=2,故为2.19.设随机变量ζ~N(2,p),随机变量η~N(3,p),若,则P(η≥1)=()

A.

B.

C.

D.答案:D20.点(2a,a-1)在圆x2+y2-2y-4=0的内部,则a的取值范围是()

A.-1<a<1

B.0<a<1

C.-1<a<

D.-<a<1答案:D21.用系统抽样法要从160名学生中抽取容量为20的样本,将160名学生随机地从1~160编号,按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若第16组抽出的号码为126,则第1组中用抽签的方法确定的号码是______.答案:不妨设在第1组中随机抽到的号码为x,则在第16组中应抽出的号码为120+x.设第1组抽出的号码为x,则第16组应抽出的号码是8×15+x=126,∴x=6.故为:6.22.已知平行四边形ABCD,下列正确的是()

A.

B.

C.

D.答案:B23.如果方程(1+i)x2-2(a+i)x+5-3i=0(a∈R)有实数解,求a的值.答案:设方程的实根为x0,则方程(1+i)x2-2(a+i)x+5-3i=0可化为(x20-2ax0+5)+(x20-2x0-3)i=0由复数相等的充要条件可得x20-2ax0+5=0①x20-2x0-3=0

②由②得x0=3或-1,代入①得a=73或-3∴a=73或-324.曲线x=sinθy=sin2θ(θ为参数)与直线y=a有两个公共点,则实数a的取值范围是______.答案:曲线

x=sinθy=sin2θ

(θ为参数),为抛物线段y=x2(-1≤x≤1),借助图形直观易得0<a≤1.25.已知函数f(x)=|log2x-1|+|log2x-2|,解不等式f(x)>4.答案:f(x)=|log2x-1|+|log2x-2|,取绝对值得:f(x)=3-2log2x,0<x<21,2≤x≤42log2x-3,x>4所以f(x)>4等价于:0<x≤23-2log2x>4或x≥42log2x-3>4,解得:0<x<22或x>82.26.纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到右侧的平面图形,则标“△”的面的方位()

A.南

B.北

C.西

D.下

答案:B27.假设要抽查某种品牌的850颗种子的发芽率,抽取60粒进行实验.利用随机数表抽取种子时,先将850颗种子按001,002,…,850进行编号,如果从随机数表第8行第2列的数3开始向右读,请你依次写出最先检测的4颗种子的编号______,______,______,______.

(下面摘取了随机数表第7行至第9行)

84

42

17

53

31

57

24

55

06

88

77

04

74

47

67

21

76

33

50

25

83

92

12

06

76

63

01

63

78

59

16

95

55

67

19

98

10

50

71

75

12

86

73

58

07

44

39

52

38

79

33

21

12

34

29

78

64

56

07

82

52

42

07

44

38

15

51

00

13

42

99

66

02

79

54.答案:第8行第2列的数3开始向右读第一个小于850的数字是301,第二个数字是637,也符合题意,第三个数字是859,大于850,舍去,第四个数字是169,符合题意,第五个数字是555,符合题意,故为:301,637,169,55528.若角α和β的两边分别对应平行且方向相反,则当α=45°时,β=______.答案:由题意知∠α=45°°,AB∥CE,AE∥BD∵AE∥BD∴∠BDC=∠α=45°∵AB∥CE∴∠β=∠BDC=45°故为45°.29.如图的曲线是指数函数y=ax的图象,已知a的值取,,,则相应于曲线①②③④的a的值依次为()

A.,,,

B.,,,

C.,,,

D.,,,

答案:A30.命题“所以奇数的立方是奇数”的否定是()

A.所有奇数的立方不是奇数

B.不存在一个奇数,它的立方不是奇数

C.存在一个奇数,它的立方不是奇数

D.不存在一个奇数,它的立方是奇数答案:C31.已知命题p:“△ABC是等腰三角形”,命题q:“△ABC是直角三角形”,则命题“△ABC是等腰直角三角形”的形式是()A.p或qB.p且qC.非pD.以上都不对答案:因为“△ABC是等腰直角三角形”即为“△ABC是等腰且直角三角形”,所以命题“△ABC是等腰直角三角形”的形式是p且q,故选B.32.设椭圆的左焦点为F,AB为椭圆中过点F的弦,试分析以AB为直径的圆与椭圆的左准线的位置关系.答案:设M为弦AB的中点(即以AB为直径的圆的圆心),A1、B1、M1分别是A、B、M在准线l上的射影(如图).由圆锥曲线的共同性质得|AB|=|AF|+|BF|=e(|AA1|+|BB1|)=2e|MM1|.∵0<e<1,∴|AB|<2|MM1|,即|AB|2<|MM1|.∴以AB为直径的圆与左准线相离.33.假设两圆互相外切,求证:用连心线做直径的圆,必与前两圆的外公切线相切.答案:证明:设⊙O1及⊙O2为互相外切的两个圆,其一外公切线为A1A2,切点为A1及A2令点O为连心线O1O2的中点,过O作OA⊥A1A2,由直角梯形的中位线性质得:OA=12(O1A1+O2A2)=12O1O2,∴以O1O2为直径,即以O为圆心,OA为半径的圆必与直线A1A2相切,同理可证,此圆必切于⊙O1及⊙O2的另一条外公切线.34.方程x(x2+y2-1)=0和x2-(x2+y2-1)2=0表示的图形是()

A.都是两个点

B.一条直线和一个圆

C.前者为两个点,后者是一条直线和一个圆

D.前者是一条直线和一个圆,后者是两个圆答案:D35.设方程lgx+x=3的实数根为x0,则x0所在的一个区间是()A.(3,+∝)B.(2,3)C.(1,2)D.(0,1)答案:由lgx+x=3得:lgx=3-x.分别画出等式:lgx=3-x两边对应的函数图象:如图.由图知:它们的交点x0在区间(2,3)内,故选B.36.已知正三角形ABC的边长为a,求△ABC的直观图△A′B′C′的面积.答案:如图①、②所示的实际图形和直观图.由②可知,A′B′=AB=a,O′C′=12OC=34a,在图②中作C′D′⊥A′B′于D′,则C′D′=22O′C′=68a.∴S△A′B′C′=12A′B′?C′D′=12×a×68a=616a2.37.已知抛物线y2=4x的焦点为F,准线与x轴的交点为M,N为抛物线上的一点,且|NF|=32|MN|,则∠NMF=()A.π6B.π4C.π3D.5π12答案:设N到准线的距离等于d,由抛物线的定义可得d=|NF|,

由题意得cos∠NMF=d|MN|=|NF||MN|=32,∴∠NMF=π6,故选A.38.已知抛物线的顶点在原点,焦点在x轴的正半轴上,F为焦点,A,B,C为抛物线上的三点,且满足FA+FB+FC=0,|FA|+|FB|+|FC|=6,则抛物线的方程为______.答案:设向量FA,FB,FC的坐标分别为(x1,y1)(x2,y2)(x3,y3)由FA+FB+FC=0得x1+x2+x3=0∵XA=x1+p2,同理XB=x2+p2,XC=x3+p2∴|FA|=x1+p2+p2=x1+p,同理有|FB|=x2+p2+p2=x2+p,|FC|=x3+p2+p2=x3+p,又|FA|+|FB|+|FC|=6,∴x1+x2+x3+3p=6,∴p=2,∴抛物线方程为y2=4x.故为:y2=4x.39.在极坐标系中,曲线p=4cos(θ-π3)上任意两点间的距离的最大值为______.答案:将原极坐标方程p=4cos(θ-π3),化为:ρ=2cosθ+23sinθ,∴ρ2=2ρcosθ+23ρsinθ,化成直角坐标方程为:x2+y2-2x-23y=0,是一个半径为2圆.圆上两点间的距离的最大值即为圆的直径,故填:4.40.要证明,可选择的方法有以下几种,其中最合理的是()

A.综合法

B.分析法

C.反证法

D.归纳法答案:B41.已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为V1和V2,则V1:V2=()A.1:3B.1:1C.2:1D.3:1答案:设圆柱,圆锥的底面积为S,高为h,则由柱体,锥体的体积公式得:V1:V2=(Sh):(13Sh)=3:1故选D.42.在△ABC中,D为AB上一点,M为△ABC内一点,且满足AD=34AB,AM=AD+35BC,则△AMD与△ABC的面积比为()A.925B.45C.916D.920答案:AP=AD+DP=AD+35BC,DP=35BC.∴三角形ADP的高三角形ABC=ADAB=34,∴S△APDS△ABC=35?34=920.故选D.43.如图,已知某探照灯反光镜的纵切面是抛物线的一部分,光源安装在焦点F上,且灯的深度EG等于灯口直径AB,若灯的深度EG为64cm,则光源安装的位置F到灯的顶端G的距离为______cm.答案:以反射镜顶点为原点,以顶点和焦点所在直线为x轴,建立直角坐标系.设抛物线方程为y2=2px,依题意可点A(64,32)在抛物线上代入抛物线方程得322=128p解得p=8∴焦点坐标为(4,0),而光源到反射镜顶点的距离正是抛物线的焦距,即4cm.故为:4.44.执行程序框图,如果输入的n是5,则输出的p是()

A.1

B.2

C.3

D.5

答案:D45.有以下命题:①如果向量与任何向量不能构成空间向量的一组基底,那么的关系是不共线;②O,A,B,C为空间四点,且向量不构成空间的一个基底,那么点O,A,B,C一定共面;③已知向量是空间的一个基底,则向量,也是空间的一个基底.其中正确的命题是[

]A.①②

B.①③

C.②③

D.①②③答案:C46.如果一个圆锥的正视图是边长为2的等边三角形,则该圆锥的表面积是______.答案:由已知,圆锥的底面直径为2,母线为2,则这个圆锥的表面积是12×2π×2+π?12=3π.故:3π.47.

若向量

=(3,2),=(0,-1),=(-1,2),则向量2-的坐标坐标是(

A.(3,-4)

B.(-3,4)

C.(3,4)

D.(-3,-4)答案:D48.在输入语句中,若同时输入多个变量,则变量之间的分隔符号是()

A.逗号

B.空格

C.分号

D.顿号答案:A49.某超市推出如下优惠方案:

(1)一次性购物不超过100元不享受优惠;

(2)一次性购物超过100元但不超过300元的一律九折;

(3)一次性购物超过300元的一律八折,有人两次购物分别付款80元,252元.

如果他一次性购买与上两次相同的商品,则应付款______.答案:该人一次性购物付款80元,据条件(1)、(2)知他没有享受优惠,故实际购物款为80元;另一次购物付款252元,有两种可能,其一购物超过300元按八折计,则实际购物款为2520.8=315元.其二购物超过100元但不超过300元按九折计算,则实际购物款为2520.9=280元.故该人两次购物总价值为395元或360元,若一次性购买这些商品应付款316元或288元.故为316元或288元.50.圆x2+y2-6x+4y+12=0与圆x2+y2-14x-2y+14=0的位置关系是______.答案:∵圆x2+y2-6x+4y+12=0化成标准形式,得(x-3)2+(y+2)2=1∴圆x2+y2-6x+4y+12=0的圆心为C1(3,-2),半径r1=1同理可得圆x2+y2-14x-2y+14=0的C2(7,1),半径r2=6∵两圆的圆心距|C1C2|=(7-3)2+(1+2)2=5∴|C1C2|=r2-r1=5,可得两圆的位置关系是内切故为:内切第2卷一.综合题(共50题)1.设集合A={l,2},B={2,4),则A∪B=()A.{1}B.{4}C.{l,4}D.{1,2,4}答案:∵集合A={1,2},集合B={2,4},∴集合A∪B={1,2,4}.故选D.2.已知函数f(x)=|x+2|-1,g(x)=|3-x|+2,若不等式f(x)-g(x)≤K的解集为R.则实数K的取值范围为______.答案:因为函数f(x)=|x+2|-1,g(x)=|3-x|+2,所以f(x)-g(x)=|x+2|-|x-3|-3,它的几何意义是数轴上的点到-2与到3距离的差再减去3,它的最大值为2,不等式f(x)-g(x)≤K的解集为R.所以K≥2.故为:[2,+∞).3.(选做题)方程ρ=cosθ与(t为参数)分别表示何种曲线(

)。答案:圆,双曲线4.已知函数f(x)=x2+(a2-1)x+(a-2)的一个零点比1大,一个零点比1小,则实数a的取值范围______.答案:∵函数f(x)=x2+(a2-1)x+(a-2)的一个零点比1大,一个零点比1小∴f(1)<0∴1+a2-1+a-2<0∴a2+a-2<0∴-2<a<1∴实数a的取值范围为(-2,1)故为:(-2,1)5.如图①y=ax,②y=bx,③y=cx,④y=dx,根据图象可得a、b、c、d与1的大小关系为()

A.a<b<1<c<d

B.b<a<1<d<c

C.1<a<b<c<d

D.a<b<1<d<c

答案:B6.以知F是双曲线x24-y212=1的左焦点,A(1,4),P是双曲线右支上的动点,则|PF|+|PA|的最小值为______.答案:∵A点在双曲线的两只之间,且双曲线右焦点为F′(4,0),∴由双曲线性质|PF|-|PF′|=2a=4而|PA|+|PF′|≥|AF′|=5两式相加得|PF|+|PA|≥9,当且仅当A、P、F’三点共线时等号成立.故为97.一个容量为n的样本,分成若干组,已知某数的频数和频率分别为40、0.125,则n的值为()A.640B.320C.240D.160答案:由频数、频率和样本容量之间的关系得到,40n=0.125,∴n=320.故选B.8.已知A、B、C三点不共线,O是平面ABC外的任一点,下列条件中能确定点M与点A、B、C一定共面的是()A.OM=OA+OB+OCB.OM=2OA-OB-OCC.OM=OA+12OB+13OCD.OM=13OA+13OB+13OC答案:由共面向量定理OM=m•OA+n•OB+p•OC,m+n+p=1,说明M、A、B、C共面,可以判断A、B、C都是错误的,则D正确.故选D.9.现有含盐7%的食盐水为200g,需将它制成工业生产上需要的含盐5%以上且在6%以下(不含5%和6%)的食盐水,设需要加入4%的食盐水xg,则x的取值范围是(

)。答案:(100,400)10.算法:第一步

x=a;第二步

若b>x则x=b;第三步

若c>x,则x=c;

第四步

若d>x,则x=d;

第五步

输出x.则输出的x表示()A.a,b,c,d中的最大值B.a,b,c,d中的最小值C.将a,b,c,d由小到大排序D.将a,b,c,d由大到小排序答案:x=a,若b>x,则b>a,x=b,否则x=a,即x为a,b中较大的值;若c>x,则x=c,否则x仍为a,b中较大的值,即x为a,b,c中较大的值;若d>x,则x=d,否则x仍为a,b,c中较大的值,即x为a,b,c中较大的值.故x为a,b,c,d中最大的数,故选A.11.已知二阶矩阵A=2ab0属于特征值-1的一个特征向量为1-3,求矩阵A的逆矩阵.答案:由矩阵A属于特征值-1的一个特征向量为α1=1-3,可得2ab01-3=-1-3,得2-3a=-1b=3即a=1,b=3;

…(3分)解得A=2130,…(8分)∴A逆矩阵是A-1=dad-bc-bad-bc-cad-bcaad-bc=0131-23.12.参数方程(θ为参数)化为普通方程是()

A.2x-y+4=0

B.2x+y-4=0

C.2x-y+4=0,x∈[2,3]

D.2x+y-4=0,x∈[2,3]答案:D13.随机变量X的概率分布规律为P(X=n)=(n=1,2,3,4),其中a是常数,则P()的值为()

A.

B.

C.

D.

答案:D14.圆(x+2)2+y2=4与圆(x-2)2+(y-1)2=9的位置关系为()

A.内切

B.相交

C.外切

D.相离答案:B15.有一矩形纸片ABCD,按图所示方法进行任意折叠,使每次折叠后点B都落在边AD上,将B的落点记为B′,其中EF为折痕,点F也可落在边CD上,过B′作B′H∥CD交EF于点H,则点H的轨迹为()A.圆的一部分B.椭圆的一部分C.双曲线的一部分D.抛物线的一部分答案:由题意知:点H到定点B的距离以及到定直线AD的距离相等,根据抛物线的定义可知:点H的轨迹为:抛物线,(抛物线的一部分)故选D.16.根据一组数据判断是否线性相关时,应选用(

A.散点图

B.茎叶图

C.频率分布直方图

D.频率分布折线图答案:A17.某公司招聘员工,经过笔试确定面试对象人数,面试对象人数按拟录用人数分段计算,计算公式为y=4x1≤x≤102x+1010<x≤1001.5xx>100其中x代表拟录用人数,y代表面试对象人数.若应聘的面试对象人数为60人,则该公司拟录用人数为()A.15B.40C.25D.130答案:由题意知:当10<x≤100时,y=2x+10∈(30,210],又因为60∈(30,210],∴2x+10=60,∴x=25.故:该公司拟录用人数为25人.故选C.18.b=ac(a,b,c∈R)是a、b、c成等比数列的()A.必要非充分条件B.充分非必要条件C.充要条件D.既非充分又非必要条件答案:当b=a=0时,b=ac推不出a,x,b成等比数列成立,故不充分;当a,b,c成等比数列且a<0,b<0,c<0时,得不到b=ac故不必要.故选:D19.命题“若a>3,则a>5”的逆命题是______.答案:∵原命题“若a>3,则a>5”的条件是a>3,结论是a>5∴逆命题是“若a>5,则a>3”故为:若a>5,则a>320.从2008名学生中选取50名学生参加数学竞赛,若采用下面的方法选取:先用简单随机抽样从2008人中剔除8人,剩下的2000人再按系统抽样的方法抽取50人,则在2008人中,每人入选的概率()

A.不全相等

B.均不相等

C.都相等,且为

D.都相等,且为答案:C21.如图,CD是⊙O的直径,AE切⊙O于点B,连接DB,若∠D=20°,则∠DBE的大小为()

A.20°

B.40°

C.60°

D.70°答案:D22.在极坐标系中,圆ρ=2cosθ与方程θ=(ρ>0)所表示的图形的交点的极坐标是(

A.(1,1)

B.(1,)

C.(,)

D.(,)答案:C23.如图所示,正四面体V—ABC的高VD的中点为O,VC的中点为M.

(1)求证:AO、BO、CO两两垂直;

(2)求〈,〉.答案:(1)证明略(2)45°解析:(1)

设=a,=b,=c,正四面体的棱长为1,则=(a+b+c),=(b+c-5a),=(a+c-5b),=(a+b-5c)∴·=(b+c-5a)·(a+c-5b)=(18a·b-9|a|2)=(18×1×1·cos60°-9)=0.∴⊥,∴AO⊥BO,同理⊥,BO⊥CO,∴AO、BO、CO两两垂直.(2)

=+=-(a+b+c)+=(-2a-2b+c).∴||==,||==,·=(-2a-2b+c)·(b+c-5a)=,∴cos〈,〉==,∵〈,〉∈(0,),∴〈,〉=45°.24.(几何证明选做题)如图,已知:△ABC内接于圆O,点D在OC的延长线上,AD是圆O的切线,若∠B=30°,AC=2,则OD的长为______.答案:∵AD是圆O的切线,∠B=30°∴∠DAC=30°,∴∠OAC=60°,∴△AOC是一个等边三角形,∴OA=OC=2,在直角三角形AOD中,OD=2AO=4,故为:4.25.已知△ABC的三个顶点为A(1,-2,5),B(-1,0,1),C(3,-4,5),则边BC上的中线长为______.答案:∵A(1,-2,5),B(-1,0,1),C(3,-4,5),∴BC的中点为D(1,-2,3),∴|AD|=(1-1)2+(-2+2)2+(5-3)2=2.故为:2.26.如图,正六边形ABCDEF中,=()

A.

B.

C.

D.

答案:D27.如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是4和3及x,那么x的值的个数为()

A.1个

B.2个

C.2个以上但有限

D.无数个答案:B28.已知a>0,且a≠1,解关于x的不等式:

答案:①当a>1时,原不等式解为{x|0<x≤loga2②当0<a<1时,原不等式解为{x|loga2≤x<0解析:原不等式等价于原不等式同解于7分由①②得1<ax<4,由③得从而1<ax≤210分①当a>1时,原不等式解为{x|0<x≤loga2②当0<a<1时,原不等式解为{x|loga2≤x<029.给出以下四个对象,其中能构成集合的有()

①教2011届高一的年轻教师;

②你所在班中身高超过1.70米的同学;

③2010年广州亚运会的比赛项目;

④1,3,5.A.1个B.2个C.3个D.4个答案:解析:因为未规定年轻的标准,所以①不能构成集合;由于②③④中的对象具备确定性、互异性,所以②③④能构成集合.故选C.30.(理)已知向量=(3,5,-1),=(2,2,3),=(4,-1,-3),则向量2-3+4的坐标为()

A.(16,0,-23)

B.(28,0,-23)

C.(16,-4,-1)

D.(0,0,9)答案:A31.已知0<a<2,复数z的实部为a,虚部为1,则|z|的取值范围是()A.(1,5)B.(1,3)C.(1,5)D.(1,3)答案:|z|=a2+1,而0<a<2,∴1<|z|<5,故选C.32.已知△ABC是边长为2a的正三角形,那么它的斜二侧所画直观图△A′B′C′的面积为()

A.a2

B.a2

C.a2

D.a2答案:C33.一个长方体的长、宽、高之比为2:1:3,全面积为88cm2,则它的体积为

______cm3.答案:由长方体的长、宽、高之比为2:1:3,不妨设长、宽、高分别为2x,x,3x;则长方体的全面积为:2(2x?x+2x?3x+x?3x)=2×11x2=88,∴x=±2,这里取x=2;所以,长方体的体积为:V=2x?x?3x=4×2×6=48.故为:4834.沿着正四面体OABC的三条棱OA、OB、OC的方向有大小等于1、2、3的三个力f1、f2、f3.试求此三个力的合力f的大小以及此合力与三条棱所夹角的余弦.答案:用a、b、c分别代表棱OA、OB、OC上的三个单位向量,则f1=a,f2=2b,f3=3c,则f=f1+f2+f3=a+2b+3c,∴|f|2=(a+2b+3c)?(a+2b+3c)=|a|2+4|b|2+9|c|2+4a?b+6a?c+12b?c=1+4+9+4|a||b|cos<a,b>+6|a||c|cos<a,c>+12|b||c|cos<b,c>=14+4cos60°+6cos60°+12cos60°=14+2+3+6=25.∴|f|=5,即所求合力的大小为5,且cos<f,a>=f?a|f||a|=|a|2+2a?b+3a?c5=1+1+325=710.同理,可得cos<f,b>=45,cos<f,c>=910.35.给出的下列几个命题:

①向量共面,则它们所在的直线共面;

②零向量的方向是任意的;

③若则存在唯一的实数λ,使

其中真命题的个数为()

A.0

B.1

C.2

D.3答案:B36.集合{1,2,3}的真子集总共有()A.8个B.7个C.6个D.5个答案:集合{1,2,3}的真子集有?,{1},{2},{3},{1,2},{1,3},{2,3}共7个.故选B.37.已知曲线C的极坐标方程是ρ=4cosθ.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是:x=22t+1y=22t,求直线l与曲线C相交所成的弦的弦长.答案:曲线C的极坐标方程是ρ=4cosθ化为直角坐标方程为x2+y2-4x=0,即(x-2)2+y2=4直线l的参数方程x=22t+1y=22t,化为普通方程为x-y-1=0,曲线C的圆心(2,0)到直线l的距离为12=22所以直线l与曲线C相交所成的弦的弦长24-12=14.38.已知|a|<1,|b|<1,求证:<1.答案:证明略解析:∵<1<1a2+b2+2ab<1+2ab+a2b2a2b2-a2-b2+1>0

(a2-1)(b2-1)>0又|a|<1,|b|<1,∴(a2-1)(b2-1)>0.∴原不等式成立.39.如图所示,圆的内接三角形ABC的角平分线BD与AC交于点D,与圆交于点E,连接AE,已知ED=3,BD=6,则线段AE的长=______.答案:∵BD平分角∠CBA,∴∠CBE=∠EBA又∵∠CBE=∠EAD在△EDA和△EAB中,∠E=∠E,∠EAD=∠EBA∴△EDA∽△EAB∴AE:BE=ED:AE∴AE2=ED?BE又∵ED=3,BD=6,∴BE=9∴AE2=27∴AE=33故为:3340.

如图梯形A1B1C1D1是一平面图形ABCD的斜二侧直观图,若A1D1∥O′y′A1B1∥C1D1,A1B1=C1D1=2,A1D1=1,则四边形ABCD的面积是()

A.10

B.5

C.2

D.10

答案:B41.OA、OB(O为原点)是圆x2+y2=2的两条互相垂直的半径,C是该圆上任一点,且OC=λOA+μOB,则λ2+μ2=______.答案:∵OC=λOA+μOB,OA⊥OB∴OA?OB=0∴OA2=OB2=OC2=2∴OC2=(λOA+μOB)2=λ2OA2+μ2OB2=2(λ2+μ2)=2∴λ2+μ2=1故为:142.若定义在正整数有序对集合上的二元函数f满足:①f(x,x)=x,②f(x,y)=f(y,x);③(x+y)f(x,y)=yf(x,x+y),则f(12,16)的值是()A.12B.16C.24D.48答案:依题意:∵(x+y)f(x,y)=yf(x,x+y),∴f(x,x+y)=1y(x+y)f(x,y)∴f(12,16)=f(12,12+4)=14(12+4)f(12,4)=4f(12,4)=4f(4,12)=4f(4,4+8)=4×18(4+8)f(4,8)=6f(4,8)=6f(4,4+4)=6×14(4+4)f(4,4)=12f(4,4)=12×4=48故选D43.设函数f(x)=ax(a>0,a≠1),如果f(x1+x2+…+x2009)=8,那么f(2x1)×f(2x2)×…×f(2x2009)的值等于()A.32B.64C.16D.8答案:f(x1+x2+…+x2009)=8可得ax1+x2+…+x2009=8f(2x1)×f(2x2)×…×f(2x2009)=a2(x1+x2+…+x2009)=82=64故选B.44.如图P为空间中任意一点,动点Q在△ABC所在平面内运动,且,则实数m=()

A.0

B.2

C.-2

D.1

答案:C45.若不等式logax>sin2x(a>0,a≠1)对任意x∈(0,π4)都成立,则a的取值范围是()A.(0,π4)B.(π4,1)C.(π4,π2)D.(0,1)答案:∵当x∈(0,π4)时,函数y=logax的图象要恒在函数y=sin2x图象的上方∴0<a<1如右图所示当y=logax的图象过点(π4,1)时,a=π4,然后它只能向右旋转,此时a在增大,但是不能大于1故选B.46.给出下列说法:①球的半径是球面上任意一点与球心的连线段;②球的直径是球面上任意两点的连线段;③用一个平面截一个球面,得到的是一个圆;④球常用表示球心的字母表示.其中说法正确的是______.答案:根据球的定义直接判断①正确;②错误;;③用一个平面截一个球面,得到的是一个圆;可以是小圆,也可能是大圆,正确;④球常用表示球心的字母表示.满足球的定义正确;故为:①③④47.已知一个学生的语文成绩为89,数学成绩为96,外语成绩为99.求他的总分和平均成绩的一个算法为:

第一步:取A=89,B=96,C=99;

第二步:______;

第三步:______;

第四步:输出计算的结果.答案:由题意,第二步,求和S=A+B+C,第三步,计算平均成绩.x=A+B+C3.故为:S=A+B+C;.x=A+B+C3.48.在某项测量中,测量结果ξ服从正态分布N(1,σ2)(σ>0).若ξ在(0,1)内取值的概率为0.4,则ξ在(0,2)内取值的概率为()

A.0.9

B.0.5

C.0.6

D.0.8答案:D49.设集合A={0,1,3},B={1,3,4},则A∩B=______.答案:∵集合A={0,1,3},B={1,3,4},A∩B={1,3}.故为:{1,3}.50.已知函数f(x)=2x,数列{an}满足a1=f(0),且f(an+1)=(n∈N*),

(1)证明数列{an}是等差数列,并求a2010的值;

(2)分别求出满足下列三个不等式:,

的k的取值范围,并求出同时满足三个不等式的k的最大值;

(3)若不等式对一切n∈N*都成立,猜想k的最大值,并予以证明。答案:解:(1)由,得,即,∴是等差数列,∴,∴。(2)由,得;,得;,得,,∴当k同时满足三个不等式时,。(3)由,得恒成立,令,则,,∴,∵F(n)是关于n的单调增函数,∴,∴。第3卷一.综合题(共50题)1.设非零向量、、满足||=||=||,+=,则<,>=()

A.150°

B.120°

C.60°

D.30°答案:B2.平面向量、的夹角为60°,=(2,0),=1,则=(

A.

B.

C.3

D.7答案:B3.下列在曲线上的点是()

A.

B.

C.

D.答案:D4.(x+1)4的展开式中x2的系数为()A.4B.6C.10D.20答案:(x+1)4的展开式的通项为Tr+1=C4rxr令r=2得T3=C42x2=6x∴展开式中x2的系数为6故选项为B5.已知P(4,-9),Q(-2,3)且Y轴与线段PQ交于M,则Q分的比为()

A.-2

B.-

C.

D.3答案:B6.直线x+1=0的倾斜角是______.答案:直线x+1=0与x轴垂直,所以直线的倾斜角为90°.故为:90°.7.赋值语句n=n+1的意思是()

A.n等于n+1

B.n+1等于n

C.将n的值赋给n+1

D.将n的值增加1,再赋给n,即n的值增加1答案:D8.选修4-2:矩阵与变换

已知矩阵A=33cd,若矩阵A属于特征值6的一个特征向量为α1=11,属于特征值1的一个特征向量为α2=3-2.求矩阵A的逆矩阵.答案:由矩阵A属于特征值6的一个特征向量为α1=11,可得33cd11=611,即c+d=6;由矩阵A属于特征值1的一个特征向量为α2=3-2可得,33cd3-2=3-2,即3c-2d=-2,解得c=2d=4,即A=3324,A逆矩阵是23-12-1312.9.某校欲在一块长、短半轴长分别为10米与8米的椭圆形土地中规划一个矩形区域搞绿化,则在此椭圆形土地中可绿化的最大面积为()平方米.

A.80

B.160

C.320

D.160答案:B10.用冒泡法对43,34,22,23,54从小到大排序,需要(

)趟排序。

A.2

B.3

C.4

D.5答案:A11.如图所示的程序框图,运行相应的程序,若输出S的值为254,则判断框①中应填入的条件是()A.n≤5B.n≤6C.n≤7D.n≤8答案:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是输出满足条件S=2+22+23+…+2n=126时S的值∵2+22+23+…+27=254,故最后一次进行循环时n的值为7,故判断框中的条件应为n≤7.故选C.12.若向量a,b,c满足a∥b且a⊥c,则c(a+2b)=______.答案:∵a∥b∴存在λ使b=λa∵a⊥c∴a?c=0∴c?(a+2b)=c?a+2c?b=2c?λa=0故为:0.13.甲、乙、丙、丁四位同学各自对A、B两个变量的线性相关性作试验,并用回归分析方法分别求得相关系数r与残差平方和m如表:

则哪位同学的实验结果体现A、B两个变量更强的线性相关性()

A.丙

B.乙

C.甲

D.丁答案:C14.若将方程|(x-4)2+y2-(x+4)2+y2|=6化简为x2a2-y2b2=1的形式,则a2-b2=______.答案:方程|(x-4)2+y2-(x+4)2+y2|=6,表示点(x,y)到(4,0),(-4,0)两点距离差的绝对值为6,∴轨迹为以(4,0),(-4,0)为焦点的双曲线,方程为x29-y27=1∴a2-b2=2故为:215.已知空间四边形OABC,M,N分别是OA,BC的中点,且OA=a,OB=b,OC=c,用a,b,c表示向量MN为()A.12a+12b+12cB.12a-12b+12cC.-12a+12b+12cD.-12a+12b-12c答案:如图所示,连接ON,AN,则ON=12(OB+OC)=12(b+c),AN=12(AC+AB)=12(OC-2OA+OB)=12(-2a+b+c)=-a+12b+12c,所以MN=12(ON+AN)=-12a+12b+12c.故选C.16.某游泳馆出售冬季游泳卡,每张240元,其使用规定:不记名,每卡每次只限一人,每天只限一次.某班有48名同学,老师打算组织同学们集体去游泳,除需购买若干张游泳卡外,每次游泳还需包一辆汽车,无论乘坐多少名同学,每次的包车费均为40元.

若使每个同学游8次,每人最少应交多少元钱?答案:设买x张游泳卡,总开支为y元,则每批去x名同学,共需去48×8x=384x批,总开支又分为:①买卡所需费用240x;②包车所需费用384x×40.∴y=240x+384x×40(0<x≤48,x∈Z).因此,y=240(x+64x)≥240×2x?64x=3840当且仅当x=64x时,即x=8时取等号.∴当x=8时,总开支y的最大值为3840元,此时每人最少应交384048=80(元).答:若使每个同学游8次,每人最少应交80元钱.17.已知a=log132,b=(13)12,c=(23)12,则a,b,c大小关系为______.答案:∵a=log132<log131=0,又∵函数y=x12在(0,+∞)是增函数,∴(23)12>(13)12>0.所以,c>b>a.故为c>b>a.18.已知斜二测画法得到的直观图△A′B′C′是正三角形,画出原三角形的图形.答案:由斜二测法知:B′C′不变,即BC与B′C′重合,O′A′由倾斜45°变为与x轴垂直,并且O′A′的长度变为原来的2倍,得到OA,由此得到原三角形的图形ABC.19.若两圆x2+y2=m和x2+y2+6x-8y-11=0有公共点,则实数m的取值范围是(

A.(-∞,1)

B.(121,+∞)

C.[1,121]

D.(1,121)答案:C20.如图所示,正四面体V—ABC的高VD的中点为O,VC的中点为M.

(1)求证:AO、BO、CO两两垂直;

(2)求〈,〉.答案:(1)证明略(2)45°解析:(1)

设=a,=b,=c,正四面体的棱长为1,则=(a+b+c),=(b+c-5a),=(a+c-5b),=(a+b-5c)∴·=(b+c-5a)·(a+c-5b)=(18a·b-9|a|2)=(18×1×1·cos60°-9)=0.∴⊥,∴AO⊥BO,同理⊥,BO⊥CO,∴AO、BO、CO两两垂直.(2)

=+=-(a+b+c)+=(-2a-2b+c).∴||==,||==,·=(-2a-2b+c)·(b+c-5a)=,∴cos〈,〉==,∵〈,〉∈(0,),∴〈,〉=45°.21.将图形F按=(,)(其中)平移,就是将图形F()A.向x轴正方向平移个单位,同时向y轴正方向平移个单位.B.向x轴负方向平移个单位,同时向y轴正方向平移个单位.C.向x轴负方向平移个单位,同时向y轴负方向平移个单位.D.向x轴正方向平移个单位,同时向y轴负方向平移个单位.答案:A解析:根据图形容易得出结论.22.“所有9的倍数(M)都是3的倍数(P),某奇数(S)是9的倍数(M),故此奇数(S)是3的倍数(P)”,上述推理是()

A.小前提错

B.结论错

C.正确的

D.大前提错答案:C23.①某寻呼台一小时内收到的寻呼次数X;

②长江上某水文站观察到一天中的水位X;

③某超市一天中的顾客量X.

其中的X是连续型随机变量的是()

A.①

B.②

C.③

D.①②③答案:B24.若平面α与β的法向量分别是a=(1,0,-2),b=(-1,0,2),则平面α与β的位置关系是()A.平行B.垂直C.相交不垂直D.无法判断答案:∵a=(1,0,-2),b=(-1,0,2),∴a+b=(1-1,0+0,-2+2)=(0,0,0),即a+b=0由此可得a∥b∵a、b分别是平面α与β的法向量∴平面α与β的法向量平行,可得平面α与β互相平行.25.已知a>0,b>0且a+b>2,求证:1+ba,1+ab中至少有一个小于2.答案:证明:假设1+ba,1+ab都不小于2,则1+ba≥2,1+ab≥2(6分)因为a>0,b>0,所以1+b≥2a,1+a≥2b,1+1+a+b≥2(a+b)即2≥a+b,这与已知a+b>2相矛盾,故假设不成立(12分)综上1+ba,1+ab中至少有一个小于2.(14分)26.已知A(k,12,1),B(4,5,1),C(-k,10,1),且A、B、C三点共线,则k=______.答案:∵AB=(4-k,-7,0),BC=(-k-4,5,0),且A、B、C三点共线,∴存在实数λ满足AB=λBC,即4-k=λ(-k-4)-7=5λ0=0,解得k=-23.故为-23.27.已知集合M={1,2,3},N={1,2,3,4},定义函数f:M→N.若点A(1,f(1))、B(2,f(2))、C(3,f(3)),△ABC的外接圆圆心为D,且

则满足条件的函数f(x)有()

A.6个

B.10个

C.12个

D.16个答案:C28.若向量=(1,λ,2),=(2,-1,2)且与的夹角余弦为,则λ等于(

A.2

B.-2

C.-2或

D.2或答案:C29.如图,在圆锥中,B为圆心,AB=8,BC=6

(1)求出这个几何体的表面积;

(2)求出这个几何体的体积.(保留π)答案:圆锥母线AC的长=AB2+BC2=82+62=10(1)表面积=π×62+π×6×10=96π(2)体积=13×π×62×8=96π30.若函数f(x)对任意实数x都有f(x)<f(x+1),那么()A.f(x)是增函数B.f(x)没有单调递增区间C.f(x)没有单调递减区间D.f(x)可能存在单调递增区间,也可能存在单调递减区间答案:根据函数f(x)对任意实数x都有f(x)<f(x+1),画出一个满足条件的函数图象如右图所示;根据图象可知f(x)可能存在单调递增区间,也可能存在单调递减区间故选D.31.有3名同学要争夺2个比赛项目的冠军,冠军获得者共有______种可能.答案:第一个项目的冠军有3种情况,第二个项目的冠军也有3种情况,根据分步计数原理,冠军获得者共有3×3=9种可能,故为9.32.根据给出的程序语言,画出程序框图,并计算程序运行后的结果.

答案:程序框图:模拟程序运行:当j=1时,n=1,当j=2时,n=1,当j=3时,n=1,当j=4时,n=2,…当j=8时,n=2,…当j=11时,n=2,当j=12时,此时不满足循环条件,退出循环程序运行后的结果是:2.33.设a=0.7,b=0.8,c=log30.7,则()

A.c<b<a

B.c<a<b

C.a<b<c

D.b<a<c答案:B34.设P、Q为两个非空实数集,定义集合P+Q={a+b|a∈P,b∈Q}.若P={0,2,5},Q={1,2,6},则P+Q中元素的个数是()A.6B.7C.8D.9答案:∵P={0,2,5},Q={1,2,6},P+Q={a+b|a∈P,b∈Q}∴当a=0时,b∈Q,P+Q={1,2,6}当a=2时,b∈Q,P+Q={3,4,8}当a=5时,b∈Q,P+Q={6,7,11}∴P+Q={1,2,3,4,6,7,8,11}故选C35.如图,平面内有三个向量OA、OB、OC,其中与OA与OB的夹角为120°,OA与OC的夹角为30°,且|OA|=|OB|=1,|OC|=23,若OC=λOA+μOB(λ,μ∈R),则λ+μ的值为______.答案:过C作OA与OB的平行线与它们的延长线相交,可得平行四边形,由∠BOC=90°,∠AOC=30°,由|OA|=|OB|=1,|OC|=23得平行四边形的边长为2和4,λ+μ=2+4=6.故为6.36.到两定点A(0,0),B(3,4)距离之和为5的点的轨迹是()

A.椭圆

B.AB所在直线

C.线段AB

D.无轨迹答案:C37.若纯虚数z满足(2-i)z=4-bi,(i是虚数单位,b是实数),则b=()

A.-2

B.2

C.-8

D.8答案:C38.某水产试验厂实行某种鱼的人工孵化,10000个卵能孵化出7645尾鱼苗.根据概率的统计定义解答下列问题:

(1)求这种鱼卵的孵化概率(孵化率);

(2)30000个鱼卵大约能孵化多少尾鱼苗?

(3)要孵化5000尾鱼苗,大概得准备多少鱼卵?(精确到百位)答案:(1)这种鱼卵的孵化概率为:764510000=0.7645(2)由(1)知,30000个鱼卵大约能孵化:30000×0.7645=22935尾鱼苗(3)要孵化5000尾鱼苗,需准备50000.7645=6500个鱼卵.39.要从已编号(1~60)的60枚最新研制的某型导弹中随机抽取6枚来进行发射试验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的6枚导弹的编号可能是()

A.5、10、15、20、25、30

B.3、13、23、33、43、53

C.1、2、3、4、5、6

D.2、4、8、16、32、48答案:B40.设P,Q为△ABC内的两点,且AP=mAB+nAC

(m,n>0)AQ=pAB+qAC

(p,q>0),则△A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论