版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年江苏城乡建设职业学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.投掷一个质地均匀的、每个面上标有一个数字的正方体玩具,它的六个面中,有两个面标的数字是0,两个面标的数字是2,两个面标的数字是4,将此玩具连续抛掷两次,以两次朝上一面出现的数字分别作为点P的横坐标和纵坐标
(1)求点P落在区域C:x2+y2≤10内的概率;
(2)若以落在区域C上的所有点为顶点作面积最大的多边形区域M,在区域C上随机撒一粒豆子,求豆子落在区域M上的概率.答案:(1)点P的坐标有:(0,0),(0,2),(0,4),(2,0),(2,2),(2,4),(4,0),(4,2),(4,4),共9种,其中落在区域C:x2+y2≤10上的点P的坐标有:(0,0),(0,2),(2,0),(2,2),共4种D、故点P落在区域C:x2+y2≤10内的概率为49.(2)区域M为一边长为2的正方形,其面积为4,区域C的面积为10π,则豆子落在区域M上的概率为25π.2.有5组(x,y)的统计数据:(1,2),(2,4),(4,5),(3,10),(10,12),要使剩下的数据具有较强的相关关系,应去掉的一组数据是()
A.(1,2)
B.(4,5)
C.(3,10)
D.(10,12)答案:C3.如果输入2,那么执行图中算法的结果是()A.输出2B.输出3C.输出4D.程序出错,输不出任何结果答案:第一步:输入n=2第二步:n=2+1=3第三步:n=3+1=4第四步:输出4故为C.4.用长为4、宽为2的矩形做侧面围成一个高为2的圆柱,此圆柱的轴截面面积为()A.8B.8πC.4πD.2π答案:∵用长为4、宽为2的矩形做侧面围成一个圆柱,且圆柱高为h=2∴底面圆周由长为4的线段围成,可得底面圆直径2r=4π∴此圆柱的轴截面矩形的面积为S=2r×h=8π故选:B5.直线l1:x+ay=2a+2与直线l2:ax+y=a+1平行,则a=______.答案:直线l1:x+ay=2a+2即x+ay-2a-2=0;直线l2:ax+y=a+1即ax+y-a-1=0,∵直线l1与直线l2互相平行∴当a≠0且a≠-1时,1a=a1≠-2a-2-a-1,解之得a=1当a=0时,两条直线垂直;当a=-1时,两条直线重合故为:16.四个森林防火观察站A,B,C,D的坐标依次为(5,0),(-5,0),(0,5),(0,-5),他们都发现某一地区有火讯.若A,B观察到的距离相差为6,且离A近,C,D观察到的距离相差也为6,且离C近.试求火讯点的坐标.答案:设火讯点的坐标P(x,y),由于观察到的距离相差为6,点P在双曲线上,由于离A近,所以点P在双曲线x29-y216=1(x≥3)上;由于离C近,所以点P在双曲线Y29-X216=1(Y≥3)上;由这两个方程解得:x=1277y=1277答:火讯点的坐标为:(1277,1277).7.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“是乙或丙获奖.”乙说:“甲、丙都未获奖.”丙说:“我获奖了.”丁说:“是乙获奖.”四位歌手的话只有两句是对的,则获奖的歌手是()A.甲B.乙C.丙D.丁答案:若甲是获奖的歌手,则都说假话,不合题意.若乙是获奖的歌手,则甲、乙、丁都说真话,丙说假话,不符合题意.若丁是获奖的歌手,则甲、丁、丙都说假话,乙说真话,不符合题意.故获奖的歌手是丙故先C8.不等式的解集是
(
)A.B.C.D.答案:B解析:当时,不等式成立;当时,不等式可化为,解得综上,原不等式解集为故选B9.如图所示,已知点P在正方体ABCD—A′B′C′D′的对角线
BD′上,∠PDA=60°.
(1)求DP与CC′所成角的大小;
(2)求DP与平面AA′D′D所成角的大小.答案:(1)DP与CC′所成的角为45°(2)DP与平面AA′D′D所成的角为30°解析:如图所示,以D为原点,DA为单位长度建立空间直角坐标系D—xyz.则=(1,0,0),=(0,0,1).连接BD,B′D′.在平面BB′D′D中,延长DP交B′D′于H.设="(m,m,1)"(m>0),由已知〈,〉=60°,由·=||||cos〈,〉,可得2m=.解得m=,所以=(,,1).(1)因为cos〈,〉==,所以〈,〉=45°,即DP与CC′所成的角为45°.(2)平面AA′D′D的一个法向量是=(0,1,0).因为cos〈,〉==,所以〈,〉=60°,可得DP与平面AA′D′D所成的角为30°.10.已知空间向量a=(1,2,3),点A(0,1,0),若AB=-2a,则点B的坐标是()A.(-2,-4,-6)B.(2,4,6)C.(2,3,6)D.(-2,-3,-6)答案:设B=(x,y,z),因为AB=-2a,所以(x,y-1,z)=-2(1,2,3),所以:x=-2,y-1=-4,z=-6,即x=-2,y=-3,z=-6.B(-2,-3,-6).故选D.11.与椭圆+y2=1共焦点且过点P(2,1)的双曲线方程是()
A.-y2=1
B.-y2=1
C.-=1
D.x2-=1答案:B12.甲、乙两人投篮,投中的概率分别为0.6,0.7,若两人各投2次,则两人都投中1次的概率为______.答案:两人都投中1次的概率为C210.6×0.4×C210.7×0.3=0.2016故为:0.201613.我们称正整数n为“好数”,如果n的二进制表示中1的个数多于0的个数.如6=(110):为好数,1984=(11111000000);不为好数,则:
(1)二进制表示中恰有5位数码的好数共有______个;
(2)不超过2012的好数共有______个.答案:(1)二进制表示中恰有5位数码的二进制数分别为:10000,10001,10010,10011,10100,10101,10110,10111,11000,11001,11010,11011,11100,11101,11110,11111,共十六个数,再结合好数的定义,得到其中好数有11个;(2)整数2012的二进制数为:11111011100,它是一个十一位的二进制数.其中一位的二进制数是:1,共有C11个;其中二位的二进制数是:11,共有C22个;
其中三位的二进制数是:101,110,111,共有C12+C22个;
其中四位的二进制数是:1011,1101,1110,1111,共有C23+C33个;
其中五位的二进制数是:10011,10101,10110,11001,11010,11100,10111,11011,11101,11110,11111,共有C24+C34+C44个;
以此类推,其中十位的二进制数是:共有C49+C59+C69+C79+C89+C99个;其中十一位的小于2012二进制数是:共有24+4个;一共不超过2012的好数共有1164个.故1065个14.△OAB中,OA=a,OB=b,OP=p,若p=t(a|a|+b|b|),t∈R,则点P一定在()A.∠AOB平分线所在直线上B.线段AB中垂线上C.AB边所在直线上D.AB边的中线上答案:∵△OAB中,OA=a,OB=b,OP=p,p=t(a|a|+b|b|),t∈R,∵a|a|
和b|b|
是△OAB中边OA、OB上的单位向量,∴(a|a|+b|b|
)在∠AOB平分线线上,∴t(a|a|+b|b|
)在∠AOB平分线线上,∴则点P一定在∠AOB平分线线上,故选A.15.某项考试按科目A、科目B依次进行,只有当科目A成绩合格时,才可继续参加科目B的考试.已知每个科目只允许有一次补考机会,两个科目成绩均合格方可获得证书.现某人参加这项考试,科目A每次考试成绩合格的概率均为23,科目B每次考试成绩合格的概率均为12.假设各次考试成绩合格与否均互不影响.
(Ⅰ)求他不需要补考就可获得证书的概率;
(Ⅱ)在这项考试过程中,假设他不放弃所有的考试机会,记他参加考试的次数为ξ,求ξ的数学期望Eξ.答案:设“科目A第一次考试合格”为事件A1,“科目A补考合格”为事件A2;“科目B第一次考试合格”为事件B1,“科目B补考合格”为事件B2.(Ⅰ)不需要补考就获得证书的事件为A1?B1,注意到A1与B1相互独立,根据相互独立事件同时发生的概率可得P(A1?B1)=P(A1)×P(B1)=23×12=13.即该考生不需要补考就获得证书的概率为13.(Ⅱ)由已知得,ξ=2,3,4,注意到各事件之间的独立性与互斥性,根据相互独立事件同时发生的概率可得P(ξ=2)=P(A1?B1)+P(.A1?.A2)=23×12+13×13=13+19=49.P(ξ=3)=P(A1?.B1?B2)+P(A1?.B1?.B2)+P(.A1?A2?B2)=23×12×12+23×12×12+13×23×12=16+16+19=49,P(ξ=4)=P(.A1?A2?.B2?B2)+P(.A1?A2?.B1?.B2)=13×23×12×12+13×23×12×12=118+118=19,∴Eξ=2×49+3×49+4×19=83.即该考生参加考试次数的数学期望为83.16.抛物线y2=4x,O为坐标原点,A,B为抛物线上两个动点,且OA⊥OB,当直线AB的倾斜角为45°时,△AOB的面积为______.答案:设直线AB的方程为y=x-m,代入抛物线联立得x2-(2m+4)x+m2=0,则x1+x2=2m+4,x1x2=m2,∴|x1-x2|=16m+16∵三角形的面积为S△AOB=|12my1-12my2|=12m(|x1-x2|)=12m16m+16;又因为OA⊥OB,设A(x1,2x1),B(x2,-2x2)所以2x1x1•-2x2x2=-1,求的m=4,代入上式可得S△AOB=12m16m+16=12×4×64+16=85故为:8517.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验,根据收集到的数据(如下表),由最小二乘法求得回归直线方程y=0.68x+54.6
表中有一个数据模糊不清,请你推断出该数据的值为()A.68B.68.2C.69D.75答案:设表中有一个模糊看不清数据为m.由表中数据得:.x=30,.y=m+3075,由于由最小二乘法求得回归方程y=0.68x+54.6.将x=30,y=m+3075代入回归直线方程,得m=68.故选A.18.设f(x)=ex(x≤0)ln
x(x>0),则f[f(13)]=______.答案:因为f(x)=ex(x≤0)ln
x(x>0),所以f(13)=ln13<0,所以f[f(13)]=f(ln13)=eln13=13,故为13.19.下图是由A、B、C、D中的哪个平面图旋转而得到的(
)答案:A20.如图,设P,Q为△ABC内的两点,且AP=25AB+15AC,AQ=23AB+14AC,则△ABP的面积与△ABQ的面积之比为______.答案:设AM=25AB,AN=15AC则AP=AM+AN由平行四边形法则知NP∥AB
所以△ABP的面积△ABC的面积=|AN||AC|=15同理△ABQ的面积△ABC的面积=14故△ABP的面积△ABQ的面积=45故为:4521.如图所示,图中线条构成的所有矩形中(由6个小的正方形组成),其中为正方形的概率为
______.答案:它的长有10种取法,由长与宽的对称性,得到它的宽也有10种取法;因为,长与宽相互独立,所以得到长X宽的个数有:10X10=100个即总的矩形的个数有:100个长=宽的个数为:(1X1的正方形的个数)+(2X2的正方形个数)+(3X3的正方形个数)+(4X4的正方形个数)=16+9+4+1=30个即正方形的个数有:30个所以为正方形的概率是30100=0.3故为0.322.某校为了研究学生的性别和对待某一活动的态度(支持和不支持两种态度)的关系,运用2×2列联表进行独立性检验,经计算K2=7.069,则所得到的统计学结论是:有()的把握认为“学生性别与支持该活动有关系”.
P(k2≥k0)
0.100
0.050
0.025
0.010
0.001
k0
2.706
3.841
5.024
6.635
10.828
A.0.1%
B.1%
C.99%
D.99.9%答案:C23.从装有5只红球和5只白球的袋中任意取出3只球,有如下几对事件:
①“取出两只红球和一只白球”与“取出一只红球和两只白球”;
②“取出两只红球和一只白球”与“取出3只红球”;
③“取出3只红球”与“取出的3只球中至少有一只白球”;
④“取出3只红球”与“取出3只白球”.
其中是对立事件的有______(只填序号).答案:对于①“取出两只红球和一只白球”与“取出一只红球和两只白球”,由于它们不能同时发生,故是互斥事件.但由于它们的并事件不是必然事件,故它们不是对立事件.对于②“取出两只红球和一只白球”与“取出3只红球”,由于它们不能同时发生,故是互斥事件.但由于它们的并事件不是必然事件,故它们不是对立事件.对于③“取出3只红球”与“取出的3只球中至少有一只白球”,它们不可能同时发生,而且它们的并事件是必然事件,故它们是对立事件.④“取出3只红球”与“取出3只白球”.由于它们不能同时发生,故是互斥事件.但由于它们的并事件不是必然事件,故它们不是对立事件.故为③.24.函数y=f(x)对任意实数x,y都有f(x+y)=f(x)+f(y)+2xy.
(1)求f(0)的值;
(2)若f(1)=1,求f(2),f(3),f(4)的值,猜想f(n)的表达式并用数学归纳法证明你的结论;
(3)若f(1)≥1,求证:f(12n)>0(n∈N*).答案:(1)令x=y=0得f(0+0)=f(0)+f(0)+2×0×0?f(0)=0(2)f(1)=1,f(2)=f(1+1)=1+1+2=4f(3)=f(2+1)=4+1+2×2×1=9f(4)=f(3+1)=9+1+2×3×1=16猜想f(n)=n2,下用数学归纳法证明之.①当n=1时猜想成立.②假设n=k时猜想成立,即:f(k)=k2,那么f(k+1)=f(k)+f(1)+2k=k2+2k+1=(k+1)2.这就是说n=k+1时猜想也成立.对于一切n≥1,n∈N+猜想都成立.(3)f(1)≥1,则f(1)=2f(12)+2×12×12≥1?f(12)≥14>0假设n=k(k∈N*)时命题成立,即f(12k)≥122k>0,则f(12k)=2f(12k+1)+2×12k+1×12k+1≥122k?f(12k+1)≥122(k+1),由上知,则f(12n)>0(n∈N*).25.直线l1:y=ax+b,l2:y=bx+a
(a≠0,b≠0,a≠b),在同一坐标系中的图形大致是()
A.
B.
C.
D.
答案:C26.在极坐标系中,直线l经过圆ρ=cosθ的圆心且与直线ρcosθ=3平行,则直线l与极轴的交点的极坐标为______.答案:由ρ=cosθ可知此圆的圆心为(12,0),直线ρcosθ=3是与极轴垂直的直线,所以所求直线的极坐标方程为ρcosθ=12,所以直线l与极轴的交点的极坐标为(12,0).故为:(12,0).27.设a,b,c都是正数,求证:bca+cab+abc≥a+b+c.答案:证明:∵2(bca+acb+abc)=(bca+acb)+(bca+abc)+(acb+abc)≥2abc2ab+2acb2ac+2bca2bc=2c+2b+2a,∴bca+acb+abc≥a+b+c当且仅当a=b=c时,等号成立.28.如图所示的几何体ABCDE中,DA⊥平面EAB,CB∥DA,EA=DA=AB=2CB,EA⊥AB,M是EC的中点,
(Ⅰ)求证:DM⊥EB;
(Ⅱ)设二面角M-BD-A的平面角为β,求cosβ.答案:分别以直线AE,AB,AD为x轴、y轴、z轴,建立如图所示的空间直角坐标系A-xyz,设CB=a,则A(0,0,0),E(2a,0,0),B(0,2a,0),C(0,2a,a),D(0,0,2a)所以M(a,a,a2).(Ⅰ):DM=(a,a,-3a2)
,EB=(-2a,2a,0)DM•EB=a•(-2a)+a•2a+0=0.∴DM⊥EB,即DM⊥EB.(Ⅱ)设平面MBD的法向量为n=(x,y,z),DB=(0,2a,-2a),由n⊥DB,n⊥DM,得n•DB=2ay-2az=0n•DM=ax+ay-3a2z=0⇒y=zx+y-3z2=0取z=2得平面MBD的一非零法向量为n=(1,2,2),又平面BDA的一个法向量n1=(1,0,0).∴cos<n,n1>
=1+0+012+22+22•12+02+
02=13,即cosβ=1329.若一次函数y=mx+b在(-∞,+∞)上是增函数,则有()A.b>0B.b<0C.m>0D.m<0答案:∵一次函数y=mx+b在(-∞,+∞)上是增函数,∴一次项系数m>0,故选C.30.已知方程x2-(k2-9)x+k2-5k+6=0的一根小于1,另一根大于2,求实数k的取值范围.答案:令f(x)=x2-(k2-9)x+k2-5k+6,则∵方程x2-(k2-9)x+k2-5k+6=0的一根小于1,另一根大于2,∴f(1)<0
且f(2)<0,∴12-(k2-9)+k2-5k+6<0且22-2(k2-9)+k2-5k+6<0,即16-5k<0且k2+5k-28>0,解得k>137-52.31.在空间直角坐标系中,点(-2,1,4)关于x轴的对称点的坐标为()
A.(-2,1,-4)
B.(-2,-1,-4)
C.(2,1,-4)
D.(2,-1,4)答案:B32.在直角坐标系内,坐标轴上的点构成的集合可表示为()A.{(x,y)|x=0,y≠0或x≠0,y=0}B.{(x,y)|x=0且y=0}C.{(x,y)|xy=0}D.{(x,y)|x,y不同时为零}答案:在x轴上的点(x,y),必有y=0;在y轴上的点(x,y),必有x=0,∴xy=0.∴直角坐标系中,x轴上的点的集合{(x,y)|y=0},直角坐标系中,y轴上的点的集合{(x,y)|x=0},∴坐标轴上的点的集合可表示为{(x,y)|y=0}∪{(x,y)|x=0}={(x,y)|xy=0}.故选C.33.如果双曲线的焦距为6,两条准线间的距离为4,那么该双曲线的离心率为()
A.
B.
C.
D.2答案:C34.过点A(a,4)和B(-1,a)的直线的倾斜角等于45°,则a的值是______.答案:∵过点A(a,4)和B(-1,a)的直线的倾斜角等于45°,∴kAB=a-4-1-a=tan45°=1,∴a=32.故为:32.35.已知正方体ABCD-A1B1C1D1,点E,F分别是上底面A1C1和侧面CD1的中心,求下列各式中的x,y的值:
(1)AC1=x(AB+BC+CC1),则x=______;
(2)AE=AA1+xAB+yAD,则x=______,y=______;
(3)AF=AD+xAB+yAA1,则x=______,y=______.答案:(1)根据向量加法的首尾相连法则,x=1;(2)由向量加法的三角形法则得,AE=AA1+A1E,由四边形法则和向量相等得,A1E=12(A1B1+A1D1)=12(AB+AD);∴AE=AA1+12AB+12AD,∴x=y=12;(3)由向量加法的三角形法则得,AF=AD+DF,由四边形法则和向量相等得,DF=12(DC+DD1)=12(AB+AA1);∴AF=AD+12AB+12AA1,∴x=y=12.36.叙述并证明勾股定理.答案:证明:如图左边的正方形是由1个边长为a的正方形和1个边长为b的正方形以及4个直角边分别为a、b,斜边为c的直角三角形拼成的.右边的正方形是由1个边长为c的正方形和4个直角边分别为a、b,斜边为c的直角三角形拼成的.因为这两个正方形的面积相等(边长都是a+b),所以可以列出等式a2+b2+4×12ab=c2+4×12ab,化简得a2+b2=c2.下面是一个错误证法:勾股定理:直角三角形的两直角边的平方和等于斜边的平方这一特性叫做勾股定理或勾股弦定理,又称毕达哥拉斯定理或毕氏定理证明:作两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a),斜边长为c.再做一个边长为c的正方形.把它们拼成如图所示的多边形,使E、A、C三点在一条直线上.过点Q作QP∥BC,交AC于点P.过点B作BM⊥PQ,垂足为M;再过点F作FN⊥PQ,垂足为N.∵∠BCA=90°,QP∥BC,∴∠MPC=90°,∵BM⊥PQ,∴∠BMP=90°,∴BCPM是一个矩形,即∠MBC=90°.∵∠QBM+∠MBA=∠QBA=90°,∠ABC+∠MBA=∠MBC=90°,∴∠QBM=∠ABC,又∵∠BMP=90°,∠BCA=90°,BQ=BA=c,∴Rt△BMQ≌Rt△BCA.同理可证Rt△QNF≌Rt△AEF.即a2+b2=c237.BC是Rt△ABC的斜边,AP⊥平面ABC,PD⊥BC于点D,则图中共有直角三角形的个数是()A.8B.7C.6D.5答案:∵AP⊥平面ABC,BC?平面ABC,∴PA⊥BC,又PD⊥BC于D,连接AD,PD∩PA=A,∴BC⊥平面PAD,AD?平面PAD,∴BC⊥AD;又BC是Rt△ABC的斜边,∴∠BAC为直角,∴图中的直角三角形有:△ABC,△PAC,△PAB,△PAD,△PDC,△PDB,△ADC,△ADB.故为:8.38.在(1+x)3+(1+x)4…+(1+x)7的展开式中,含x项的系数是______.(用数字作答)答案:(1+x)3+(1+x)4…+(1+x)7的展开式中,含x项的系数是C31+C41+C51+…+C71=25故为:2539.棱长为1的正方体ABCD-A1B1C1D1的8个顶点都在球O的表面上,E,F分别是棱AA1,DD1的中点,则直线EF被球O截得的线段长为()
A.
B.1
C.1+
D.答案:D40.若数列{an}(n∈N+)为等差数列,则数列bn=a1+a2+a3+…+ann(n∈N+)也为等差数列,类比上述性质,相应地,若数列{cn}是等比数列且cn>0(n∈N+),则有数列dn=______(n∈N+)也是等比数列.答案:从商类比开方,从和类比到积,可得如下结论:nC1C2C3Cn故为:nC1C2C3Cn41.构成多面体的面最少是(
)
A.三个
B.四个
C.五个
D.六个答案:B42.点P(2,5)关于直线x+y=1的对称点的坐标是(
)。答案:(-4,-1)43.已知如下等式:12=1×2×36,12+22=2×3×56,12+22+32=3×4×76,…当n∈N*时,试猜想12+22+32+…+n2的值,并用数学归纳法给予证明.答案:由已知,猜想12+22+32+…+n2=n(n+1)(2n+1)6,下面用数学归纳法给予证明:(1)当n=1时,由已知得原式成立;(2)假设当n=k时,原式成立,即12+22+32+…+k2=k(k+1)(2k+1)6,那么,当n=k+1时,12+22+32+…+(k+1)2=k(k+1)(2k+1)6+(k+1)2=(k+1)(k+2)(2k+3)6=(k+1)[(k+1)+1][2(k+1)+1]6故n=k+1时,原式也成立.由(1)、(2)知12+22+32+…+n2=n(n+1)(2n+1)6成立.44.设向量=(0,2),=,则,的夹角等于(
)
A.
B.
C.
D.答案:A45.用数学归纳法证明:1n+1+1n+2+1n+3+…+1n+n>1124
(n∈N,n≥1)答案:证明:(1)当n=1时,左边=12>1124,∴n=1时成立(2分)(2)假设当n=k(k≥1)时成立,即1k+1+1k+2+1k+3+…+1k+k>1124那么当n=k+1时,左边=1k+2+1k+3+…+1k+k
+1K+1+k+1k+1+k+1=1k+1+1k+2+1k+3+…+1k+k+1k+k+1
+1k+1+k+1-1k+1>1124+12k+1-12k+2>1124.∴n=k+1时也成立(7分)根据(1)(2)可得不等式对所有的n≥1都成立(8分)46.将函数进行平移,使得到的图形与抛物线的两个交点关于原点对称,试求平移后的图形对应的函数解析式.答案:函数解析式是解析:将函数进行平移,使得到的图形与抛物线的两个交点关于原点对称,试求平移后的图形对应的函数解析式.47.直线(t为参数)的倾斜角等于()
A.
B.
C.
D.答案:A48.已知△ABC,A(-1,0),B(3,0),C(2,1),对它先作关于x轴的反射变换,再将所得图形绕原点逆时针旋转90°.
(1)分别求两次变换所对应的矩阵M1,M2;
(2)求△ABC在两次连续的变换作用下所得到△A′B′C′的面积.答案:(1)关于x轴的反射变换M1=100-1,绕原点逆时针旋转90°的变换M2=0-110.(4分)(2)∵M2•M1=0-110100-1=0110,(6分)△ABC在两次连续的变换作用下所得到△A′B′C′,∴A(-1,0),B(3,0),C(2,1)变换成:A′(0,-1),B′(0,3),C′(1,2),(9分)∴△A'B'C'的面积=12×4×1=2.(10分)49.已知点P为y轴上的动点,点M为x轴上的动点,点F(1,0)为定点,且满足PN+12NM=0,PM•PF=0.
(Ⅰ)求动点N的轨迹E的方程;
(Ⅱ)过点F且斜率为k的直线l与曲线E交于两点A,B,试判断在x轴上是否存在点C,使得|CA|2+|CB|2=|AB|2成立,请说明理由.答案:(Ⅰ)设N(x,y),则由PN+12NM=0,得P为MN的中点.∴P(0,y2),M(-x,0).∴PM=(-x,-y2),PF=(1,-y2).∴PM•PF=-x+y24=0,即y2=4x.∴动点N的轨迹E的方程y2=4x.(Ⅱ)设直线l的方程为y=k(x-1),由y=k(x-1)y2=4x,消去x得y2-4ky-4=0.设A(x1,y1),B(x2,y2),则
y1+y2=4k,y1y2=-4.假设存在点C(m,0)满足条件,则CA=(x1-m,y1),CB=(x2-m,y2),∴CA•CB=x1x2-m(x1+x2)+m2+y1y2=(y1y24)2-m(y12+y224)+m2-4=-m4[(y1+y2)2-2y1y2]+m2-3=m2-m(4k2+2)-3.∵△=(4k2+2)2+12>0,∴关于m的方程m2-m(4k2+2)-3=0有解.∴假设成立,即在x轴上存在点C,使得|CA|2+|CB|2=|AB|2成立.50.已知向量a、b的夹角为60°,且|a|=2,|b|=1,则|a+2b|=______;向量a与向量a+2b的夹角的大小为______.答案:∵a?b=|a|?|b|cos60°=1,∴|a+2b|=(a+2b)2=4+4+4a?b=23,设向量a与向量a+2b的夹角的大小为θ,∵a?(a+2b)=2×23cosθ=43cosθ,a?(a+2b)=a2+2a?b=4+2=6,∴43cosθ=6,cosθ=32,∴θ=30°,故为23,30°.第2卷一.综合题(共50题)1.某几何体的三视图如图所示,则这个几何体的体积是______.答案:由三视图可知该几何体为是一平放的直三棱柱,底面是边长为2的正三角形,棱柱的侧棱为3,也为高.V=Sh=34×22
×3=33故为:33.2.设有三个命题:“①0<12<1.②函数f(x)=log
12x是减函数.③当0<a<1时,函数f(x)=logax是减函数”.当它们构成三段论时,其“小前提”是______(填序号).答案:三段话写成三段论是:大前提:当0<a<1时,函数f(x)=logax是减函数,小前提:0<12<1,结论:函数f(x)=log
12x是减函数.其“小前提”是①.故为:①.3.经过抛物线y2=2x的焦点且平行于直线3x-2y+5=0的直线的方程是()
A.6x-4y-3=0
B.3x-2y-3=0
C.2x+3y-2=0
D.2x+3y-1=0答案:A4.已知在平面直角坐标系xOy中,圆C的参数方程为x=3+3cosθy=1+3sinθ,(θ为参数),以Ox为极轴建立极坐标系,直线l的极坐标方程为pcos(θ+π6)=0.
(1)写出直线l的直角坐标方程和圆C的普通方程;
(2)求圆C截直线l所得的弦长.答案:(1)消去参数θ,得圆C的普通方程为(x-3)2+(y-1)2=9.(2分)由ρcos(θ+π6)=0,得32ρcosθ-12ρsinθ=0,∴直线l的直角坐标方程为3x-y=0.(5分)(2)圆心(3,1)到直线l的距离为d=|3×3-1|(3)2+12=1.(7分)设圆C直线l所得弦长为m,则m2=r2-d2=9-1=22,∴m=42.(10分)5.一直线倾斜角的正切值为34,且过点P(1,2),则直线方程为______.答案:因为直线倾斜角的正切值为34,即k=3,又直线过点P(1,2),所以直线的点斜式方程为y-2=34(x-1),整理得,3x-4y+5=0.故为3x-4y+5=0.6.已知f(x)=,求不等式x+(x+2)·f(x+2)≤5的解集。答案:解:原不等式等价于或解得或即故不等式的解集为。7.在平面直角坐标系xOy中,椭圆x2a2+y2b2=1(a>b>0)的焦距为2c,以O为圆心,a为半径作圆M,若过P(a2c,0)作圆M的两条切线相互垂直,则椭圆的离心率为______.答案:设切线PA、PB互相垂直,又半径OA垂直于PA,所以△OAP是等腰直角三角形,故a2c=2a,解得e=ca=22,故为22.8.已知一个球与一个正三棱柱的三个侧面和两个底面相切,若这个球的体积是32π3,则这个三棱柱的体积是______.答案:由43πR3=32π3,得R=2.∴正三棱柱的高h=4.设其底面边长为a,则13?32a=2.∴a=43.∴V=34(43)2?4=483.故为:4839.若圆锥的侧面展开图是弧长为2πcm,半径为2cm的扇形,则该圆锥的体积为______cm3.答案:∵圆锥的侧面展开图的弧长为2πcm,半径为2cm,故圆锥的底面周长为2πcm,母线长为2cm则圆锥的底面半径为1,高为1则圆锥的体积V=13?π?12?1=π3.故为:π3.10.下列命题中为真命题的是(
)
A.平行直线的倾斜角相等
B.平行直线的斜率相等
C.互相垂直的两直线的倾斜角互补
D.互相垂直的两直线的斜率互为相反数答案:A11.如图,AB是半圆O的直径,C、D是半圆上的两点,半圆O的切线PC交AB的延长线于点P,∠PCB=25°,则∠ADC为()
A.105°
B.115°
C.120°
D.125°
答案:B12.下列给变量赋值的语句正确的是()
A.5=a
B.a+2=a
C.a=b=4
D.a=2*a答案:D13.已知三点A(1,2),B(2,-1),C(2,2),E,F为线段BC的三等分点,则AE•AF=______.答案:∵A(1,2),B(2,-1),C(2,2),∴AB=(1,-3),BC=(0,3),AE=AB+13BC=(1,-2),AF=AB+23BC=(1,-1),∴AE•AF=1×1+(-2)×(-1)=3.故为:314.在直角坐标系xoy
中,已知曲线C1:x=t+1y=1-2t(t为参数)与曲线C2:x=asinθy=3cosθ(θ为参数,a>0
)
有一个公共点在X轴上,则a等于______.答案:曲线C1:x=t+1y=1-2t(t为参数)化为普通方程:2x+y-3=0,令y=0,可得x=32曲线C2:x=asinθy=3cosθ(θ为参数,a>0
)化为普通方程:x2a2+y29=1∵两曲线有一个公共点在x轴上,∴94a2=1∴a=32故为:3215.直线kx-y+1=3k,当k变动时,所有直线都通过定点()
A.(0,0)
B.(0,1)
C.(3,1)
D.(2,1)答案:C16.解不等式|2x-1|<|x|+1.答案:根据题意,对x分3种情况讨论:①当x<0时,原不等式可化为-2x+1<-x+1,解得x>0,又x<0,则x不存在,此时,不等式的解集为∅.②当0≤x<12时,原不等式可化为-2x+1<x+1,解得x>0,又0≤x<12,此时其解集为{x|0<x<12}.③当x≥12
时,原不等式可化为2x-1<x+1,解得12≤x<2,又由x≥12,此时其解集为{x|12≤x<2},∅∪{x|0<x<12
}∪{x|12≤x<2
}={x|0<x<2};综上,原不等式的解集为{x|0<x<2}.17.已知α,β表示两个不同的平面,m为平面α内的一条直线,则“α⊥β”是“m⊥β”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:由平面与平面垂直的判定定理知如果m为平面α内的一条直线,m⊥β,则α⊥β,反过来则不一定所以“α⊥β”是“m⊥β”的必要不充分条件.故选B.18.在直角坐标系xOy中,i,j分别是与x轴,y轴平行的单位向量,若在Rt△ABC中,AB=i+j,AC=2i+mj,则实数m=______.答案:把AB、AC平移,使得点A与原点重合,则AB=(1,1)、AC=(2,m),故BC=(1,m-1),若∠B=90°时,AB•BC=0,∴(1,1)•(2-1,m-1)=0,得m=0;若∠A=90°时,AB•AC=0,∴(1,1)•(2,m)=0,得m=-2.若∠C=90°时,AC•BC=0,即2+m2-m=0,此方程无解,综上,m为-2或0满足三角形为直角三角形.故为-2或019.证明空间任意无三点共线的四点A、B、C、D共面的充分必要条件是:对于空间任一点O,存在实数x、y、z且x+y+z=1,使得OA=xOB+yOC+zOD.答案:(必要性)依题意知,B、C、D三点不共线,则由共面向量定理的推论知:四点A、B、C、D共面⇔对空间任一点O,存在实数x1、y1,使得OA=OB+x1BC+y1BD=OB+x1(OC-OB)+y1(OD-OB)=(1-x1-y1)OB+x1OC+y1OD,取x=1-x1-y1、y=x1、z=y1,则有OA=xOB+yOC+zOD,且x+y+z=1.(充分性)对于空间任一点O,存在实数x、y、z且x+y+z=1,使得OA=xOB+yOC+zOD.所以x=1-y-z得OA=(1-y-z)OB+yOC+zOD.OA=OB+yBC+zBD,即:BA=yBC+zBD,所以四点A、B、C、D共面.所以,空间任意无三点共线的四点A、B、C、D共面的充分必要条件是:对于空间任一点O,存在实数x、y、z且x+y+z=1,使得OA=xOB+yOC+zOD.20.规定运算.abcd.=ad-bc,则.1i-i2.=______.答案:根据题目的新规定知,.1i-i2.=1×2-(-i)i=2+i2=2-1=1.故为:1.21.设z是复数,a(z)表示zn=1的最小正整数n,则对虚数单位i,a(i)=()A.8B.6C.4D.2答案:a(i)=in=1,则最小正整数n为4.故选C.22.拟定从甲地到乙地通话m分钟的电话费由f(m)=1.06(0.50×[m]+1)给出,其中m>0,[m]是大于或等于m的最小整数(例如[3]=3,[3.7]=4,[3.1]=4),则从甲地到乙地通话时间为5.5分钟的话费为()A.3.71B.3.97C.4.24D.4.77C答案:由[m]是大于或等于m的最小整数可得[5.5]=6.所以f(5.5)=1.06×(0.50×[5.5]+1)=1.06×4=4.24.故选:C.23.如果双曲线的半实轴长为2,焦距为6,那么该双曲线的离心率是()
A.
B.
C.
D.2答案:C24.若向量a=(-1,2),b=(-4,3),则a在b方向上的投影为()A.2B.22C.23D.10答案:设a与
b的夹角为θ,则cosθ=a•b|a|•|b|=4+65×5=25,∴则a在b方向上的投影为|a|•cosθ=5×25=2,故选A.25.写出系数矩阵为1221,且解为xy=11的一个线性方程组是______.答案:由题意得:线性方程组为:x+2y=32x+y=3解之得:x=1y=1;故所求的一个线性方程组是x+2y=32x+y=3故为:x+2y=32x+y=3.26.直线y=2x与直线x+y=3的交点坐标是
______.答案:联立两直线方程得y=2xx+y=3,解得x=1y=2所以直线y=2x与直线x+y=3的交点坐标是(1,2)故为(1,2).27.已知二阶矩阵A=2ab0属于特征值-1的一个特征向量为1-3,求矩阵A的逆矩阵.答案:由矩阵A属于特征值-1的一个特征向量为α1=1-3,可得2ab01-3=-1-3,得2-3a=-1b=3即a=1,b=3;
…(3分)解得A=2130,…(8分)∴A逆矩阵是A-1=dad-bc-bad-bc-cad-bcaad-bc=0131-23.28.若a、b是直线,α、β是平面,a⊥α,b⊥β,向量m在a上,向量n在b上,m=(0,3,4),n=(3,4,0),则α、β所成二面角中较小的一个余弦值为______.答案:由题意,∵m=(0,3,4),n=(3,4,0),∵cos<m,n>=m?n|m||n|=125?5=1225∵a⊥α,b⊥β,向量m在a上,向量n在b上,∴α、β所成二面角中较小的一个余弦值为1225故为122529.在y=2x,y=log2x,y=x2,y=cosx这四个函数中,当0<x1<x2<1时,使f(x1+x22)>f(x1)+f(x2)2恒成立的函数的个数是()A.0B.1C.2D.3答案:当0<x1<x2<1时,使f(x1+x22)>f(x1)+f(x2)2恒成立,说明函数一个递增的越来越慢的函数或者是一个递减的越来越快的函数或是一个先递增得越来越慢,再递减得越来越快的函数考查四个函数y=2x,y=log2x,y=x2,y=cosx中,y=log2x在(0,1)是递增得越来越慢型,函数y=cosx在(0,1)是递减得越来越快型,y=2x,y=x2,这两个函数都是递增得越来越快型综上分析知,满足条件的函数有两个故选C30.抛掷甲、乙两骰子,记事件A:“甲骰子的点数为奇数”;事件B:“乙骰子的点数为偶数”,则P(B|A)的值等于()
A.
B.
C.
D.答案:B31.若直线的参数方程为(t为参数),则该直线的斜率为()
A.
B.2
C.1
D.-1答案:D32.曲线(t为参数)上的点与A(-2,3)的距离为,则该点坐标是()
A.(-4,5)
B.(-3,4)或(-1,2)
C.(-3,4)
D.(-4,5)或(0,1)答案:B33.直线y=3x+1的斜率是()A.1B.2C.3D.4答案:因为直线y=3x+1是直线的斜截式方程,所以直线的斜率是3.故选C.34.把下列直角坐标方程或极坐标方程进行互化:
(1)ρ(2cosϑ-3sinϑ)+1=0
(2)x2+y2-4x=0.答案:(1)将原极坐标方程ρ(2cosθ-3sinθ)+1=0展开后化为:2ρcosθ-3ρsinθ+1=0,化成直角坐标方程为:2x-3y+1=0,(2)把公式x=ρcosθ、y=ρsinθ代入曲线的直角坐标方程为x2+y2-4x=0,可得极坐标方程ρ2-4ρcosθ=0,即ρ=4cosθ.35.频率分布直方图的重心是()
A.众数
B.中位数
C.标准差
D.平均数答案:D36.已知直线l:ax+by=1(ab>0)经过点P(1,4),则l在两坐标轴上的截距之和的最小值是______.答案:∵直线l:ax+by=1(ab>0)经过点P(1,4),∴a+4b=1,故a、b都是正数.故直线l:ax+by=1,此直线在x、y轴上的截距分别为1a、1b,则l在两坐标轴上的截距之和为1a+1b=a+4ba+a+4bb=5+4ba+ab≥5+24ba?ab=9,当且仅当4ba=ab时,取等号,故为9.37.正十边形的一个内角是多少度?答案:由多边形内角和公式180°(n-2),∴每一个内角的度数是180°(n-2)n当n=10时.得到一个内角为180°(10-2)10=144°38.“a、b、c等比”是“b2=ac”的()A.充分不必要条件B.充要条件C.必要不充分条件D.既不充分也不必要条件答案:由“a,G,b成等比”可得ba=cb,故有“b2=ac”成立,故充分性成立.但由“b2=ac”,不能推出“a、b、c成等比数列”,如a=b=0,c=1时,尽管有“b2=ac”,但0,0,1不能构成等比数列,故必要性不成立.故“b2=ac成等比”是“b2=ac”的充分不必要条件,故选B.39.已知G是△ABC的重心,O是平面ABC外的一点,若λOG=OA+OB+OC,则λ=______.答案:如图,正方体中,OA+OB+OC=OD=3OG,∴λ=3.故为3.40.设A、B、C、D是半径为r的球面上的四点,且满足AB⊥AC、AD⊥AC、AB⊥AD,则S△ABC+S△ABD+S△ACD的最大值是[
]A、r2
B、2r2
C、3r2
D、4r2答案:B41.“神六”上天并顺利返回,让越来越多的青少年对航天技术发生了兴趣.某学校科技小组在计算机上模拟航天器变轨返回试验,设计方案
如图:航天器运行(按顺时针方向)的轨迹方程为x2100+y225=1,变轨(航天器运行轨迹由椭圆变为抛物线)后返回的轨迹是以y轴为
对称轴、M(0,647)为顶点的抛物线的实线部分,降落点为D(8,0),观测点A(4,0)、B(6,0)同时跟踪航天器.试问:当航天器在x轴上方时,观测点A、B测得离航天器的距离分别为______时航天器发出变轨指令.答案:设曲线方程为y=ax2+647,由题意可知,0=a•64+647.∴a=-17,∴曲线方程为y=-17x2+647.设变轨点为C(x,y),根据题意可知,抛物线方程与椭圆方程联立,可得4y2-7y-36=0,y=4或y=-94(不合题意,舍去).∴y=4.∴x=6或x=-6(不合题意,舍去).∴C点的坐标为(6,4),|AC|=25,|BC|=4.故为:25、4.42.若90°<θ<180°,曲线x2+y2sinθ=1表示()
A.焦点在x轴上的双曲线
B.焦点在y轴上的双曲线
C.焦点在x轴上的椭圆
D.焦点在y轴上的椭圆答案:D43.在输入语句中,若同时输入多个变量,则变量之间的分隔符号是()
A.逗号
B.空格
C.分号
D.顿号答案:A44.k取何值时,一元二次方程kx2+3kx+k=0的两根为负。答案:解:∴k≤或k>345.如图,在△ABC中,BC边上的高所在的直线方程为x-2y+1=0,∠A的平分线所在的直线方程为y=0,若点B的坐标为(1,2),求点A和点C的坐标.答案:点A为y=0与x-2y+1=0两直线的交点,∴点A的坐标为(-1,0).∴kAB=2-01-(-1)=1.又∵∠A的平分线所在直线的方程是y=0,∴kAC=-1.∴直线AC的方程是y=-x-1.而BC与x-2y+1=0垂直,∴kBC=-2.∴直线BC的方程是y-2=-2(x-1).由y=-x-1,y=-2x+4,解得C(5,-6).∴点A和点C的坐标分别为(-1,0)和(5,-6)46.已知直线l1:3x-y+2=0,l2:3x+3y-5=0,则直线l1与l2的夹角是______.答案:因为直线l1的斜率为3,故倾斜角为60°,直线l2的斜率为-3,倾斜角为120°,故两直线的夹角为60°,即两直线的夹角为π3,故为
π3.47.设x>0,y>0且x≠y,求证答案:证明略解析:由x>0,y>0且x≠y,要证明只需
即只需由条件,显然成立.∴原不等式成立48.已知集合A={x|x>1},则(CRA)∩N的子集有()A.1个B.2个C.4个D.8个答案:∵集合A={x|x>1},∴CRA={x|x≤1},∴(CRA)∩N={0,1},∴(CRA)∩N的子集有22=4个,故选C.49.已知随机变量ξ服从二项分布ξ~B(6,),则E(2ξ+4)=()
A.10
B.4
C.3
D.9答案:A50.某公司招聘员工,经过笔试确定面试对象人数,面试对象人数按拟录用人数分段计算,计算公式为y=4x1≤x≤102x+1010<x≤1001.5xx>100其中x代表拟录用人数,y代表面试对象人数.若应聘的面试对象人数为60人,则该公司拟录用人数为()A.15B.40C.25D.130答案:由题意知:当10<x≤100时,y=2x+10∈(30,210],又因为60∈(30,210],∴2x+10=60,∴x=25.故:该公司拟录用人数为25人.故选C.第3卷一.综合题(共50题)1.甲、乙两人共同投掷一枚硬币,规定硬币正面朝上甲得1分,否则乙得1分,先积3分者获胜,并结束游戏.
①求在前3次投掷中甲得2分,乙得1分的概率.
②设ξ表示到游戏结束时乙的得分,求ξ的分布列以及期望.答案:(1)由题意知本题是一个古典概型试验发生的事件是掷一枚硬币3次,出现的所有可能情况共有以下8种.(正正正)、(正正反)、(正反反)、(反反反)、(正反正)、(反正正)、(反反正)、(反正反)、其中甲得(2分),乙得(1分)的情况有以下3种,(正正反)、(正反正)、(反正正)∴所求概率P=38(2)ξ的所有可能值为:0、1、2、3P(ξ=0)=12×12×12=18P(ξ=1)=C13×12×(12)2×12=316,P(ξ=2)=C24(12)2(12)212=316P(ξ=3)=12×12×12+C1312(12)212+C24(12)2(12)212=12∴ξ的分布列为:∴Eξ=1×316+2×316+3×12=33162.四面体ABCD中,设M是CD的中点,则化简的结果是()
A.
B.
C.
D.答案:A3.“a>2且b>2”是“a+b>4且ab>4”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既不充分也不必要条件答案:若a>2且b>2,则必有a+b>4且ab>4成立,故充分性易证若a+b>4且ab>4,如a=8,b=1,此时a+b>4且ab>4成立,但不能得出a>2且b>2,故必要性不成立由上证明知“a>2且b>2”是“a+b>4且ab>4”的充分不必要条件,故选A4.下列各组向量中不平行的是()A.a=(1,2,-2),b=(-2,-4,4)B.c=(1,0,0),d=(-3,0,0)C.e=(2,3,0),f=(0,0,0)D.g=(-2,3,5),h=(16,24,40)答案:选项A中,b=-2a⇒a∥b;选项B中有:d=-3c⇒d∥c,选项C中零向量与任意向量平行,选项D,事实上不存在任何一个实数λ,使得g=λh,即:(16,24,40)=λ(16,24,40).故应选:D5.下列说法正确的是()
A.互斥事件一定是对立事件,对立事件不一定是互斥事件
B.互斥事件不一定是对立事件,对立事件一定是互斥事件
C.事件A,B中至少有一个发生的概率一定比A,B中恰有一个发生的概率大
D.事件A,B同时发生的概率一定比A,B中恰有一个发生的概率小答案:B6.正方体AC1中,S,T分别是棱AA1,A1B1上的点,如果∠TSC=90°,那么∠TSB=______.答案:由题意,BC⊥平面A1B,∵S,T分别是棱AA1,A1B1上的点,∴BC⊥ST∵∠TSC=90°,∴ST⊥SC∵BC∩SC=C∴ST⊥平面SBC∴ST⊥SB∴∠TSB=90°,故为:90°7.直三棱柱ABC-A1B1C1中,若CA=a
CB=b
CC1=c
则A1B=()A.a+b-cB.a-b+cC.-a+b+cD.-a+b-c答案:A1B=A1A+AB=-CC1+CB-CA=-a+b-c故选D.8.已知a,b,c是正实数,且a+b+c=1,则的最小值为(
)A.3B.6C.9D.12答案:C解析:本题考查均值不等式等知识。将1代入中,得,当且仅当,又,故时不等式取,选C。9.如图,在复平面内,点A表示复数z的共轭复数,则复数z对应的点是()A.AB.BC.CD.D答案:两个复数是共轭复数,两个复数的实部相同,下部相反,对应的点关于x轴对称.所以点A表示复数z的共轭复数的点是B.故选B.10.一个简单多面体的面都是三角形,顶点数V=6,则它的面数为______个.答案:∵已知多面体的每个面有三条边,每相邻两条边重合为一条棱,∴棱数E=32F,代入公式V+F-E=2,得F=2V-4.∵V=6,∴F=8,E=12,即多面体的面数F为8,棱数E为12.故为8.11.已知球的表面积等于16π,圆台上、下底面圆周都在球面上,且下底面过球心,圆台的轴截面的底角为π3,则圆台的轴截面的面积是()A.9πB.332C.33D.6答案:设球的半径为R,由题意4πR2=16,R=2,圆台的轴截面的底角为π3,可得圆台母线长为2,上底面半径为1,圆台的高为3,所以圆台的轴截面的面积S=12(2+4)×3=33故选C12.由9个正数组成的矩阵
中,每行中的三个数成等差数列,且a11+a12+a13,a21+a22+a23,a31+a32+a33成等比数列,给出下列判断:①第2列a12,a22,a32必成等比数列;②第1列a11,a21,a31不一定成等比数列;③a12+a32≥a21+a23;④若9个数之和等于9,则a22≥1.其中正确的个数有()
A.1个
B.2个
C.3个
D.4个答案:B13.曲线x=sin2ty=sint(t为参数)的普通方程为______.答案:因为曲线x=sin2ty=sint(t为参数)∴sint=y,代入x=sin2t,可得x=y2,其中-1≤y≤1.故为:x=y2,(-1≤y≤1).14.执行下列程序后,输出的i的值是()
A.5
B.6
C.10
D.11答案:D15.若直线ax+by+1=0与圆x2+y2=1相离,则点P(a,b)的位置是()
A.在圆上
B.在圆外
C.在圆内
D.以上都有可能答案:C16.在直角梯形ABCD中,已知A(-5,-10),B(15,0),C(5,10),AD是腰且垂直两底,求顶点D的坐标.答案:设D(x,y),则∵DC∥AB,∴y-10x-5=0+1015+5,又∵DA⊥AB,∴y+10x+5•0+1015+5=-1.由以上方程组解得:x=-11,y=2.∴D(-11,2).17.全称命题“任意x∈Z,2x+1是整数”的逆命题是()
A.若2x+1是整数,则x∈Z
B.若2x+1是奇数,则x∈Z
C.若2x+1是偶数,则x∈Z
D.若2x+1能被3整除,则x∈Z
E.若2x+1是整数,则x∈Z答案:A18.命题:“方程x2-1=0的解是x=±1”,其使用逻辑联结词的情况是()A.使用了逻辑联结词“且”B.使用了逻辑联结词“或”C.使用了逻辑联结词“非”D.没有使用逻辑联结词答案:“x=±1”可以写成“x=1或x=-1”,故选B.19.下列函数图象中,正确的是()
A.
B.
C.
D.
答案:C20.已知圆锥的母线长为5,底面周长为6π,则圆锥的体积是______.答案:圆锥的底面周长为6π,所以圆锥的底面半径为3;圆锥的高为4所以圆锥的体积为13×π32×4=12π故为12π.21.若2x1+3y1=4,2x2+3y2=4,则过点A(x1,y1),B(x2,y2)的直线方程是______.答案:∵2x1+3y1=4,2x2+3y2=4,∴点A(x1,y1),B(x2,y2)在直线2x+3y=4上,又因为过两点确定一条直线,故所求直线方程为2x+3y=4故为:2x+3y=422.已知f(x)=1-(x-a)(x-b),并且m,n是方程f(x)=0的两根,则实数a,b,m,n的大小关系可能是()
A.m<a<b<n
B.a<m<n<b
C.a<m<b<n
D.m<a<n<b答案:A23.已知镭经过100年,质量便比原来减少4.24%,设质量为1的镭经过x年后的剩留量为y,则y=f(x)的函数解析式为(x≥0)()A.0.0424x100B.0.9576x100C.0.0424100xD.0.9576100x答案:由题意可得,对于函数,当x=100时,y=95.76%=0.9576,结合选项检验选项A:x=100,y=0.0424,故排除A选项B:x=100,y=0.9576,故B正确故选:B解析:已知镭经过100年,质量便比原来减少4.24%,设质量为1的镭经过x年后的剩留量为y,则y=f(x)的函数解析式为(x≥0)()A.0.0424x100B.0.9576x100C.0.0424100x24.某工厂生产产品,用传送带将产品送到下一道工序,质检人员每隔十分钟在传送带的某一个位置取一件检验,则这种抽样方法是()A.简单随机抽样B.系统抽样C.分层抽样D.非上述答案答案:本题符合系统抽样的特征:总体中各单位按一定顺序排列,根据样本容量要求确定抽选间隔,然后随机确定起点,每隔一定的间隔抽取一个单位的一种抽样方式.故选B.25.已知两定点F1(5,0),F2(-5,0),曲线C上的点P到F1、F2的距离之差的绝对值是8,则曲线C的方程为()A.x29-y216=1B.x216-y29=1C.x225-y236=1D.y225-x236=1答案:据双曲线的定义知:P的轨迹是以F1(5,0),F2(-5,0)为焦点,以实轴长为8的双曲线.所以c=5,a=4,b2=c2-a2=9,所以双曲线的方程为:x216-y29=1故选B26.若图中的直线l1、l2、l3的斜率分别为k1、k2、k3,则()A.k1<k2<k3B.k2<k1<k3C.k3<k2<k1D.k1<k3<k2答案:因为直线的斜率是其倾斜角的正切值,当倾斜角大于90°小于180°时,斜率为负值,当倾斜角大于0°小于90°时斜率为正值,且正切函数在(0°,90°)上为增函数,由图象三条直线的倾斜角可知,k2<k1<k3.故选C.27.已知随机变量ξ~N(3,22),若ξ=2η+3,则Dη=()
A.0
B.1
C.2
D.4答案:B28.设点P(t2+2t,1)(t>0),则|OP|(O为坐标原点)的最小值是()A.3B.5C.3D.5答案:解析:由已知得|OP|=(t2+2t)
2+1≥(2t2×2t)2+1=5,当t=2时取得等号.故选D.29.已知函数f(x)满足:x≥4,则f(x)=(12)x;当x<4时f(x)=f(x+1),则f(2+log23)═______.答案:∵2+log23<4,∴f(2+log23)=f(3+log23)=f(log224)=(12)log224=124故应填12430.如图,△ABC内接于圆⊙O,CT切⊙O于C,∠ABC=100°,∠BCT=40°,则∠AOB=()
A.30°
B.40°
C.80°
D.70°
答案:C31.______称为向量的长度(或称为模),记作
______,______称为零向量,记作
______,______称为单位向量.答案:向量AB所在线段AB的长度,即向量AB的大小,称为向量AB的长度(或成为模),记作|AB|;长度为零的向量称为零向量,记作0;长度等于1个单位的向量称为单位向量.故为:向量AB所在线段AB的长度,即向量AB的大小,|AB|;长度为零的向量,0;长度等于1个单位的向量.32.在平行六面体ABCD-A′B′C′D′中,向量是()
A.有相同起点的向量
B.等长的向量
C.共面向量
D.不共面向量答案:C33.下列各量:①密度
②浮力
③风速
④温度,其中是向量的个数有()个.A.1B.3C.2D.4答案:根据向量的定义,知道需要同时具有大小和方向两个要素才是向量,在所给的四个量中,密度只有大小,浮力既有大小又有方向,风速既有大小又有方向,温度只有大小没有方向综上可知向量的个数是2个,故选C.34.隋机变量X~B(6,),则P(X=3)=()
A.
B.
C.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论