2023年沧州职业技术学院高职单招(数学)试题库含答案解析_第1页
2023年沧州职业技术学院高职单招(数学)试题库含答案解析_第2页
2023年沧州职业技术学院高职单招(数学)试题库含答案解析_第3页
2023年沧州职业技术学院高职单招(数学)试题库含答案解析_第4页
2023年沧州职业技术学院高职单招(数学)试题库含答案解析_第5页
已阅读5页,还剩41页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年沧州职业技术学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.已知双曲线的a=5,c=7,则该双曲线的标准方程为()

A.-=1

B.-=1

C.-=1或-=1

D.-=0或-=0答案:C2.从直径AB的延长线上取一点C,过点C作该圆的切线,切点为D,若∠ACD的平分线交AD于点E,则∠CED的度数是()

A.30°

B.45°

C.60°

D.随点C的变化而变化答案:B3.圆的极坐标方程是ρ=2cosθ+2sinθ,则其圆心的极坐标是()

A.(2,)

B.(2,)

C.(1,)

D.(1,)答案:A4.下列语句是命题的是______.

①求证3是无理数;

②x2+4x+4≥0;

③你是高一的学生吗?

④一个正数不是素数就是合数;

⑤若x∈R,则x2+4x+7>0.答案:①是祈使句,所以①不是命题.②是命题,能够判断真假,因为x2+4x+4=(x+2)2≥0,所以②是命题.③是疑问句,所以③不是命题.④能够判断真假,所以④是命题.⑤能够判断真假,因为x2+4x+7=(x+2)2+3>0,所以⑤是命题.故为:②④⑤.5.一个底面是正三角形的三棱柱的侧视图如图所示,则该几何体的侧面积等于()A.3B.6C.23D.2答案:由正视图知:三棱柱是以底面边长为2,高为1的正三棱柱,侧面积为3×2×1=6,故为:B.6.直线和圆交于两点,则的中点

坐标为(

)A.B.C.D.答案:D解析:,得,中点为7.直线m的倾斜角为30°,则此直线的斜率等于()A.12B.1C.33D.3答案:因为直线的斜率k和倾斜角θ的关系是:k=tanθ∴倾斜角为30°时,对应的斜率k=tan30°=33故选:C.8.已知一个学生的语文成绩为89,数学成绩为96,外语成绩为99.求他的总分和平均成绩的一个算法为:

第一步:取A=89,B=96,C=99;

第二步:______;

第三步:______;

第四步:输出计算的结果.答案:由题意,第二步,求和S=A+B+C,第三步,计算平均成绩.x=A+B+C3.故为:S=A+B+C;.x=A+B+C3.9.①点P在△ABC所在的平面内,且②点P为△ABC内的一点,且使得取得最小值;③点P是△ABC所在平面内一点,且,上述三个点P中,是△ABC的重心的有()

A.0个

B.1个

C.2个

D.3个答案:D10.函数f(x)=2|log2x|的图象大致是()

A.

B.

C.

D.

答案:C11.阅读程序框图,运行相应的程序,则输出i的值为()A.3B.4C.5D.6答案:该程序框图是循环结构经第一次循环得到i=1,a=2;经第二次循环得到i=2,a=5;经第三次循环得到i=3,a=16;经第四次循环得到i=4,a=65满足判断框的条件,执行是,输出4故选B12.设向量a=(1,0),b=(sinθ,cosθ),0≤θ≤π,则|a+b|的最大值为

______.答案:|a|=1因为|b|=1,所以|a+b|2=a2+b2+2a?b=2+2sinθ因为0≤θ≤π,所以0≤sinθ≤1,所以2+2sinθ≤4,|a+b|≤2故为:213.某工厂生产A,B,C三种不同型号的产品,产品数量之比依次为2:3:5.现用分层抽样方法抽出一个容量为n的样本,样本中A型号产品有16件,则此样本的容量为()

A.40

B.80

C.160

D.320答案:B14.将函数y=sin(x+)的图象按向量=(-m,0)平移所得的图象关于y轴对称,则m最小正值是

A.

B.

C.

D.答案:A15.参数方程中当t为参数时,化为普通方程为(

)。答案:x2-y2=116.在语句PRINT

3,3+2的结果是()

A.3,3+2

B.3,5

C.3,5

D.3,2+3答案:B17.有一个正四棱锥,它的底面边长与侧棱长均为a,现用一张正方形包装纸将其完全包住(不能裁剪纸,但可以折叠),那么包装纸的最小边长应为()A.2+62aB.(2+6)aC.1+32aD.(1+3)a答案:由题意可知:当正四棱锥沿底面将侧面都展开时如图所示:分析易知当以PP′为正方形的对角线时,所需正方形的包装纸的面积最小,此时边长最小.设此时的正方形边长为x则:(PP′)2=2x2,又因为PP′=a+2×32a=a+3a,∴(

a+3a)2=2x2,解得:x=6+22a.故选A18.命题:“方程X2-2=0的解是X=±2”中使用逻辑联系词的情况是()A.没有使用逻辑连接词B.使用了逻辑连接词“且”C.使用了逻辑连接词“或”D.使用了逻辑连接词“非”答案:命题:“方程X2-2=0的解是X=±2”可以化为:“方程X2-2=0的解是X=2,或X=-2”故命题:“方程X2-2=0的解是X=±2”中使用逻辑联系词为:或故选C19.两圆相交于点A(1,3)、B(m,-1),两圆的圆心均在直线x-y+c=0上,则m+c的值为(

A.3

B.2

C.-1

D.0答案:A20.规定运算.abcd.=ad-bc,则.1i-i2.=______.答案:根据题目的新规定知,.1i-i2.=1×2-(-i)i=2+i2=2-1=1.故为:1.21.不等式-x≤1的解集是(

)。答案:{x|0≤x≤2}22.在复平面内,记复数3+i对应的向量为OZ,若向量OZ饶坐标原点逆时针旋转60°得到向量OZ所对应的复数为______.答案:向量OZ饶坐标原点逆时针旋转60°得到向量所对应的复数为(3+i)(cos60°+isin60°)=(3+i)(12+32i)=2i,故为2i.23.在直角坐标系xoy

中,已知曲线C1:x=t+1y=1-2t(t为参数)与曲线C2:x=asinθy=3cosθ(θ为参数,a>0

有一个公共点在X轴上,则a等于______.答案:曲线C1:x=t+1y=1-2t(t为参数)化为普通方程:2x+y-3=0,令y=0,可得x=32曲线C2:x=asinθy=3cosθ(θ为参数,a>0

)化为普通方程:x2a2+y29=1∵两曲线有一个公共点在x轴上,∴94a2=1∴a=32故为:3224.α为第一象限角是sinαcosα>0的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:若α为第一象限角,则sinα>0,cosα>0,所以sinαcosα>0,成立.若sinαcosα>0,则①sinα>0,cosα>0,此时α为第一象限角.或②sinα<0,cosα<0,此时α为第三象限角.所以α为第一象限角是sinαcosα>0的充分不必要条件.故选A.25.已知平面向量=(1,-3),=(4,-2),λ+与垂直,则λ是()

A.1

B.2

C.-2

D.-1答案:D26.为了了解某社区居民是否准备收看奥运会开幕式,某记者分别从社区的60~70岁,40~50岁,20~30岁的三个年龄段中的160,240,X人中,采用分层抽样的方法共抽出了30人进行调查,若60~70岁这个年龄段中抽查了8人,那么x为()

A.90

B.120

C.180

D.200答案:D27.(本题满分12分)

已知:

求证:答案:.证明:…………2分由于=………………5分…………①………………6分由于………②……………8分同理:…………③……………10分①+②+③得:即原不等式成立………………12分解析:同答案28.已知某试验范围为[10,90],若用分数法进行4次优选试验,则第二次试点可以是(

)。答案:40或60(不唯一)29.用冒泡法对43,34,22,23,54从小到大排序,需要(

)趟排序。

A.2

B.3

C.4

D.5答案:A30.如图,AC是⊙O的直径,∠ACB=60°,连接AB,过A、B两点分别作⊙O的切线,两切线交于点P.若已知⊙O的半径为1,则△PAB的周长为______.答案:∵AC是⊙O的直径,∴∠ABC=90°,∠BAC=30°,CB=1,AB=3,∵AP为切线,∴∠CAP=90°,∠PAB=60°,又∵AP=BP,∴△PAB为正三角形,∴周长=33.故填:33.31.给出以下命题:(1)若非零向量a与b互为负向量,则a∥b;(2)|a|=0是a=0的充要条件;(3)若|a|=|b|,则a=±b;(4)物理学中的作用力和反作用力互为负向量.其中为真命题的是______.答案:(1)若非零向量a与b互为负向量,根据相反向量的定义可知a∥b,故正确;(2)|a|=0则a=0,a=0则|a|=0,故|a|=0是a=0的充要条件,故正确;(3)若|a|=|b|,则两向量模等,方向任意,故不正确;(4)物理学中的作用力和反作用力大小相等,方向相反,故互为负向量,故正确故为:(1)(2)(4)32.若f(x)在定义域[a,b]上有定义,则在该区间上()A.一定连续B.一定不连续C.可能连续也可能不连续D.以上均不正确答案:f(x)有定义是f(x)在区间上连续的必要而不充分条件.有定义不一定连续.还需加上极限存在才能推出连续.故选C.33.如图,已知双曲线以长方形ABCD的顶点A,B为左、右焦点,且过C,D两顶点.若AB=4,BC=3,则此双曲线的标准方程为______.答案:由题意可得点OA=OB=2,AC=5设双曲线的标准方程是x2a2-y2b2=1.则2a=AC-BC=5-3=2,所以a=1.所以b2=c2-a2=4-1=3.所以双曲线的标准方程是x2-y23=1.故为:x2-y23=134.抛物线y=ax2(其中a>0)的焦点坐标是(

A.(,0)

B.(0,)

C.(,0)

D.(0,)答案:D35.(几何证明选讲)如图,点A、B、C都在⊙O上,过点C的切线交AB的延长线于点D,若AB=5,BC=3,CD=6,则线段AC的长为______.答案:∵过点C的切线交AB的延长线于点D,∴DC是圆的切线,DBA是圆的割线,根据切割线定理得到DC2=DB?DA,∵AB=5,CD=6,∴36=DB(DB+5)∴DB=4,由题意知∠D=∠D,∠BCD=∠A∴△DBC∽△DCA,∴DCDA=BCCA∴AC=3×96=4.5,故为:4.536.在直角坐标系xOy中,i,j分别是与x轴,y轴平行的单位向量,若在Rt△ABC中,AB=i+j,AC=2i+mj,则实数m=______.答案:把AB、AC平移,使得点A与原点重合,则AB=(1,1)、AC=(2,m),故BC=(1,m-1),若∠B=90°时,AB•BC=0,∴(1,1)•(2-1,m-1)=0,得m=0;若∠A=90°时,AB•AC=0,∴(1,1)•(2,m)=0,得m=-2.若∠C=90°时,AC•BC=0,即2+m2-m=0,此方程无解,综上,m为-2或0满足三角形为直角三角形.故为-2或037.若关于x的方程x2+ax+a2-1=0有一正根和一负根,则a的取值范围为______.答案:令f(x)=x2+ax+a2-1,∴二次函数开口向上,若方程有一正一负根,则只需f(0)<0,即a2-1<0,∴-1<a<1.故为:-1<a<1.38.如图,⊙O与⊙O′交于

A,B,⊙O的弦AC与⊙O′相切于点A,⊙O′的弦AD与⊙O相切于A点,则下列结论中正确的是()

A.∠1>∠2

B.∠1=∠2

C.∠1<∠2

D.无法确定

答案:B39.在四面体O-ABC中,OA=a,OB=b,OC=c,D为BC的中点,E为AD的中点,则OE=______(用a,b,c表示)答案:在四面体O-ABC中,OA=a,OB=b,OC=c,D为BC的中点,E为AD的中点,∴OE=12(OA+OD)=OA2+OD2=12a+12×12(OB+OC)=12a+14(b+c)=12a+14b+14c,故为:12a+14b+14c.40.为求方程x5-1=0的虚根,可以把原方程变形为(x-1)(x2+ax+1)(x2+bx+1)=0,由此可得原方程的一个虚根为______.答案:由题可知(x-1)(x2+ax+1)(x2+bx+1)=(x-1)[x4+(a+b)x3+(2+ab)x2+(a+b)x+1]比较系数可得a+b=1ab+2=1,∴a=1+52,b=1-52∴原方程的一个虚根为-1-5±10-25i4,-1+5±10+25i4中的一个故为:-1-5+10-25i4.41.两直线3x+y-3=0与6x+my+1=0平行,则它们之间的距离为()

A.4

B.

C.

D.答案:D42.若2x1+3y1=4,2x2+3y2=4,则过点A(x1,y1),B(x2,y2)的直线方程是______.答案:∵2x1+3y1=4,2x2+3y2=4,∴点A(x1,y1),B(x2,y2)在直线2x+3y=4上,又因为过两点确定一条直线,故所求直线方程为2x+3y=4故为:2x+3y=443.已知⊙C1:x2+y2+2x+8y-8=0,⊙C2:x2+y2-4x-4y-2=0,则的位置关系为()

A.相切

B.相离

C.相交

D.内含答案:C44.从甲、乙两人手工制作的圆形产品中,各自随机抽取6件,测得其直径如下(单位:cm):

甲:9.00,9.20,9.00,8.50,9.10,9.20

乙:8.90,9.60,9.50,8.54,8.60,8.90

据以上数据估计两人的技术稳定性,结论是()

A.甲优于乙

B.乙优于甲

C.两人没区别

D.无法判断答案:A45.螺母是由

______和

______两个简单几何体构成的.答案:根据螺母的结构特征知,是由正六棱柱里面挖去的一个圆柱构成的,故为:正六棱柱,圆柱.46.若A(x,5-x,2x-1),B(1,x+2,2-x),当||取最小值时,x的值等于(

A.

B.

C.

D.答案:C47.“sinx=siny”是“x=y”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件答案:∵“sinx=siny”不能推出“x=y”,例如sin30°=sin390°,但30°≠390°,即充分性不成立;反过来,若“x=y”,一定有“sinx=siny”,即必要性成立;∴“sinx=siny”是“x=y”的必要不充分条件.故选C.48.空间中,若向量=(5,9,m),=(1,-1,2),=(2,5,1)共面,则m=()

A.2

B.3

C.4

D.5答案:C49.从椭圆

x2a2+y2b2=1(a>b>0)上一点P向x轴作垂线,垂足恰为左焦点F1,又点A是椭圆与x轴正半轴的交点,点B是椭圆与y轴正半轴的交点,且AB∥OP,|F1A|=10+5,求椭圆的方程.答案:∵AB∥OP∴PF1F1O=BOOA?PF1=bca又∵PF1⊥x轴∴c2a2+y2b2=1?y=b2a∴b=c由a+c=10+5b=ca2=b2+c2解得:a=10b=5c=5∴椭圆方程为x210+y25=1.50.

点M分有向线段的比为λ,已知点M1(1,5),M2(2,3),λ=-2,则点M的坐标为()

A.(3,8)

B.(1,3)

C.(3,1)

D.(-3,-1)答案:C第2卷一.综合题(共50题)1.算法框图中表示判断的是()A.

B.

C.

D.

答案:∵在算法框图中,表示判断的是菱形,故选B.2.若圆C过点M(0,1)且与直线l:y=-1相切,设圆心C的轨迹为曲线E,A、B为曲线E上的两点,点P(0,t)(t>0),且满足AP=λPB(λ>1).

(I)求曲线E的方程;

(II)若t=6,直线AB的斜率为12,过A、B两点的圆N与抛物线在点A处共同的切线,求圆N的方程;

(III)分别过A、B作曲线E的切线,两条切线交于点Q,若点Q恰好在直线l上,求证:t与QA•QB均为定值.答案:【解】(Ⅰ)依题意,点C到定点M的距离等于到定直线l的距离,所以点C的轨迹为抛物线,曲线E的方程为x2=4y.(Ⅱ)直线AB的方程是y=12x+6,即x-2y+12=0.由{_x2=4y,x-2y+12=0,及AP=λPB(λ>1)知|AP|>|PB|,得A(6,9)和B(-4,4)由x2=4y得y=14x2,y′=12x.所以抛物线x2=4y在点A处切线的斜率为y'|x=6=3.直线NA的方程为y-9=-13(x-6),即y=-13x+11.①线段AB的中点坐标为(1,132),线段AB中垂线方程为y-132=-2(x-1),即y=-2x+172.②由①、②解得N(-32,232).于是,圆C的方程为(x+32)2+(y-232)2=(-4+32)2+(4-232)2,即(x+32)2+(y-232)2=1252.(Ⅲ)设A(x1,x124),B(x2,x224),Q(a,-1).过点A的切线方程为y-x214=x12(x-x1),即x12-2ax1-4=0.同理可得x22-2ax2-4=0,所以x1+x2=2a,x1x2=-4.又kAB=x124-x224x1-x2=x1+x24,所以直线AB的方程为y-x124=x1+x24(x-x

1),即y=x1+x24x-x1x24,亦即y=a2x+1,所以t=-1.而QA=(x1-a,x124+1),QB=(x2-a,x224+1),所以QA•QB=(x1-a)(x2-a)+(x214+1)(x224+1)=x1x2-a(x1+x2)+a2+x21x2216+(x1+x2)2-2x1x24+1=-4-2a2+a2+1+4a2+84+1=0.3.直线l1:x+ay=2a+2与直线l2:ax+y=a+1平行,则a=______.答案:直线l1:x+ay=2a+2即x+ay-2a-2=0;直线l2:ax+y=a+1即ax+y-a-1=0,∵直线l1与直线l2互相平行∴当a≠0且a≠-1时,1a=a1≠-2a-2-a-1,解之得a=1当a=0时,两条直线垂直;当a=-1时,两条直线重合故为:14.以椭圆的焦点为顶点、顶点为焦点的双曲线方程是()

A.

B.

C.

D.答案:C5.已知F1=i+2j+3k,F2=2i+3j-k,F3=3i-4j+5k,若F1,F2,F3共同作用于一物体上,使物体从点M(1,-2,1)移动到N(3,1,2),则合力所作的功是______.答案:由题意可得F1=(1,2,3)F2=(2,3,-1),F3=(3,-4,5),故合力F=F1+F2+F3=(6,1,7),位移S=MN=(3,1,2)-(1,-2,1)=(2,3,1),故合力所作的功W=F•S=6×2+1×3+7×1=22故为:226.直线y=3的一个单位法向量是______.答案:直线y=3的方向向量是(a,0)(a≠0),不妨取(1,0)设直线y=3的法向量为n=(x,y)∴(x,y)?(1,0)=0∴x=0∴直线y=3的一个单位法向量是(0,1)故为:(0,1)7.已知正方形ABCD的边长为1,=,=,=,则的模等于(

A.0

B.2+

C.

D.2答案:D8.若点P(a,b)在圆C:x2+y2=1的外部,则直线ax+by+1=0与圆C的位置关系是()

A.相切

B.相离

C.相交

D.相交或相切答案:C9.已知一物体在共点力F1=(lg2,lg2),F2=(lg5,lg2)的作用下产生位移S=(2lg5,1),则这两个共点力对物体做的总功W为()A.1B.2C.lg2D.lg5答案:∵F1+F2=(lg2,lg2)+(lg5,lg2)=(1,2lg2)又∵在共点力的作用下产生位移S=(2lg5,1)∴这两个共点力对物体做的总功W为(1,2lg2)?(2lg5,1)=2lg5+2lg2=2故选B10.如图,在△ABC中,设AB=a,AC=b,AP的中点为Q,BQ的中点为R,CR的中点恰为P.

(Ⅰ)若AP=λa+μb,求λ和μ的值;

(Ⅱ)以AB,AC为邻边,AP为对角线,作平行四边形ANPM,求平行四边形ANPM和三角形ABC的面积之比S平行四边形ANPMS△ABC.答案:(Ⅰ)∵在△ABC中,设AB=a,AC=b,AP的中点为Q,BQ的中点为R,CR的中点恰为P.AP=AR+AC2,AR=AQ+AB2,AQ=12AP,消去AR,AQ∵AP=λa+μb,可得AP=12(AQ+AB2)+12AC=14×12AP+14AB+12AC,可得AP=27AB+47AC=λa+μb,∴λ=27μ=47;(Ⅱ)以AB,AC为邻边,AP为对角线,作平行四边形ANPM,∵得AP=27AB+47AC,∴S平行四边形ANPMS平行四边形ABC=|AN|?|AM|?sin∠CAB12|AB|?|AC|?sin∠CAB=2?|AN||AB|?|AM||AC|=2×27×47=1649;11.已知α、β均为锐角,若p:sinα<sin(α+β),q:α+β<π2,则p是q的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件答案:当sinα<sin(α+β)时,α+β<π2不一定成立故sinα<sin(α+β)?α+β<π2,为假命题;而若α+β<π2,则由正弦函数在(0,π2)单调递增,易得sinα<sin(α+β)成立即α+β<π2?sinα<sin(α+β)为真命题故p是q的必要而不充分条件故选B.12.已知a=(3λ,6,λ+6),b=(λ+1,3,2λ)为两平行平面的法向量,则λ=______.答案:∵a=(3λ,6,λ+6),b=(λ+1,3,2λ)为两平行平面的法向量,∴a∥b.∴存在实数k,使得a=kb,∴3λ=k(λ+1)6=3kλ+6=2λk,解得k=2λ=2,故为213.在班级随机地抽取8名学生,得到一组数学成绩与物理成绩的数据:

数学成绩6090115809513580145物理成绩4060754070856090(1)计算出数学成绩与物理成绩的平均分及方差;

(2)求相关系数r的值,并判断相关性的强弱;(r≥0.75为强)

(3)求出数学成绩x与物理成绩y的线性回归直线方程,并预测数学成绩为110的同学的物理成绩.答案:(1)计算出数学成绩与物理成绩的平均分及方差;.x=100,.y=65,数学成绩方差为750,物理成绩方差为306.25;(4分)(2)求相关系数r的值,并判断相关性的强弱;r=6675≈0.94>0.75,相关性较强;(8分)(3)求出数学成绩x与物理成绩y的线性回归直线方程,并预测数学成绩为110的同学的物理成绩.y=0.6x+5,预测数学成绩为110的同学的物理成绩为71.(12分)14.在极坐标系中圆ρ=2cosθ的垂直于极轴的两条切线方程分别为()

A.θ=0(ρ∈R)和ρcosθ=2

B.θ=(ρ∈R)和ρcosθ=2

C.θ=(ρ∈R)和ρcosθ=1

D.θ=0(ρ∈R)和ρcosθ=1答案:B15.已知大于1的正数x,y,z满足x+y+z=33.

(1)求证:x2x+2y+3z+y2y+2z+3x+z2z+2x+3y≥32.

(2)求1log3x+log3y+1log3y+log3z+1log3z+log3x的最小值.答案:(1)由柯西不等式得,(x2x+2y+3z+y2y+2z+3z+z2z+2x+3y)[(x+2y+3z)+(y+2z+3x)+(z+2x+3y)]≥(x+y+z)2=27得:x2x+2y+3z+y2y+2z+3x+z2z+2x+3y≥32;(2)∵1log3x+log3y+1log3y+log3z+1log3z+log3x=1log3(xy)+1log3(yz)+1log3(zx),由柯西不等式得:(1log3(xy)+1log3(yz)+1log3(zx))(log3(xy)+log3(yz)+log3(zx)),由柯西不等式得:(1log3(xy)+1log3(yz)+1log3(zx))(log3(xy)+log3(yz)+log3(zx))≥9所以,(1log3(xy)+1log3(yz)+1log3(zx))≥9(log3(xy)+log3(yz)+log3(zx))=92log3(xyz),又∵33=x+y+z≥33xyz.∴xyz≤33.∴log3xyz≤32.得92log3xyz≥92×23=3所以,1log3x+log3y+1log3y+log3z+1log3z+log3x≥3当且仅当x=y=z=3时,等号成立.故所求的最小值是3.16.试指出函数y=3x的图象经过怎样的变换,可以得到函数y=(13)x+1+2的图象.答案:把函数y=3x的图象经过3次变换,可得函数y=(13)x+1+2的图象,步骤如下:y=3x沿y轴对称y=(13)x左移一个单位y=(13)x+1上移2个单位y=(13)x+1+2.17.将一个总体分为A、B、C三层,其个体数之比为5:3:2,若用分层抽样的方法抽取容量为180的样本,则应从C中抽取样本的个数为______个.答案:由分层抽样的定义可得应从B中抽取的个体数为180×25+3+2=36,故为:36.18.若矩阵M=1111,则直线x+y+2=0在M对应的变换作用下所得到的直线方程为______.答案:设直线x+y+2=0上任意一点(x0,y0),(x',y')是所得的直线上一点,[1

1][x']=[x0][1

1][y']=[y0]∴x′+y′=x0x′+y′=y0,∴代入直线x+y+2=0方程:(x'+y')+x′+y'+2=0得到I的方程x+y+1=0故为:x+y+1=0.19.已知a>0,且a≠1,解关于x的不等式:

答案:①当a>1时,原不等式解为{x|0<x≤loga2②当0<a<1时,原不等式解为{x|loga2≤x<0解析:原不等式等价于原不等式同解于7分由①②得1<ax<4,由③得从而1<ax≤210分①当a>1时,原不等式解为{x|0<x≤loga2②当0<a<1时,原不等式解为{x|loga2≤x<020.己知集合A={sinα,cosα},则α的取值范围是______.答案:由元素的互异性可得sinα≠cosα,∴α≠kπ+π4,k∈z.故α的取值范围是{α|α≠kπ+π4,k∈z},故为{α|α≠kπ+π4,k∈z}.21.已知A(3,-2),B(-5,4),则以AB为直径的圆的方程是()A.(x-1)2+(y+1)2=25B.(x+1)2+(y-1)2=25C.(x-1)2+(y+1)2=100D.(x+1)2+(y-1)2=100答案:∵A(3,-2),B(-5,4),∴以AB为直径的圆的圆心为(-1,1),半径r=(-1-3)2+(1+2)2=5,∴圆的方程为(x+1)2+(y-1)2=25故选B.22.“x2>2012”是“x2>2011”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:由于“x2>2

012”时,一定有“x2>2

011”,反之不成立.所以“x2>2

012”是“x2>2

011”的充分不必要条件.故选A.23.用数学归纳法证明不等式成立,起始值至少应取为()

A.7

B.8

C.9

D.10答案:B24.将椭圆x2+6y2-2x-12y-13=0按向量a平移,使中心与原点重合,则a的坐标是()A.(-1,1)B.(1,-1)C.(-1,-1)D.(1,1)答案:椭圆方程x2+6y2-2x-12y-13=0变形为:(x-1)2+6(y-1)2=20,则椭圆中心(1,1),即需按a=(-1,-1)平移,中心与原点重合.故选C.25.抛掷两枚骰子各一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数的差为X,则“X>4”表示试验的结果为()

A.第一枚为5点,第二枚为1点

B.第一枚大于4点,第二枚也大于4点

C.第一枚为6点,第二枚为1点

D.第一枚为4点,第二枚为1点答案:C26.若根据10名儿童的年龄

x(岁)和体重

y(㎏)数据用最小二乘法得到用年龄预报体重的回归方程是

y=2x+7,已知这10名儿童的年龄分别是

2、3、3、5、2、6、7、3、4、5,则这10名儿童的平均体重是()

A.17㎏

B.16㎏

C.15㎏

D.14㎏答案:C27.甲、乙两人参加一次考试,已知在备选的10道试题中,甲能答对其中6题,乙能答对其中8题.若规定每次考试分别都从这10题中随机抽出3题进行测试,至少答对2题算合格.

(1)分别求甲、乙两人考试合格的概率;

(2)求甲、乙两人至少有一人合格的概率.答案:(1)(2)解析:(1)设甲、乙考试合格分别为事件A、B,甲考试合格的概率为P(A)=,乙考试合格的概率为P(B)=.(2)A与B相互独立,且P(A)=,P(B)=,则甲、乙两人至少有一人合格的概率为P(AB++A)=×+×+×=.28.直线3x+4y-7=0与直线6x+8y+3=0之间的距离是()

A.

B.2

C.

D.答案:C29.螺母是由

______和

______两个简单几何体构成的.答案:根据螺母的结构特征知,是由正六棱柱里面挖去的一个圆柱构成的,故为:正六棱柱,圆柱.30.P是直线3x+y+1=0上一点,P到点Q(0,2)距离的最小值是______.答案:过点Q作直线的垂线段,当P是垂足时,线段PQ最短,故最小距离是点Q(0,2)到直线3x+y+1=0的距离d,d=|0+2+1|3+1=32=1.5.∴P到点Q(0,2)距离的最小值是1.5;故为1.5.31.要从已编号(1~60)的60枚最新研制的某型导弹中随机抽取6枚来进行发射试验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的6枚导弹的编号可能是()

A.5、10、15、20、25、30

B.3、13、23、33、43、53

C.1、2、3、4、5、6

D.2、4、8、16、32、48答案:B32.已知空间两点A(4,a,-b),B(a,a,2),则向量AB=()A.(a-4,0,2+b)B.(4-a,0,-b-2)C.(0,a-4,2+b)D.(a-4,0,-b-2)答案:∵A(4,a,-b),B(a,a,2)∴AB=(a-4,a-a,2-(-b))=(a-4,0,2+b)故选A33.用三段论的形式写出下列演绎推理.

(1)若两角是对顶角,则该两角相等,所以若两角不相等,则该两角不是对顶角;

(2)矩形的对角线相等,正方形是矩形,所以,正方形的对角线相等.答案:(1)两个角是对顶角则两角相等,大前提∠1和∠2不相等,小前提∠1和∠2不是对顶角.结论(2)每一个矩形的对角线相等,大前提正方形是矩形,小前提正方形的对角线相等.结论34.已知f(x)=2x2+1,则函数f(cosx)的单调减区间为______.答案:解;∵f(x)=2x2+1,∴f(cosx)=2cos2x+1=1+cos2x+1=cos2x+2,令2kπ≤2x≤2kπ+π,k∈Z.解得kπ≤x≤kπ+π2,k∈Z.∴函数f(cosx)的单调减区间为[kπ,π2+kπ],k∈Z.故为:[kπ,π2+kπ],k∈Z.35.当太阳光线与水平面的倾斜角为60°时,要使一根长为2m的细杆的影子最长,则细杆与水平地面所成的角为()

A.15°

B.30°

C.45°

D.60°答案:B36.若矩阵A=

72

69

67

65

62

59

81

74

68

64

59

52

85

79

76

72

69

64

228

219

211

204

195

183

是表示我校2011届学生高二上学期的期中成绩矩阵,A中元素aij(i=1,2,3,4;j=1,2,3,4,5,6)的含义如下:i=1表示语文成绩,i=2表示数学成绩,i=3表示英语成绩,i=4表示语数外三门总分成绩j=k,k∈N*表示第50k名分数.若经过一定量的努力,各科能前进的名次是一样的.现小明的各科排名均在250左右,他想尽量提高三门总分分数,那么他应把努力方向主要放在哪一门学科上()

A.语文

B.数学

C.外语

D.都一样答案:B37.满足{1,2}∪A={1,2,3}的集合A的个数为______.答案:由{1,2}∪A={1,2,3},所以A={3},或{1,3},或{2,3},或{1,2,3}.所以集合A的个数为4.38.知x、y、z均为实数,

(1)若x+y+z=1,求证:++≤3;

(2)若x+2y+3z=6,求x2+y2+z2的最小值.答案:(1)证明略(2)x2+y2+z2的最小值为解析:(1)证明

因为(++)2≤(12+12+12)(3x+1+3y+2+3z+3)=27.所以++≤3.

7分(2)解

因为(12+22+32)(x2+y2+z2)≥(x+2y+3z)2=36,即14(x2+y2+z2)≥36,所以x2+y2+z2的最小值为.

14分39.对于任意空间四边形,试证明它的一组对边中点的连线与另一组对边可平行于同一平面.答案:证明:如图所示,空间四边形ABCD,E、F分别为AB、CD的中点,利用多边形加法法则可得①又E、F分别是AB、CD的中点,故有②将②代入①后,两式相加得即与共面,∴EF与AD、BC可平行于同一平面.40.(理)

设O为坐标原点,向量OA=(1,2,3),OB=(2,1,2),OP=(1,1,2),点Q在直线OP上运动,则当QA•QB取得最小值时,点Q的坐标为______.答案:∵OP=(1,1,2),点Q在直线OP上运动,设OQ=λOP=(λ,λ,2λ)又∵向量OA=(1,2,3),OB=(2,1,2),∴QA=(1-λ,2-λ,3-2λ),QB=(2-λ,1-λ,2-2λ)则QA•QB=(1-λ)×(2-λ)+(2-λ)×(1-λ)+(3-2λ)×(2-2λ)=6λ2-16λ+10易得当λ=43时,QA•QB取得最小值.此时Q的坐标为(43,43,83)故为:(43,43,83)41.若有以下说法:

①相等向量的模相等;

②若a和b都是单位向量,则a=b;

③对于任意的a和b,|a+b|≤|a|+|b|恒成立;

④若a∥b,c∥b,则a∥c.

其中正确的说法序号是()A.①③B.①④C.②③D.③④答案:根据定义,大小相等且方向相同的两个向量相等.因此相等向量的模相等,故①正确;因为单位向量的模等于1,而方向不确定.所以若a和b都是单位向量,则不一定有a=b成立,故②不正确;根据向量加法的三角形法则,可得对于任意的a和b,都有|a+b|≤|a|+|b|成立,当且仅当a和b方向相同时等号成立,故③正确;若b=0,则有a∥b且c∥b,但是a∥c不成立,故④不正确.综上所述,正确的命题是①③故选:A42.用反证法证明命题“a,b∈N,如果ab可被5整除,那么a,b至少有1个能被5整除.”则假设的内容是()

A.a,b都能被5整除

B.a,b都不能被5整除

C.a,b不能被5整除

D.a,b有1个不能被5整除答案:B43.若指数函数f(x)与幂函数g(x)的图象相交于一点(2,4),则f(x)=______,g(x)=______.答案:设f(x)=ax(a>0且a≠1),g(x)=xα将(2,4)代入两个解析式得4=a2,4=2α解得a=2,α=2故为:f(x)=2x,g(x)=x244.已知命题p:所有有理数都是实数,命题q:正数的对数都是负数,则下列命题中为真命题的是()A.(¬p)∨qB.p∧qC.(¬p)∧(¬q)D.(¬p)∨(¬q)答案:不难判断命题p为真命题,命题q为假命题,从而?p为假命题,?q为真命题,所以A、B、C均为假命题,故选D.45.(不等式选讲选做题)

已知实数a、b、x、y满足a2+b2=1,x2+y2=3,则ax+by的最大值为______.答案:因为a2+b2=1,x2+y2=3,由柯西不等式(a2+b2)(x2+y2)≥(ax+by)2,得3≥(ax+by)2,不且仅当ay=bx时取等号,所以ax+by的最大值为3.故为:3.46.对于回归方程y=4.75x+2.57,当x=28时,y

的估计值是______.答案:∵回归方程y=4.75x+2.57,∴当x=28时,y的估计值是4.75×28+2.57=135.57.故为:135.57.47.已知图所示的矩形,其长为12,宽为5.在矩形内随同地措施1000颗黄豆,数得落在阴影部分的黄豆数为550颗.则可以估计出阴影部分的面积约为______.答案:∵矩形的长为12,宽为5,则S矩形=60∴S阴S矩=S阴60=5501000,∴S阴=33,故:33.48.如图,已知⊙O的直径AB=5,C为圆周上一点,BC=4,过点C作⊙O的切线l,过点A作l的垂线AD,垂足为D,则CD=______.

答案:如图,连接OC,由题意DC是切线可得出OC⊥DC,再过过A作AE⊥OC于E,故有四边形AECD是矩形,可得AE=CD又⊙O的直径AB=5,C为圆周上一点,BC=4,∴AC=3故S△AOC=12S△ABC=12×12×4×3=3又OC=52,故12×52×AE=3解得AE=125所以CD=125故为:125.49.探测某片森林知道,可采伐的木材有10万立方米.设森林可采伐木材的年平均增长率为8%,则经过______年,可采伐的木材增加到40万立方米.答案:设经过n年可采伐本材达到40万立方米则有10×(1+8%)n=40即(1+8%)n=4故有n=log1.084,解得n≈19即经过19年,可采伐的木材增加到40万立方米故为1950.命题“存在x∈Z使x2+2x+m≤0”的否定是()

A.存在x∈Z使x2+2x+m>0

B.不存在x∈Z使x2+2x+m>0

C.对任意x∈Z使x2+2x+m≤0

D.对任意x∈Z使x2+2x+m>0答案:D第3卷一.综合题(共50题)1.在我市新一轮农村电网改造升级过程中,需要选一个电阻调试某村某设备的线路,但调试者手中必有阻值分别为0.5KΩ,1KΩ,1.3KΩ,2KΩ,3KΩ,5KΩ,5.5KΩ等七种阻值不等的定值电阻,他用分数法进行优选试验时,依次将电阻从小到大安排序号,如果第1个试点与第2个试点比较,第1个试点是一个好点,则第3个试点值的阻值为[

]A、1KΩ

B、1.3KΩ

C、5KΩ

D、1KΩ或5KΩ答案:C2.已知直线l1:y=kx+(k<0=被圆x2+y2=4截得的弦长为,则l1与直线l2:y=(2+)x的夹角的大小是()

A.30°

B.45°

C.60°

D.75°答案:B3.椭圆x2+my2=1的焦点在y轴上,长轴长是短轴长的两倍,则m的值为()

A.

B.

C.2

D.4答案:A4.已知O是△ABC所在平面内一点,D为BC边中点,且,那么(

A.

B.

C.

D.2

答案:A5.求证:答案:证明见解析解析:证:∴6.如图:已知圆上的弧

AC=

BD,过C点的圆的切线与BA的延长线交于E点,证明:

(Ⅰ)∠ACE=∠BCD.

(Ⅱ)BC2=BE×CD.答案:(Ⅰ)因为AC=BD,所以∠BCD=∠ABC.又因为EC与圆相切于点C,故∠ACE=∠ABC所以∠ACE=∠BCD.(5分)(Ⅱ)因为∠ECB=∠CDB,∠EBC=∠BCD,所以△BDC~△ECB,故BCBE=CDBC.即BC2=BE×CD.(10分)7.如图,在等边△ABC中,以AB为直径的⊙O与BC相交于点D,连接AD,则∠DAC的度数为

______度.答案:∵AB是⊙O的直径,∴∠ADB=90°,即AD⊥BC;又∵△ABC是等边三角形,∴DA平分∠BAC,即∠DAC=12∠BAC=30°.故为:30.8.将参数方程x=2sinθy=1+2cos2θ(θ为参数,θ∈R)化为普通方程,所得方程是______.答案:由x=2sinθ

①y=1+2cos2θ

②,因为θ∈R,所以-1≤sinθ≤1,则-2≤x≤2.由①两边平方得:x2=2sin2θ③由②得y-1=2cos2θ④③+④得:x2+y-1=2,即y=-x2+3(-2≤x≤2).故为y=-x2+3(-2≤x≤2).9.如图,A地到火车站共有两条路径L1和L2,据统计,通过两条路径所用的时间互不影响,所用时间落在各时间段内的频率如下表:所用时间(分钟)10~2020~3030~4040~5050~60L1的频率0.10.20.30.20.2L2的频率00.10.40.40.1现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站.

(Ⅰ)为了尽最大可能在各自允许的时间内赶到火车站,甲和乙应如何选择各自的路径?

(Ⅱ)用X表示甲、乙两人中在允许的时间内能赶到火车站的人数,针对(Ⅰ)的选择方案,求X的分布列和数学期望.答案:(Ⅰ)Ai表示事件“甲选择路径Li时,40分钟内赶到火车站”,Bi表示事件“乙选择路径Li时,50分钟内赶到火车站”,i=1,2.用频率估计相应的概率可得∵P(A1)=0.1+0.2+0.3=0.6,P(A2)=0.1+0.4=0.5,∵P(A1)>P(A2)∴甲应选择LiP(B1)=0.1+0.2+0.3+0.2=0.8,P(B2)=0.1+0.4+0.4=0.9,∵P(B2)>P(B1),∴乙应选择L2.(Ⅱ)A,B分别表示针对(Ⅰ)的选择方案,甲、乙在各自允许的时间内赶到火车站,由(Ⅰ)知P(A)=0.6,P(B)=0.9,又由题意知,A,B独立,P(X=0)=P(.A.B)=P(.A)P(.B)=0.4×0.1=0.04P(x=1)=P(.AB+A.B)=P(.A)P(B)+P(A)P(.B)=0.4×0.9+0.6×0.1=0.42P(X=2)=P(AB)=P(A)(B)=0.6×0.9=0.54X的分布列EX=0×0.04+1×0.42+2×0.54=1.5.10.过点M(0,1)作直线,使它被两直线l1:x-3y+10=0,l2:2x+y-8=0所截得的线段恰好被M所平分,求此直线方程.答案:设所求直线与已知直线l1,l2分别交于A、B两点.∵点B在直线l2:2x+y-8=0上,故可设B(t,8-2t).又M(0,1)是AB的中点,由中点坐标公式得A(-t,2t-6).∵A点在直线l1:x-3y+10=0上,∴(-t)-3(2t-6)+10=0,解得t=4.∴B(4,0),A(-4,2),故所求直线方程为:x+4y-4=0.11.某重点高中高二历史会考前,进行了五次历史会考模拟考试,某同学在这五次考试中成绩如下:90,90,93,94,93,则该同学的这五次成绩的平均值和方差分别为()

A.92,2

B.92,2.8

C.93,2

D.93,2.8答案:B12.如图,已知△ABC,过顶点A的圆与边BC切于BC的中点P,与边AB、AC分别交于点M、N,且CN=2BM,点N平分AC.则AM:BM=()

A.2

B.4

C.6

D.7

答案:D13.规定符号“△”表示一种运算,即a△b=ab+a+b,其中a、b∈R+;若1△k=3,则函数f(x)=k△x的值域______.答案:1△k=k+1+k=3,解得k=1,∴k=1∴f(x)=k△x=kx+k+x=x+x+1对于x需x≥0,∴对于f(x)=x+x+1=(x+12)2+34≥1故函数f(x)的值域为[1,+∞)故为:[1,+∞)14.命题“若a>3,则a>5”的逆命题是______.答案:∵原命题“若a>3,则a>5”的条件是a>3,结论是a>5∴逆命题是“若a>5,则a>3”故为:若a>5,则a>315.将两粒均匀的骰子各抛掷一次,观察向上的点数,计算:

(1)共有多少种不同的结果?并试着列举出来.

(2)两粒骰子点数之和等于3的倍数的概率;

(3)两粒骰子点数之和为4或5的概率.答案:(1)每一粒均匀的骰子抛掷一次,都有6种结果,根据分步计数原理,所有可能结果共有6×6=36种.

…(4分)(2)两粒骰子点数之和等于3的倍数的有以下12种:(1,2),(2,1),(1,5),(5,1),(2,4),(4,2),(3,3),(3,6),(6,3),(5,4),(4,5),(6,6),共有12个结果,因此,两粒骰子点数之和等于3的倍数的概率是1236=13.

…(8分)(3)两粒骰子点数之和为4或5的有以下7种:(2,2),(1,3),(3,1),(2,3),(3,2),(1,4),(4,1),因此,两粒骰子点数之和为4或5的概率为736.

…(12分)16.圆锥曲线G的一个焦点是F,与之对应的准线是,过F作直线与G交于A、B两点,以AB为直径作圆M,圆M与的位置关系决定G

是何种曲线之间的关系是:______

圆M与的位置相离相切相交G

是何种曲线答案:设圆锥曲线过焦点F的弦为AB,过A、B分别向相应的准线作垂线AA',BB',则由第二定义得:|AF|=e|AA'|,|BF|=e|BB'|,∴|AF|+|BF|2=|AA′|+|BB′|2

?

e.设以AB为直径的圆半径为r,圆心到准线的距离为d,即有r=de,椭圆的离心率

0<e<1,此时r<d,圆M与准线相离;抛物线的离心率

e=1,此时r=d,圆M与准线相切;双曲线的离心率

e>1,此时r>d,圆M与准线相交.故为:椭圆、抛物线、双曲线.17.已知一种材料的最佳加入量在110g到210g之间.若用0.618法安排试验,则第一次试点的加入量可以是(

)g。答案:171.8或148.218.给出下列结论:

(1)两个变量之间的关系一定是确定的关系;

(2)相关关系就是函数关系;

(3)回归分析是对具有函数关系的两个变量进行统计分析的一种常用方法;

(4)回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法.

以上结论中,正确的有几个?()

A.1

B.2

C.3

D.4答案:A19.已知a=(1,-2,4),b=(1,0,3),c=(0,0,2).求

(1)a•(b+c);

(2)4a-b+2c.答案:解(1)∵b+c=(1,0,5),∴a•(b+c)=1×1+(-2)×0+4×5=21.(2)4a-b+2c=(4,-8,16)-(1,0,3)+(0,0,4)=(3,-8,17).20.在平面直角坐标系xoy中,曲线C1的参数方程为x=4cosθy=2sinθ(θ为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,得曲线C2的极坐标方程为ρ=2cosθ-4sinθ(ρ>0).

(Ⅰ)化曲线C1、C2的方程为普通方程,并说明它们分别表示什么曲线;

(Ⅱ)设曲线C1与x轴的一个交点的坐标为P(m,0)(m>0),经过点P作曲线C2的切线l,求切线l的方程.答案:(Ⅰ)曲线C1:x216+y24=1;曲线C2:(x-1)2+(y+2)2=5;(3分)曲线C1为中心是坐标原点,焦点在x轴上,长半轴长是4,短半轴长是2的椭圆;曲线C2为圆心为(1,-2),半径为5的圆(2分)(Ⅱ)曲线C1:x216+y24=1与x轴的交点坐标为(-4,0)和(4,0),因为m>0,所以点P的坐标为(4,0),(2分)显然切线l的斜率存在,设为k,则切线l的方程为y=k(x-4),由曲线C2为圆心为(1,-2),半径为5的圆得|k+2-4k|k2+1=5,解得k=3±102,所以切线l的方程为y=3±102(x-4)(3分)21.已知定直线l及定点A(A不在l上),n为过点A且垂直于l的直线,设N为l上任意一点,线段AN的垂直平分线交n于B,点B关于AN的对称点为P,求证:点P的轨迹为抛物线.答案:证明:如图所示,建立平面直角坐标系,并且连结PA,PN,NB.由题意知PB垂直平分AN,且点B关于AN的对称点为P,∴AN也垂直平分PB.∴四边形PABN为菱形,∴PA=PN.∵AB⊥l,∴PN⊥l.故点P符合抛物线上点的条件:到定点A的距离和到定直线l的距离相等,∴点P的轨迹为抛物线.22.已知二项分布ξ~B(4,12),则该分布列的方差Dξ值为______.答案:∵二项分布ξ~B(4,12),∴该分布列的方差Dξ=npq=4×12×(1-12)=1故为:123.若3π2<α<2π,则直线xcosα+ysinα=1必不经过()A.第一象限B.第二象限C.第三象限D.第四象限答案:令x=0,得y=sinα<0,令y=0,得x=cosα>0,直线过(0,sinα),(cosα,0)两点,因而直线不过第二象限.故选B24.已知直线l:ax+by=1(ab>0)经过点P(1,4),则l在两坐标轴上的截距之和的最小值是______.答案:∵直线l:ax+by=1(ab>0)经过点P(1,4),∴a+4b=1,故a、b都是正数.故直线l:ax+by=1,此直线在x、y轴上的截距分别为1a、1b,则l在两坐标轴上的截距之和为1a+1b=a+4ba+a+4bb=5+4ba+ab≥5+24ba?ab=9,当且仅当4ba=ab时,取等号,故为9.25.经过原点,圆心在x轴的负半轴上,半径等于2的圆的方程是______.答案:∵圆过原点,圆心在x轴的负半轴上,∴圆心的横坐标的相反数等于圆的半径,又∵半径r=2,∴圆心坐标为(-2,0),由此可得所求圆的方程为(x+2)2+y2=2.故为:(x+2)2+y2=226.如图,点O是平行六面体ABCD-A1B1C1D1的对角线BD1与A1C的交点,=,=,=,则=()

A.++

B.++

C.--+

D.+-

答案:C27.下列哪组中的两个函数是同一函数()A.y=(x)2与y=xB.y=(3x)3与y=xC.y=x2与y=(x)2D.y=3x3与y=x2x答案:A、y=x与y=x2的定义域不同,故不是同一函数.B、y=(3x)3=x与y=x的对应关系相同,定义域为R,故是同一函数.C、fy=x2与y=(x)2的定义域不同,故不是同一函数.D、y=3x3与y=x2x

具的定义域不同,故不是同一函数.故选B.28.方程x2+ky2=2表示焦点在y轴的椭圆,那么实数k的取值范围是

______.答案:椭圆方程化为x22+y22k=1.焦点在y轴上,则2k>2,即k<1.又k>0,∴0<k<1.故为:0<k<129.如图,四边形ABCD内接于圆O,且AC、BD交于点E,则此图形中一定相似的三角形有()对.

A.0

B.3

C.2

D.1

答案:C30.某学校为了解该校1200名男生的百米成绩(单位:秒),随机选择了50名学生进行调查.如图是这50名学生百米成绩的频率分布直方图.根据样本的频率分布,估计这1200名学生中成绩在[13,15](单位:秒)内的人数大约是______.答案:∵由图知,前面两个小矩形的面积=0.02×1+0.18×1=0.2,即频率,∴1200名学生中成绩在[13,15](单位:s)内的人数大约是0.2×1200=240.故为240.31.(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)

A.(不等式选做题)不等式|x-5|+|x+3|≥10的解集是______.

B.(坐标系与参数方程选做题)在极坐标系中,圆ρ=-2sinθ的圆心的极坐标是______.

C.(几何证明选做题)如图,已知圆中两条弦AB与CD相交于点F,E是AB延长线上一点,且DF=CF=22,BE=1,BF=2,若CE与圆相切,则线段CE的长为______.答案:A.∵|x-5|+|x+3|≥10,∴当x≥5时,x-5+x+3≥10,∴x≥6;当x≤-3时,有5-x+(-x-3)≥10,∴x≤-4;当-4<x<5时,有5-x+x+3≥8,不成立;故不等式|x-5|+|x+3|≥10的解集是{x|x≤-4或x≥6};B.由ρ=-2sinθ得:ρ2=-2ρsinθ,即x2+y2=-2y,∴x2+(y+1)2=1,∴该圆的圆心的直角坐标为(-1,0),∴其极坐标是(1,3π2);C.∵DF=CF=22,BE=1,BF=2,依题意,由相交线定理得:AF•FB=DF•FC,∴AF×2=22×22,∴AF=4;又∵CE与圆相切,∴|CE|2=|EB|•|EA|=1×(1+2+4)=7,∴|CE|=7.故为:A.{x|x≤-4或x≥6};B.(1,3π2);C.7.32.如图,已知AP是⊙O的切线,P为切点,AC是⊙O的割线,与⊙O交于B,C两点,圆心O在∠PAC的内部,点M是BC的中点.

(Ⅰ)证明A,P,O,M四点共圆;

(Ⅱ)求∠OAM+∠APM的大小.答案:证明:(Ⅰ)连接OP,OM.因为AP与⊙O相切于点P,所以OP⊥AP.因为M是⊙O的弦BC的中点,所以OM⊥BC.于是∠OPA+∠OMA=180°.由圆心O在∠PAC的内部,可知四边形M的对角互补,所以A,P,O,M四点共圆.(Ⅱ)由(Ⅰ)得A,P,O,M四点共圆,所以∠OAM=∠OPM.由(Ⅰ)得OP⊥AP.由圆心O在∠PAC的内部,可知∠OPM+∠APM=90°.又∵A,P,O,M四点共圆∴∠OPM=∠OAM所以∠OAM+∠APM=90°.33.以抛物线的焦点弦为直径的圆与其准线的位置关系是(

A.相切

B.相交

C.相离

D.以上均有可能答案:A34.如图,平面内有三个向量OA,OB,OC,其中OA与OB的夹角为120°,OA与OC的夹角为30°.且|OA|=1,|OB|=1,|OC|=23,若|OC|=λOA+μOB(λ,μ∈R),求λ+μ的值.答案:如图,OC=OD+OE=λOA+μOB,在△O

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论