




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年铜川职业技术学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.某学校为了解该校1200名男生的百米成绩(单位:秒),随机选择了50名学生进行调查.如图是这50名学生百米成绩的频率分布直方图.根据样本的频率分布,估计这1200名学生中成绩在[13,15](单位:秒)内的人数大约是______.答案:∵由图知,前面两个小矩形的面积=0.02×1+0.18×1=0.2,即频率,∴1200名学生中成绩在[13,15](单位:s)内的人数大约是0.2×1200=240.故为240.2.(上海卷理3文8)动点P到点F(2,0)的距离与它到直线x+2=0的距离相等,则P的轨迹方程为______.答案:由抛物线的定义知点P的轨迹是以F为焦点的抛物线,其开口方向向右,且p2=2,解得p=4,所以其方程为y2=8x.故为y2=8x3.如图示程序运行后的输出结果为______.答案:该程序的作用是求数列ai=2i+3中满足条件的ai的值∵最终满足循环条件时i=9∴ai的值为21故为:214.先后2次抛掷一枚骰子,将得到的点数分别记为a,b.
(1)求直线ax+by+5=0与圆x2+y2=1相切的概率;
(2)将a,b,5的值分别作为三条线段的长,求这三条线段能围成等腰三角形的概率.答案:(1)先后2次抛掷一枚骰子,将得到的点数分别记为a,b,事件总数为6×6=36.∵直线ax+by+c=0与圆x2+y2=1相切的充要条件是5a2+b2=1即:a2+b2=25,由于a,b∈{1,2,3,4,5,6}∴满足条件的情况只有a=3,b=4,c=5;或a=4,b=3,c=5两种情况.∴直线ax+by+c=0与圆x2+y2=1相切的概率是236=118(2)先后2次抛掷一枚骰子,将得到的点数分别记为a,b,事件总数为6×6=36.∵三角形的一边长为5∴当a=1时,b=5,(1,5,5)1种当a=2时,b=5,(2,5,5)1种当a=3时,b=3,5,(3,3,5),(3,5,5)2种当a=4时,b=4,5,(4,4,5),(4,5,5)2种当a=5时,b=1,2,3,4,5,6,(5,1,5),(5,2,5),(5,3,5),(5,4,5),(5,5,5),(5,6,5)6种当a=6时,b=5,6,(6,5,5),(6,6,5)2种故满足条件的不同情况共有14种故三条线段能围成不同的等腰三角形的概率为1436=718.5.已知函数y=f(x)是R上的奇函数,其零点为x1,x2,…,x2011,则x1+x2+…+x2011=______.答案:∵f(x)是R上的奇函数,∴0是函数y=f(x)的零点.其他非0的零点关于原点对称.∴x1+x2+…+x2011=0.故为:0.6.中心在坐标原点,离心率为的双曲线的焦点在y轴上,则它的渐近线方程为()
A.
B.
C.
D.答案:D7.k取何值时,一元二次方程kx2+3kx+k=0的两根为负。答案:解:∴k≤或k>38.已知一种材料的最佳加入量在100g到200g之间,若用0.618法安排试验,则第一次试点的加入量可以是(
)g。答案:161.8或138.29.已知的单调区间;
(2)若答案:(1)(2)证明略解析:(1)对已知函数进行降次分项变形
,得,(2)首先证明任意事实上,而
.10.大熊猫活到十岁的概率是0.8,活到十五岁的概率是0.6,若现有一只大熊猫已经十岁了,则他活到十五岁的概率是()
A.0.8
B.0.75
C.0.6
D.0.48答案:B11.如图:一个力F作用于小车G,使小车G发生了40米的位移,F的大小为50牛,且与小车的位移方向的夹角为60°,则F在小车位移方向上的正射影的数量为______,力F做的功为______牛米.答案:如图,∵|F|=50,且F与小车的位移方向的夹角为60°,∴F在小车位移方向上的正射影的数量为:|F|cos60°=50×12=25(牛).∵力F作用于小车G,使小车G发生了40米的位移,∴力F做的功w=25×40=1000(牛米).故为:25牛,1000.12.经过两点A(-3,5),B(1,1
)的直线倾斜角为______.答案:因为两点A(-3,5),B(1,1
)的直线的斜率为k=1-51-(-3)=-1所以直线的倾斜角为:135°.故为:135°.13.2005年10月,我国载人航天飞船“神六”飞行获得圆满成功.已知“神六”飞船变轨前的运行轨道是一个以地心为焦点的椭圆,飞船近地点、远地点离地面的距离分别为200公里、250公里.设地球半径为R公里,则此时飞船轨道的离心率为______.(结果用R的式子表示)答案:(I)设椭圆的方程为x2a2+y2b2=1由题设条件得:a-c=|OA|-|OF2|=|F2A|=R+200,a+c=|OB|+|OF2|=|F2B|=R+250,解得a=225+R,c=25则此时飞船轨道的离心率为25225+R故为:25225+R.14.如图是一个几何体的三视图(单位:cm),则这个几何体的表面积是()A.(7+2)
cm2B.(4+22)cm2C.(6+2)cm2D.(6+22)cm2答案:图中的几何体可看成是一个底面为直角梯形的直棱柱.直角梯形的上底为1,下底为2,高为1;棱柱的高为1.可求得直角梯形的四条边的长度为1,1,2,2.所以此几何体的表面积S表面=2S底+S侧面=12(1+2)×1×2+(1+1+2+2)×1=7+2(cm2).故选A.15.下列说法中正确的是()
A.若∥,则与向相同
B.若||<||,则<
C.起点不同,但方向相同且模相等的两个向量相等
D.所有的单位向量都相等答案:C16.一次函数y=3x+2的斜率和截距分别是()A.2、3B.2、2C.3、2D.3、3答案:根据一次函数的定义和直线的斜截式方程知,此一次函数的斜率为3、截距为2故选C17.设x,y,z∈R,且满足:x2+y2+z2=1,x+2y+3z=14,则x+y+z=______.答案:根据柯西不等式,得(x+2y+3z)2≤(12+22+32)(x2+y2+z2)=14(x2+y2+z2)当且仅当x1=y2=z3时,上式的等号成立∵x2+y2+z2=1,∴(x+2y+3z)2≤14,结合x+2y+3z=14,可得x+2y+3z恰好取到最大值14∴x1=y2=z3=1414,可得x=1414,y=147,z=31414因此,x+y+z=1414+147+31414=3147故为:314718.已知两圆x2+y2-2x-6y-1=0.x2+y2-10x-12y+m=0.
(1)m取何值时两圆外切?
(2)m取何值时两圆内切?
(3)当m=45时,求两圆的公共弦所在直线的方程和公共弦的长.答案:(1)由已知可得两个圆的方程分别为(x-1)2+(y-3)2=11、(x-5)2+(y-6)2=61-m,两圆的圆心距d=(5-1)2+(6-3)2=5,两圆的半径之和为11+61-m,由两圆的半径之和为11+61-m=5,可得m=25+1011.(2)由两圆的圆心距d=(5-1)2+(6-3)2=5等于两圆的半径之差为|11-61-m|,即|11-61-m|=5,可得
11-61-m=5(舍去),或
11-61-m=-5,解得m=25-1011.(3)当m=45时,两圆的方程分别为(x-1)2+(y-3)2=11、(x-5)2+(y-6)2=16,把两个圆的方程相减,可得公共弦所在的直线方程为4x+3y-23=0.第一个圆的圆心(1,3)到公共弦所在的直线的距离为d=|4+9-23|5=2,可得弦长为211-4=27.19.球的表面积与它的内接正方体的表面积之比是()A.π3B.π4C.π2D.π答案:设:正方体边长设为:a则:球的半径为3a2所以球的表面积S1=4?π?R2=4π34a2=3πa2而正方体表面积为:S2=6a2所以比值为:S1S2=π2故选C20.一圆锥侧面展开图为半圆,平面α与圆锥的轴成45°角,则平面α与该圆锥侧面相交的交线为()A.圆B.抛物线C.双曲线D.椭圆答案:设圆锥的母线长为R,底面半径为r,则:πR=2πr,∴R=2r,∴母线与高的夹角的正弦值=rR=12,∴母线与高的夹角是30°.由于平面α与圆锥的轴成45°>30°;则平面α与该圆锥侧面相交的交线为椭圆.故选D.21.函数y=ax+b与y=logbx且a>0,在同一坐标系内的图象是()A.
B.
C.
D.
答案:∵a>0,则函数y=ax+b为增函数,与y轴的交点为(0,b)当0<b<1时,函数y=ax+b与y轴的交点在原点和(0,1)点之间,y=logbx为减函数,D图满足要求;当b>1时,函数y=ax+b与y轴的交点在(0,1)点上方,y=logbx为增函数,不存在满足条件的图象;故选D22.若命题P(n)对n=k成立,则它对n=k+2也成立,又已知命题P(2)成立,则下列结论正确的是()
A.P(n)对所有自然数n都成立
B.P(n)对所有正偶数n成立
C.P(n)对所有正奇数n都成立
D.P(n)对所有大于1的自然数n成立答案:B23.使关于的不等式有解的实数的最大值是(
)A.B.C.D.答案:D解析:令则的最大值为。选D。还可用Cauchy不等式。24.设集合A={1,2,4},B={2,6},则A∪B等于()A.{2}B.{1,2,4,6}C.{1,2,4}D.{2,6}答案:∵集合A={1,2,4},B={2,6},∴A∪B={1,2,4}∪{2,6}={1,2,4,6},故选B.25.掷一颗均匀的骰子,若随机事件A表示“出现奇数点”,则A的对立事件B表示______.答案:掷一颗均匀的骰子,结果只有2种:出现奇数点、出现偶数点.若随机事件A表示“出现奇数点”,则A的对立事件B表示:“出现偶数点”,故为出现偶数点.26.设集合M={x|0<x≤3},N={x|0<x≤1},那么“a∈M”是“a∈N”的()
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件答案:B27.一个类似于细胞分裂的物体,一次分裂为二,两次分裂为四,如此继续分裂有限多次,而随机终止.设分裂n次终止的概率是(n=1,2,3,…).记X为原物体在分裂终止后所生成的子块数目,则P(X≤10)=()
A.
B.
C.
D.以上均不对答案:A28.已知两个力F1,F2的夹角为90°,它们的合力大小为20N,合力与F1的夹角为30°,那么F1的大小为()A.103NB.10
NC.20
ND.102N答案:设向F1,F2的对应向量分别为OA、OB以OA、OB为邻边作平行四边形OACB如图,则OC=OA+OB,对应力F1,F2的合力∵F1,F2的夹角为90°,∴四边形OACB是矩形在Rt△OAC中,∠COA=30°,|OC|=20∴|OA|=|OC|cos30°=103故选:A29.向量a=(2,-1,4)与b=(-1,1,1)的夹角的余弦值为______.答案:∵a•b=-2-1+4=1,|a|=22+1+42=21,|b|=3.∴cos<a,b>=a•b|a|
|b|=121•3=721.故为721.30.以椭圆的焦点为顶点、顶点为焦点的双曲线方程是()
A.
B.
C.
D.答案:C31.如图①y=ax,②y=bx,③y=cx,④y=dx,根据图象可得a、b、c、d与1的大小关系为()
A.a<b<1<c<d
B.b<a<1<d<c
C.1<a<b<c<d
D.a<b<1<d<c
答案:B32.若矩阵A=是表示我校2011届学生高二上学期的期中成绩矩阵,A中元素aij(i=1,2,3,4;j=1,2,3,4,5,6)的含义如下:i=1表示语文成绩,i=2表示数学成绩,i=3表示英语成绩,i=4表示语数外三门总分成绩j=k,k∈N*表示第50k名分数.若经过一定量的努力,各科能前进的名次是一样的.现小明的各科排名均在250左右,他想尽量提高三门总分分数,那么他应把努力方向主要放在哪一门学科上()
A.语文
B.数学
C.外语
D.都一样答案:B33.若A(0,2,198),B(1,-1,58),C(-2,1,58)是平面α内的三点,设平面α的法向量a=(x,y,z),则x:y:z=______.答案:AB=(1,-3,-74),AC=(-2,-1,-74),α•AB=0,α•AC=0,∴x=23yz=-43y,x:y:z=23y:y:(-43y)=2:3:(-4).故为2:3:-4.34.已知直线l1,l2的夹角平分线所在直线方程为y=x,如果l1的方程是ax+by+c=0(ab>0),那么l2的方程是()
A.bx+ay+c=0
B.ax-by+c=0
C.bx+ay-c=0
D.bx-ay+c=0答案:A35.已知直线l:ax+by=1(ab>0)经过点P(1,4),则l在两坐标轴上的截距之和的最小值是______.答案:∵直线l:ax+by=1(ab>0)经过点P(1,4),∴a+4b=1,故a、b都是正数.故直线l:ax+by=1,此直线在x、y轴上的截距分别为1a、1b,则l在两坐标轴上的截距之和为1a+1b=a+4ba+a+4bb=5+4ba+ab≥5+24ba?ab=9,当且仅当4ba=ab时,取等号,故为9.36.用反证法证明:已知x,y∈R,且x+y>2,则x,y中至少有一个大于1.答案:证明:用反证法,假设x,y均不大于1,即x≤1且y≤1,则x+y≤2,这与已知条件x+y>2矛盾,∴x,y中至少有一个大于1,即原命题得证.37.已知向量与的夹角为120°,若向量,且,则=()
A.2
B.
C.
D.答案:C38.某射击运动员在四次射击中分别打出了9,x,10,8环的成绩,已知这组数据的平均数为9,则这组数据的方差是______.答案:∵四次射击中分别打出了10,x,10,8环,这组数据的平均数为9,∴9+x+10+84,∴x=9,∴这组数据的方差是14(00+1+1)=12,故为:1239.设抛物线y2=2px(p>0)上一点A(1,2)到点B(x0,0)的距离等于到直线x=-1的距离,则实数x0的值是______.答案:∵点A(1,2)在抛物线y2=2px(p>0)上,∴4=2p,p=2,故抛物线方程为y2=4x,准线方程为x=1.由点A(1,2)到点B(x0,0)的距离等于到直线x=-1的距离,故点B(x0,0)为抛物线y2=4x的焦点,故x0=1.故为1.40.命题“若a>3,则a>5”的逆命题是______.答案:∵原命题“若a>3,则a>5”的条件是a>3,结论是a>5∴逆命题是“若a>5,则a>3”故为:若a>5,则a>341.如图,△ABC内接于圆⊙O,CT切⊙O于C,∠ABC=100°,∠BCT=40°,则∠AOB=()
A.30°
B.40°
C.80°
D.70°
答案:C42.从A处望B处的仰角为α,从B处望A处的俯角为β,则α、β的关系为()A.α>βB.α=βC.α+β=90°D.α+β=180°答案:从点A看点B的仰角与从点B看点A的俯角互为内错角,大小相等.仰角和俯角都是水平线与视线的夹角,故α=β.故选:B.43.已知x、y的取值如下表所示:
x0134y2.24.34.86.7若从散点图分析,y与x线性相关,且
y=0.95x+
a,则
a的值等于()A.2.6B.6.3C.2D.4.5答案:∵.x=0+1+3+44=2,.y=2.2+4.3+4.8+6.74=4.5,∴这组数据的样本中心点是(2,4.5)∵y与x线性相关,且y=0.95x+a,∴4.5=0.95×2+a,∴a=2.6,故选A.44.函数y=ax2+a与(a≠0)在同一坐标系中的图象可能是()
A.
B.
C.
D.
答案:D45.已知变量a,b已被赋值,要交换a、b的值,应采用的算法是()
A.a=b,b=a
B.a=c,b=a,c=b
C.a=c,b=a,c=a
D.c=a,a=b,b=c答案:D46.已知函数f(x)=x21+x2.
(1)求f(2)与f(12),f(3)与f(13);
(2)由(1)中求得结果,你能发现f(x)与f(1x)有什么关系?并证明你的结论;
(3)求f(1)+f(2)+f(3)+…+f(2013)+f(12)+f(13)+…+f(12013)的值.答案:(1)f(2)=45,f(12)=15…1分f(3)=910,f(13)=110…2分(2)f(x)+f(1x)=1…5分证:f(x)+f(1x)=x21+x2+(1x)21+(1x)2=x21+x2+11+x2=1…8分(3)f(1)+f(2)+f(3)+…+f(2013)+f(12)+f(13)+…+f(12013)=f(1)+[f(2)+f(12)]+[f(3)+f(13)]+…+[f(2013)+f(12013)]=12+2012=40252…12分47.为了检查某超市货架上的奶粉是否含有三聚氰胺,要从编号依次为1到50的袋装奶粉中抽取5袋进行检验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的5袋奶粉的编号可能是()
A.5,10,15,20,25
B.2,4,8,16,32
C.1,2,3,4,5
D.7,17,27,37,47答案:D48.若数据x1,x2,x3…xn的平均数.x=5,方差σ2=2,则数据3x1+1,3x2+1,3x3+1…,3xn+1的方差为______.答案:∵x1,x2,x3,…,xn的方差为2,∴3x1+1,3x2+1,3x3+1,…,3xn+1的方差是32×2=18.故为:18.49.”m>n>0”是”方程mx2+ny2=1表示焦点在y轴上的椭圆”的()
A.充分而不必要条件
B.必要而不充分条件
C.充要条件
D.既不充分也不必要条件答案:C50.已知圆台的上下底面半径分别是2cm、5cm,高为3cm,求圆台的体积.答案:∵圆台的上下底面半径分别是2cm、5cm,高为3cm,∴圆台的体积V=13×3×(4π+4π?25π+25π)=39πcm3.第2卷一.综合题(共50题)1.某工厂生产的产品,用速度恒定的传送带将产品送入包装车间之前,质检员每隔3分钟从传送带上是特定位置取一件产品进行检测,这种抽样方法是()
A.简单随机抽样
B.系统抽样
C.分层抽样
D.其它抽样方法答案:B2.f(x)=(1+2x)m+(1+3x)n(m,n∈N*)的展开式中x的系数为13,则x2的系数为()A.31B.40C.31或40D.71或80答案:(1+2x)m的展开式中x的系数为2Cm1=2m,(1+3x)n的展开式中x的系数为3Cn1=3n∴3n+2m=13∴n=1m=5或n=3m=2(1+2x)m的展开式中的x2系数为22Cm2,(1+3x)n的展开式中的x2系数为32Cn2∴当n=1m=5时,x2的系数为22Cm2+32Cn2=40当n=3m=2时,x2的系数为22Cm2+32Cn2=31故选C.3.以A(1,5)、B(5,1)、C(-9,-9)为顶点的三角形是()
A.等边三角形
B.等腰三角形
C.不等边三角形
D.直角三角形答案:B4.若平面α,β的法向量分别为(-1,2,4),(x,-1,-2),并且α⊥β,则x的值为()A.10B.-10C.12D.-12答案:∵α⊥β,∴平面α,β的法向量互相垂直∴(-1,2,4)•(x,-1,-2)=0即-1×x+(-1)×2+4×(-2)=0解得x=-10故选B.5.如图,A地到火车站共有两条路径L1和L2,据统计,通过两条路径所用的时间互不影响,所用时间落在各时间段内的频率如下表:所用时间(分钟)10~2020~3030~4040~5050~60L1的频率0.10.20.30.20.2L2的频率00.10.40.40.1现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站.
(Ⅰ)为了尽最大可能在各自允许的时间内赶到火车站,甲和乙应如何选择各自的路径?
(Ⅱ)用X表示甲、乙两人中在允许的时间内能赶到火车站的人数,针对(Ⅰ)的选择方案,求X的分布列和数学期望.答案:(Ⅰ)Ai表示事件“甲选择路径Li时,40分钟内赶到火车站”,Bi表示事件“乙选择路径Li时,50分钟内赶到火车站”,i=1,2.用频率估计相应的概率可得∵P(A1)=0.1+0.2+0.3=0.6,P(A2)=0.1+0.4=0.5,∵P(A1)>P(A2)∴甲应选择LiP(B1)=0.1+0.2+0.3+0.2=0.8,P(B2)=0.1+0.4+0.4=0.9,∵P(B2)>P(B1),∴乙应选择L2.(Ⅱ)A,B分别表示针对(Ⅰ)的选择方案,甲、乙在各自允许的时间内赶到火车站,由(Ⅰ)知P(A)=0.6,P(B)=0.9,又由题意知,A,B独立,P(X=0)=P(.A.B)=P(.A)P(.B)=0.4×0.1=0.04P(x=1)=P(.AB+A.B)=P(.A)P(B)+P(A)P(.B)=0.4×0.9+0.6×0.1=0.42P(X=2)=P(AB)=P(A)(B)=0.6×0.9=0.54X的分布列EX=0×0.04+1×0.42+2×0.54=1.5.6.3科老师都布置了作业,在同一时刻4名学生都做作业的可能情况有()
A.43种
B.4×3×2种
C.34种
D.1×2×3种答案:C7.在极坐标中,由三条曲线θ=0,θ=,ρcosθ+ρsinθ=1围成的图形的面积是()
A.
B.
C.
D.答案:A8.设F1、F2分别是椭圆x225+y216=1的左、右焦点,P为椭圆上一点,M是F1P的中点,|OM|=3,则P点到椭圆左焦点距离为______.答案:由题意知,OM是三角形PF1P的中位线,∵|OM|=3,∴|PF2|=6,又|PF1|+|PF2|=2a=10,∴|PF1|=4,故为4.9.已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为V1和V2,则V1:V2=()A.1:3B.1:1C.2:1D.3:1答案:设圆柱,圆锥的底面积为S,高为h,则由柱体,锥体的体积公式得:V1:V2=(Sh):(13Sh)=3:1故选D.10.若a>0,使不等式|x-4|+|x-3|<a在R上的解集不是空集的a的取值是()
A.0<a<1
B.a=1
C.a>1
D.以上均不对答案:C11.某校高三有1000个学生,高二有1200个学生,高一有1500个学生.现按年级分层抽样,调查学生的视力情况,若高一抽取了75人,则全校共抽取了
______人.答案:∵高三有1000个学生,高二有1200个学生,高一有1500个学生.∴本校共有学生1000+1200+1500=3700,∵按年级分层抽,高一抽取了75人,∴每个个体被抽到的概率是751500=120,∴全校要抽取120×3700=185,故为:185.12.已知a,b为正数,求证:≥.答案:证明略解析:1:∵a>0,b>0,∴≥,≥,两式相加,得≥,∴≥.解析2.≥.∴≥.解析3.∵a>0,b>0,∴,∴欲证≥,即证≥,只要证
≥,只要证
≥,即证
≥,只要证a3+b3≥ab(a+b),只要证a2+b2-ab≥ab,即证(a-b)2≥0.∵(a-b)2≥0成立,∴原不等式成立.【名师指引】当要证明的不等式形式上比较复杂时,常通过分析法寻求证题思路.“分析法”与“综合法”是数学推理中常用的思维方法,特别是这两种方法的综合运用能力,对解决实际问题有重要的作用.这两种数学方法是高考考查的重要数学思维方法.13.若向量a=(2,-3,1),b=(2,0,3),c=(0,2,2),则a•(b+c)=33.答案:∵b+c=(2,0,3)+(0,2,2)=(2,2,5),∴a•(b+c)=(2,-3,1)•(2,2,5)=4-6+5=3.故为:3.14.抛物线y=ax2(其中a>0)的焦点坐标是(
)
A.(,0)
B.(0,)
C.(,0)
D.(0,)答案:D15.设F1,F2是双曲线的两个焦点,点P在双曲线上,且·=0,则|PF1|·|PF2|值等于()
A.2
B.2
C.4
D.8答案:A16.(难线性运算、坐标运算)已知0<x<1,0<y<1,求M=x2+y2+x2+(1-y)2+(1-x)2+y2+(1-x)2+(1-y)2的最小值.答案:设A(0,0),B(1,0),C(1,1),D(0,1),P(x,y),则M=|PA|+|PD|+|PB|+|PC|=(|PA|+|PC|)+(|PB|+|PD|)=(|AP|+|PC|)+(|BP|+|PD|)≥|AP+PC|+|BP+PD|=|AC|+|BD|.而AC=(1,1),BD=(-1,1),得|AC|+|BD|=2+2=22.∴M≥22,当AP与PC同向,BP与PD同向时取等号,设PC=λAP,PD=μBP,则1-x=λx,1-y=λy,-x=μx-μ,1-y=μy,解得λ=μ=1,x=y=12.所以,当x=y=12时,M的最小值为22.17.下列点在x轴上的是()
A.(0.1,0.2,0.3)
B.(0,0,0.001)
C.(5,0,0)
D.(0,0.01,0)答案:C18.下列命题错误的是(
)A.命题“若,则中至少有一个为零”的否定是:“若,则都不为零”。B.对于命题,使得;则是,均有。C.命题“若,则方程有实根”的逆否命题为:“若方程无实根,则”。D.“”是“”的充分不必要条件。答案:A解析:命题的否定是只否定结论,∴选A.19.六个不同大小的数按如图形式随机排列,设第一行这个数为M1,M2,M3分别表示第二、三行中最大数,则满足M1<M2<M3所有排列的个数______.答案:首先M3一定是6个数中最大的,设这六个数分别为a,b,c,d,e,f,不妨设a>b>c>d>e>f.因为如果a在第三行,则a一定是M3,若a不在第三行,则a一定是M1或M2,此时无法满足M1<M2<M3,故a一定在第三行.故
M2一定是b,c,d中一个,否则,若M2是e,则第二行另一个数只能是f,那么第一行的数就比e大,无法满足M1<M2<M3.当M2是b时,此时,a在第三行,b在第二行,其它数任意排,所有的排法有C31
C21
A44=144(种),当M2是c时,此时a和b必须在第三行,c在第二行,其它数任意排,所有的排法有A32
C21
A33=72(种),当M2是d时,此时,a,b,c在第三行,d在第二行,其它数任意排,所有的排法有A33
C21
A22=24(种),故满足M1<M2<M3所有排列的个数为:24+72+144=240种,故为:240.20.中心在原点,焦点在横轴上,长轴长为4,短轴长为2,则椭圆方程是(
)
A.
B.
C.
D.答案:B21.OA、OB(O为原点)是圆x2+y2=2的两条互相垂直的半径,C是该圆上任一点,且OC=λOA+μOB,则λ2+μ2=______.答案:∵OC=λOA+μOB,OA⊥OB∴OA?OB=0∴OA2=OB2=OC2=2∴OC2=(λOA+μOB)2=λ2OA2+μ2OB2=2(λ2+μ2)=2∴λ2+μ2=1故为:122.“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点…,用S1、S2分别表示乌龟和兔子所行的路程,t为时间,则下图与故事情节相吻合的是()
A.
B.
C.
D.
答案:B23.不等式的解集是(
)
A.(-3,2)
B.(2,+∞)
C.(-∞,-3)∪(2,+∞)
D.(-∞,-3)∪(3,+∞)答案:C24.圆心既在直线x-y=0上,又在直线x+y-4=0上,且经过原点的圆的方程是______.答案:∵圆心既在直线x-y=0上,又在直线x+y-4=0上,∴由x-y=0x+y-4=0,得x=2y=2.∴圆心坐标为(2,2),∵圆经过原点,∴半径r=22,故所求圆的方程为(x-2)2+(y-2)2=8.25.如图,AB是圆O的直径,CD是圆O的弦,AB与CD交于E点,且AE:EB=3:1、CE:ED=1:1,CD=83,则直径AB的长为______.答案:由CE:ED=1:1,CD=83,∴CE=ED=43由相交弦定理可得AE?EB=CE?ED及AE:EB=3:1∴3EB2=43?43=48解得EB=4,AE=12∴AB=AE+EB=16故为:1626.若kxy-8x+9y-12=0表示两条直线,则实数k的值及两直线所成的角分别是()
A.8,60°
B.4,45°
C.6,90°
D.2,30°答案:C27.直线3x+4y-12=0和3x+4y+3=0间的距离是
______.答案:由两平行线间的距离公式得直线3x+4y-12=0和3x+4y+3=0间的距离是|-12-3|5=3,故为3.28.(参数方程与极坐标)已知F是曲线x=2cosθy=1+cos2θ(θ∈R)的焦点,M(12,0),则|MF|的值是
______.答案:y=1+cos2θ=2cos2θ=2•(x2)2化简得x2=2y∴F(0,12)而M(12,0),∴|MF|=22故为:2229.在调试某设备的线路设计中,要选一个电阻,调试者手中只有阻值分别为0.7KΩ,1.1KΩ,1.9KΩ,2.0KΩ,3.5KΩ,4.5KΩ,5.5KΩ七种阻值不等的定值电阻,他用分数法进行优法进行优选试验时,依次将电阻值从小到大安排序号,则第1个试点的电阻的阻值是(
).答案:3.5kΩ30.一个底面是正三角形的三棱柱的侧视图如图所示,则该几何体的侧面积等于()A.3B.6C.23D.2答案:由正视图知:三棱柱是以底面边长为2,高为1的正三棱柱,侧面积为3×2×1=6,故为:B.31.
(理)
在长方体ABCD-A1B1C1D1中,以为基底表示,其结果是()
A.
B.
C.
D.答案:C32.直角三角形两直角边边长分别为3和4,将此三角形绕其斜边旋转一周,求得到的旋转体的表面积和体积.答案:根据题意,所求旋转体由两个同底的圆锥拼接而成它的底面半径等于直角三角形斜边上的高,高分别等于两条直角边在斜边的射影长∵两直角边边长分别为3和4,∴斜边长为32+42=5,由面积公式可得斜边上的高为h=3×45=125可得所求旋转体的底面半径r=125因此,两个圆锥的侧面积分别为S上侧面=π×125×4=48π5;S下侧面=π×125×3=36π5∴旋转体的表面积S=48π5+36π5=84π5由锥体的体积公式,可得旋转体的体积为V=13π×(125)2×5=48π533.把平面上一切单位向量的始点放在同一点,那么这些向量的终点所构成的图形是()
A.一条线段
B.一段圆弧
C.圆上一群孤立点
D.一个单位圆答案:D34.将6位志愿者分成4组,每组至少1人,分赴世博会的四个不同场馆服务,不同的分配方案有______种(用数字作答).答案:由题意,六个人分为四组,若有三个人一组,则四组人数为3,1,1,1,则不同的分法为C63=20种,若存在两人一组,则分法为2,2,1,1,不同的分法有C26×C24A22=45分赴世博会的四个不同场馆服务,不同的分配方案有(20+45)×A44=1560种故为:1560.35.平行线l1:3x-2y-5=0与l2:6x-4y+3=0之间的距离为______.答案:将l1:3x-2y-5=0化成6x-4y-10=0∴l1:3x-2y-5=0与l2:6x-4y+3=0之间的距离为d=|-10-3|62+(-4)2=1352=132故为:13236.设向量a=(1,0),b=(sinθ,cosθ),0≤θ≤π,则|a+b|的最大值为
______.答案:|a|=1因为|b|=1,所以|a+b|2=a2+b2+2a?b=2+2sinθ因为0≤θ≤π,所以0≤sinθ≤1,所以2+2sinθ≤4,|a+b|≤2故为:237.方程|x|-1=2y-y2表示的曲线为()A.两个半圆B.一个圆C.半个圆D.两个圆答案:两边平方整理得:(|x|-1)2=2y-y2,化简得(|x|-1)2+(y-1)2=1,由|x|-1≥0得x≥1或x≤-1,当x≥1时,方程为(x-1)2+(y-1)2=1,表示圆心为(1,1)且半径为1的圆的右半圆;当x≤1时,方程为(x+1)2+(y-1)2=1,表示圆心为(-1,1)且半径为1的圆的右半圆综上所述,得方程|x|-1=2y-y2表示的曲线为为两个半圆故选:A38.在△ABC中,已知D是AB边上一点,若AD=2DB,CD=λCA+μCB,则λμ的值为______.答案:∵AD=2DB,∴CD=CA+23
AB∵AB=CB-CA∴CD=CA+23AB=CA+23(CB-CA)=13CA+23CB∵CD=λCA+μCB∴λ=13,μ=23∴λμ=12故为1239.下列说法正确的是()
A.向量
与向量是共线向量,则A、B、C、D必在同一直线上
B.向量与平行,则与的方向相同或相反
C.向量的长度与向量的长度相等
D.单位向量都相等答案:C40.已知直线3x+4y-3=0与直线6x+my+14=0平行,则它们之间的距离是______.答案:直线3x+4y-3=0即6x+8y-6=0,它直线6x+my+14=0平行,∴m=8,则它们之间的距离是d=|c1-c2|a2+b2=|-6-14|62+82=2,故为:2.41.函数y=()|x|的图象是()
A.
B.
C.
D.
答案:B42.下列函数中,与函数y=x(x≥0)有相同图象的一个是()A.y=x2B.y=(x)2C.y=3x3D.y=x2x答案:一个函数与函数y=x
(x≥0)有相同图象时,这两个函数应是同一个函数.A中的函数和函数y=x
(x≥0)的值域不同,故不是同一个函数.B中的函数和函数y=x
(x≥0)具有相同的定义域、值域、对应关系,故是同一个函数.C中的函数和函数y=x
(x≥0)的值域不同,故不是同一个函数.D中的函数和函数y=x
(x≥0)的定义域不同,故不是同一个函数.综上,只有B中的函数和函数y=x
(x≥0)是同一个函数,具有相同的图象,故选B.43.在空间四边形OABC中,OA+AB-CB等于()A.OAB.ABC.OCD.AC答案:根据向量的加法、减法法则,得OA+AB-CB=OB-CB=OB+BC=OC.故选C.44.在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是()
①若K2的观测值满足K2≥6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;
②从独立性检验可知有99%的把握认为吸烟与患病有关系时,我们说某人吸烟,那么他有99%的可能患有肺病;
③从统计量中得知有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误.
A.①
B.①③
C.③
D.②答案:C45.已知向量,,则“=λ,λ∈R”成立的必要不充分条件是()
A.+=
B.与方向相同
C.⊥
D.∥答案:D46.在极坐标系中,直线l经过圆ρ=2cosθ的圆心且与直线ρcosθ=3平行,则直线l与极轴的交点的极坐标为______.答案:由ρ=2cosθ可知此圆的圆心为(1,0),直线ρcosθ=3是与极轴垂直的直线,所以所求直线的极坐标方程为ρcosθ=1,所以直线l与极轴的交点的极坐标为(1,0).故为:(1,0).47.设复数z=cosθ+sinθi,0≤θ≤π,则|z+1|的最大值为______.答案:复数z=cosθ+sinθi,0≤θ≤π,则|z+1|=|cosθ+1+isinθ|=(1+cosθ)2+sin2θ=2+2cosθ≤2.故为:2.48.如图,小圆圈表示网络的结点,结点之间的连线表示它们有网线相联,连线标注的数字表示该段网线单位时间内可以通过的最大信息量,现从结点B向结点A传递信息,信息可以分开沿不同的路线同时传递,则单位时间内传递的最大信息量为()
A.26
B.24
C.20
D.19
答案:D49.O为△ABC平面上一定点,该平面上一动点p满足M={P|OP=OA+λ(AB|AB|sinC+AC|AC|sinB)
,λ>0},则△ABC的()一定属于集合M.A.重心B.垂心C.外心D.内心答案:如图:D是BC的中点,在△ABC中,由正弦定理得,|AB|sinC=|AC|sinB即sinc|AB|=sinB||AC|,设t=sinc|AB|=sinB||AC|,代入OP=OA+λ(AB|AB|sinC+AC|AC|sinB)得,OP=OA+λt(AB+AC)①,∵D是BC的中点,∴AB+AC=2AD,代入①得,OP=OA+2λtAD,∴AP=2λtAD且λ、t都是常数,则AP∥AD,∴点P得轨迹是直线AD,△ABC的重心一定属于集合M,故选A.50.已知集合M={0,1},N={2x+1|x∈M},则M∩N=()A.{1}B.{0,1}C.{0,1,3}D.空集答案:∵M={0,1},N={2x+1|x∈M},当x=0时,2x+1=1;当x=1时,2x+1=3,∴N={1,3}则M∩N={1}.故选A.第3卷一.综合题(共50题)1.若命题P(n)对n=k成立,则它对n=k+2也成立,又已知命题P(2)成立,则下列结论正确的是()
A.P(n)对所有自然数n都成立
B.P(n)对所有正偶数n成立
C.P(n)对所有正奇数n都成立
D.P(n)对所有大于1的自然数n成立答案:B2.已知D是△ABC所在平面内一点,,则()
A.
B.
C.=
D.答案:A3.已知直线ax+by+c=0(a,b,c都是正数)与圆x2+y2=1相切,则以a,b,c为三边长的三角形()
A.是锐角三角形
B.是钝角三角形
C.是直角三角形
D.不存在答案:C4.设集合M={(x,y)|x+y<0,xy>0}和P={(x,y)|x<0,y<0},那么M与P的关系为______.答案:由x+y<0,xy>0,?x<0,y<0.∴M=P.故为M=P.5.复数32i+11-i的虚部是______.答案:复数32i+11-i=32i+1+i(1-i)(1+i)=32i+1+i2=12+2i∴复数的虚部是2,故为:26.某地区居民生活用电分为高峰和低谷两个时间段进行分时计价.该地区的电网销售电价表如图:高峰时间段用电价格表低谷时间段用电价格表高峰月用电量
(单位:千瓦时)高峰电价(单位:元/千瓦时)低谷月用电量
(单位:千瓦时)低谷电价(单位:
元/千瓦时)50及以下的部分0.56850及以下的部分0.288超过50至200的部分0.598超过50至200的部分0.318超过200的部分0.668超过200的部分0.388若某家庭5月份的高峰时间段用电量为200千瓦时,低谷时间段用电量为100千瓦时,则按这种计费方式该家庭本月应付的电费为______元(用数字作答)答案:高峰时间段用电的电费为50×0.568+150×0.598=28.4+89.7=118.1(元),低谷时间段用电的电费为50×0.288+50×0.318=14.4+15.9=30.3(元),本月的总电费为118.1+30.3=148.4(元),故为:148.4.7.一个口袋内有5个白球和3个黑球,任意取出一个,如果是黑球,则这个黑球不放回且另外放入一个白球,这样继续下去,直到取出的球是白球为止.求取到白球所需的次数ξ的概率分布列及期望.答案:由题意知变量的可能取值是1,2,3,4P(ξ=1)=58,P(ξ=2)=932,P(ξ=3)=21256
P(ξ=1)=3256
∴ξ的分布列是ξ1234P58932212563256∴Eξ=1×58+2×923+3×21256+4×3256=3792568.某厂生产电子元件,其产品的次品率为5%.现从一批产品中任意的连续取出2件,写出其中次品数ξ的概率分布.答案:依题意,随机变量ξ~B(2,5%).所以,P(ξ=0)=C20(95%)2=0.9025,P(ξ=1)=C21(5%)(95%)=0.095P(ξ=2)=C22(5%)2=0.0025因此,次品数ξ的概率分布是:9.若方程2ax2-x-1=0在(0,1)内恰有一解,则a的取值范围是______.答案:当a>0时,方程对应的函数f(x)=2ax2-x-1在(0,1)内恰有一解,必有f(0)•f(1)<0,即-1×(2a-2)<0,解得a>1当a≤0时函数f(x)=2ax2-x-1在(0,1)内恰无解.故为:a>110.三直线ax+2y+8=0,4x+3y=10,2x-y=10相交于一点,则a的值是(
)
A.-2
B.-1
C.0
D.1答案:B11.直线y=1与直线y=3x+3的夹角为______答案:l1与l2表示的图象为(如下图所示)y=1与x轴平行,y=3x+3与x轴倾斜角为60°,所以y=1与y=3x+3的夹角为60°.故为60°12.已知平面α的法向量是(2,3,-1),平面β的法向量是(4,λ,-2),若α∥β,则λ的值是()
A.-
B.-6
C.6
D.答案:C13.集合{1,2,3}的真子集总共有()A.8个B.7个C.6个D.5个答案:集合{1,2,3}的真子集有?,{1},{2},{3},{1,2},{1,3},{2,3}共7个.故选B.14.如果关于x的不等式组有解,那么实数a的取值范围(
)
A.(-∞,-3)∪(1,+∞)
B.(-∞,-1)∪(3,+∞)
C.(-1,3)
D.(-3,1)答案:C15.已知向量,,若与共线,则的值为
A
B
C
D
答案:D解析:,,由,得16.在同一坐标系下,函数y=ax,y=bx,y=cx,y=dx的图象如图,则a、b、c、d、1之间从小到大的顺序是______.答案:作直线x=1与各图象相交,交点的纵坐标即为底数,故从下到上依次增大.所以b<a<1<d<c故为:b,a,1,d,c17.用WHILE语句求1+2+22+23+…+263的值.答案:程序如下:i=0S=0While
i<=63s=s+2^ii=i+1WendPrint
send18.函数f(x)=x2+(a+1)x+2是定义在[a,b]上的偶函数,则a+b=______.答案:∵函数f(x)=x2+(a+1)x+2是定义在[a,b]上的偶函数,∴其定义域关于原点对称,既[a,b]关于原点对称.所以a与b互为相反数即a+b=0.故为:0.19.已知定点A(2,0),圆O的方程为x2+y2=8,动点M在圆O上,那么∠OMA的最大值是()
A.
B.
C.arccos
D.arccos答案:B20.在某项体育比赛中,七位裁判为一选手打出分数的茎叶图如图,去掉一个最高分和一个摄低分后,该选手的平均分为()A.90B.91C.92D.93答案:由图表得到评委为该选手打出的7个分数数据为:89,90,90,93,93,94,95.去掉一个最低分89,去掉一个最高分95,该选手得分的平均数为15(90+90+93+93+94)=92.故选C.21.将一根长为3m的绳子在任意位置剪断,则剪得两段的长都不小于1m的概率是()A.14B.13C.12D.23答案:记“两段的长都不小于1m”为事件A,则只能在中间1m的绳子上剪断,剪得两段的长都不小于1m,所以事件A发生的概率
P(A)=13.故选B22.现有10个保送上大学的名额,分配给7所学校,每校至少有1个名额,名额分配的方法共有______种(用数字作答).答案:根据题意,将10个名额,分配给7所学校,每校至少有1个名额,可以转化为10个元素之间有9个间隔,要求分成7份,每份不空;相当于用6块档板插在9个间隔中,共有C96=84种不同方法.所以名额分配的方法共有84种.23.一动圆与两圆x2+y2=1和x2+y2-8x+12=0都外切,则动圆圆心轨迹为()A.圆B.椭圆C.双曲线的一支D.抛物线答案:设动圆的圆心为P,半径为r,而圆x2+y2=1的圆心为O(0,0),半径为1;圆x2+y2-8x+12=0的圆心为F(4,0),半径为2.依题意得|PF|=2+r|,|PO|=1+r,则|PF|-|PO|=(2+r)-(1+r)=1<|FO|,所以点P的轨迹是双曲线的一支.故选C.24.“∵四边形ABCD为矩形,∴四边形ABCD的对角线相等”,补充以上推理的大前提为()
A.正方形都是对角线相等的四边形
B.矩形都是对角线相等的四边形
C.等腰梯形都是对角线相等的四边形
D.矩形都是对边平行且相等的四边形答案:B25.若O(0,0),A(1,2)且OA′=2OA.则A′点坐标为()A.(1,4)B.(2,2)C.(2,4)D.(4,2)答案:设A′(x,y),OA′=(x,y),OA=(1,2),∴(x,y)=2(1,2),故选C.26.若4名学生和3名教师站在一排照相,则其中恰好有2名教师相邻的站法有______种.(用数字作答)答案:4名学生和3名教师站在一排照相,则其中恰好有2名教师相邻,所以第一步应先取两个老师且绑定有C23×A22=6种方法,第二步将四名学生全排列,共有4!=24种方法,第三步将绑定的两位老师与剩下的一位老师看作两个元素,插入四个学生隔开的五个空中,共有A25=20种方法故总的站法有6×24×20=2880种故为288027.如图,已知C点在圆O直径BE的延长线上,CA切圆O于A点,∠ACB的平分线分别交AE、AB于点F、D.
(Ⅰ)求∠ADF的度数;
(Ⅱ)若AB=AC,求ACBC的值.答案:解
(1)∵AC为圆O的切线,∴∠B=∠EAC,又CD是∠ACB的平分线,∴∠ACD=∠DCB,∴∠B+∠DCB=∠EAC+∠ACD,即∠ADF=∠AFD.又∵BE为圆O的直径,∴∠BAE=90°,∴∠ADF=12(180°-∠BAE)=45°(2)∵∠B=∠EAC,∠ACE=∠BCA,∴△ACE∽△BCA又∵AB=AC,∴∠B=∠ACB,∴∠B=∠ACB=∠EAC,由∠BAE=90°及三角形内角和知,∠B=30°,∴在Rt△ABE中,ACBC=AEBA=tan∠B=tan30°=3328.如图,AB是⊙O的直径,AD是⊙O的切线,点C在⊙O上,BC∥OD,AB=2,OD=3,则BC的长为______.答案:∵OD∥BC,∴∠AOD=∠B;∵AD是⊙O的切线,∴BA⊥AD,即∠OAD=∠ACB=90°,∴Rt△AOD∽Rt△CBA,∴BCOA=ABOD,即BC1=23,故BC=23.29.节假日时,国人发手机短信问候亲友已成为一种时尚,若小李的40名同事中,给其发短信问候的概率为1,0.8,0.5,0的人数分别是8,15,14,3(人),通常情况下,小李应收到同事问候的信息条数为()
A.27
B.37
C.38
D.8答案:A30.在平面直角坐标系xOy中,点A(-1,-2)、B(2,3)、C(-2,-1).
(1)求以线段AB、AC为邻边的平行四边形两条对角线的长;
(2)设实数t满足(AB-tOC)•OC=0,求t的值.答案:(1)(方法一)由题设知AB=(3,5),AC=(-1,1),则AB+AC=(2,6),AB-AC=(4,4).所以|AB+AC|=210,|AB-AC|=42.故所求的两条对角线的长分别为42、210.(方法二)设该平行四边形的第四个顶点为D,两条对角线的交点为E,则:E为B、C的中点,E(0,1)又E(0,1)为A、D的中点,所以D(1,4)故所求的两条对角线的长分别为BC=42、AD=210;(2)由题设知:OC=(-2,-1),AB-tOC=(3+2t,5+t).由(AB-tOC)•OC=0,得:(3+2t,5+t)•(-2,-1)=0,从而5t=-11,所以t=-115.或者:AB•OC=tOC2,AB=(3,5),t=AB•OC|OC|2=-11531.请输入一个奇数n的BASIC语句为______.答案:INPUT表示输入语句,输入一个奇数n的BASIC语句为:INPUT“输入一个奇数n”;n.故为:INPUT“输入一个奇数n”;n.32.来自中国、英国、瑞典的乒乓球裁判各两名,执行北京奥运会的一号、二号和三号场地的乒乓球裁判工作,每个场地由两名来自不同国家的裁判组成,则不同的安排方案总数有()
A.12种
B.48种
C.90种
D.96种答案:B33.一圆形纸片的圆心为点O,点Q是圆内异于O点的一定点,点A是圆周上一点.把纸片折叠使点A与Q重合,然后展平纸片,折痕与OA交于P点.当点A运动时点P的轨迹是()A.圆B.椭圆C.双曲线D.抛物线答案:如图所示,由题意可知:折痕l为线段AQ的垂直平分线,∴|AP|=|PQ|,而|OP|+|PA|=|OA|=R,∴|PO|+|PQ|=R定值>|OQ|.∴当点A运动时点P的轨迹是以点O,D为焦点,长轴长为R的椭圆
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- DBJ04-T282-2025 《行道树栽植技术规程》
- 汽车传感器与检测技术电子教案:柴油机烟度传感器
- 推进中国政治文化现代化之基本路径论析
- 佛山颜峰高科技农业生态园项目建议及可行性研究报告
- 介绍民族大联欢活动方案
- 仓储团队激励活动方案
- 仓鼠训练活动方案
- 代理补货活动方案
- 以色列旅游跨年活动方案
- 仪陇县工会活动方案
- 经济学思维方式智慧树知到期末考试答案2024年
- (高清版)DZT 0145-2017 土壤地球化学测量规程
- 基于html5外文参考文献
- 毕业设计-阶梯轴的工艺系统设计
- 托架预压方案
- 建工集团有限责任公司科技委员会章程
- 高级会计师考试试题及答案解析
- 五年级下册数学分数计算题(精选)
- 基于PLC自动门控制设计
- 三环路道路照明工程技术标
- 干式变压器原理和故障排除
评论
0/150
提交评论