2023年赤峰应用技术职业学院高职单招(数学)试题库含答案解析_第1页
2023年赤峰应用技术职业学院高职单招(数学)试题库含答案解析_第2页
2023年赤峰应用技术职业学院高职单招(数学)试题库含答案解析_第3页
2023年赤峰应用技术职业学院高职单招(数学)试题库含答案解析_第4页
2023年赤峰应用技术职业学院高职单招(数学)试题库含答案解析_第5页
已阅读5页,还剩37页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年赤峰应用技术职业学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.直线过原点且倾角的正弦值是45,则直线方程为______.答案:因为倾斜角α的范围是:0≤α<π,又由题意:sinα=45所以:tanα=±43x直线过原点,由直线的点斜式方程得到:y=±43x故为:y=±43x2.Rt△ABC的直角边AB在平面α内,顶点C在平面α外,则直角边BC、斜边AC在平面α上的射影与直角边AB组成的图形是()

A.线段或锐角三角形

B.线段与直角三角形

C.线段或钝角三角形

D.线段、锐角三角形、直角三角形或钝角三角形答案:B3.经过点M(1,1)且在两轴上截距相等的直线是______.答案:①当所求的直线与两坐标轴的截距不为0时,设该直线的方程为x+y=a,把(1,1)代入所设的方程得:a=2,则所求直线的方程为x+y=2;②当所求的直线与两坐标轴的截距为0时,设该直线的方程为y=kx,把(1,1)代入所求的方程得:k=1,则所求直线的方程为y=x.综上,所求直线的方程为:x+y=2或y=x.故为:x+y=2或y=x4.选做题

已知抛物线,过原点O直线与交于两点。

(1)求的最小值;

(2)求的值答案:解:设直线的参数方程为与抛物线方程

联立得5.用反证法证明命题:“三角形三个内角至少有一个不大于60°”时,应假设______.答案:根据用反证法证明数学命题的方法和步骤,先把要证的结论进行否定,得到要证的结论的反面,而命题:“三角形三个内角至少有一个不大于60°”的否定为“三个内角都大于60°”,故为三个内角都大于60°.6.已知向量a与b的夹角为60°,且|a|=1,|b|=2,那么(a+b)2的值为______.答案:由题意可得a?b=|a|?|b|cos<a

b>=1×2×cos60°=1.∴(a+b)2=a2+b2+2a?b=1+4+2×1=7.故为:7.7.设U={x|x<7,x∈N+}A={1,2,5},B={2,3,4,5},求A∩B,CUA,A∪(CUB).答案:∵U={1,2,3,4,5,6}A∩B={2,5}CUA={3,4,6}A∪CUB={1}8.已知点A(5,0)和⊙B:(x+5)2+y2=36,P是⊙B上的动点,直线BP与线段AP的垂直平分线交于点Q.

(1)证明点Q的轨迹是双曲线,并求出轨迹方程.

(2)若(BQ+BA)•QA=0,求点Q的坐标.答案:(1)∵点Q在线段AP的垂直平分线上,∴|QP|=|QA|,∴||BQ|-|PQ||=||BQ|-|AQ||=6.∴点Q的轨迹是以A、B为焦点的双曲线.(4′)其轨迹方程是x29-y216=1.(7′)(2)以A、B、Q为三个顶点作平行四边形ABQC,则BQ+BA=BC∵(BQ+BA)•QA=0,∴BC•QC=0,∴平行四边形ABQC是菱形,∴|BA|=|BQ|.(8′)∴点Q在圆(x+5)2+y2=100上.解方程组(x+5)2+y2=100x29-y216=1.(10′)得Q(-395,±485)或Q(215,±865).(12′)9.求圆Cx=3+4cosθy=-2+4sinθ(θ为参数)的圆心坐标,和圆C关于直线x-y=0对称的圆C′的普通方程.答案:圆Cx=3+4cosθy=-2+4sinθ(θ为参数)

(x-3)2+(y+2)2=16,表示圆心坐标(3,-2),半径等于4的圆.C(3,-2)关于直线x-y=0对称的点C′(-2,3),半径还是4,故圆C′的普通方程(x+2)2+(y-3)2=16.10.已知x与y之间的一组数据:

x

0

1

2

3

y

2

4

6

8

则y与x的线性回归方程为y=bx+a必过点()

A.(1.5,4)

B.(1.5,5)

C.(1,5)

D.(2,5)答案:B11.在空间直角坐标系0xyz中有两点A(2,5,1)和B(2,4,-1),则|AB|=______.答案:∵点A(2,5,1)和B(2,4,-1),∴AB=(0,-1,-2).∴|AB|=0+(-1)2+(-2)2=5.故为5.12.若向量a=(2,-3,3)是直线l的方向向量,向量b=(1,0,0)是平面α的法向量,则直线l与平面α所成角的大小为______.答案:设直线l与平面α所成角为θ,则sinθ=|cos<a,b>|=|a•b||a|

|b|=222+(-3)2+(3)2×1=12,∵θ∈[0,π2],∴θ=π6,即直线l与平面α所成角的大小为π6.故为π6.13.下列哪组中的两个函数是同一函数()A.y=(x)2与y=xB.y=(3x)3与y=xC.y=x2与y=(x)2D.y=3x3与y=x2x答案:A、y=x与y=x2的定义域不同,故不是同一函数.B、y=(3x)3=x与y=x的对应关系相同,定义域为R,故是同一函数.C、fy=x2与y=(x)2的定义域不同,故不是同一函数.D、y=3x3与y=x2x

具的定义域不同,故不是同一函数.故选B.14.如图,已知⊙O是△ABC的外接圆,AB为直径,若PA⊥AB,PO过AC的中点M,求证:PC是⊙O的切线.答案:证明:连接OC,∵PA⊥AB,∴∠PA0=90°.(1分)∵PO过AC的中点M,OA=OC,∴PO平分∠AOC.∴∠AOP=∠COP.(3分)∴在△PAO与△PCO中有OA=OC,∠AOP=∠COP,PO=PO.∴△PAO≌△PCO.(6分)∴∠PCO=∠PA0=90°.即PC是⊙O的切线.(7分)15.已知两组样本数据x1,x2,…xn的平均数为h,y1,y2,…ym的平均数为k,则把两组数据合并成一组以后,这组样本的平均数为()

A.

B.

C.

D.答案:B16.由小正方体木块搭成的几何体的三视图如图所示,则搭成该几何体的小正方体木块有()

A.6块

B.7块

C.8块

D.9块答案:B17.设某批电子手表正品率为,次品率为,现对该批电子手表进行测试,设第X次首次测到正品,则P(X=3)等于()

A.

B.

C.

D.答案:C18.某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个).经过3个小时,这种细菌由1个可繁殖成()

A.511个

B.512个

C.1023个

D.1024个答案:B19.已知一个学生的语文成绩为89,数学成绩为96,外语成绩为99.求他的总分和平均成绩的一个算法为:

第一步:取A=89,B=96,C=99;

第二步:______;

第三步:______;

第四步:输出计算的结果.答案:由题意,第二步,求和S=A+B+C,第三步,计算平均成绩.x=A+B+C3.故为:S=A+B+C;.x=A+B+C3.20.已知向量a,b,向量c=2a+b,且|a|=1,|b|=2,a与b的夹角为60°

(1)求|c|2;(2)若向量d=ma-b,且d∥c,求实数m的值.答案:(1)∵|a|=1,|b|=2,a和b的夹角为60°∴a•b=|a||b|cos60°=1∴|c|2=(

2a+b)2=4a2+4ab+b2=4+4+4=12(2)∵d∥c∴存在实数λ使得d=λc即ma-b=λ(2a+b)又∵a,b不共线∴2λ=m,λ=-1∴m=-221.已知:关于x的方程2x2+kx-1=0

(1)求证:方程有两个不相等的实数根;

(2)若方程的一个根是-1,求另一个根及k值.答案:(1)证明:2x2+kx-1=0,△=k2-4×2×(-1)=k2+8,无论k取何值,k2≥0,所以k2+8>0,即△>0,∴方程2x2+kx-1=0有两个不相等的实数根.(2)设2x2+kx-1=0的另一个根为x,则x-1=-k2,(-1)•x=-12,解得:x=12,k=1,∴2x2+kx-1=0的另一个根为12,k的值为1.22.直线x+ky=0,2x+3y+8=0和x-y-1=0交于一点,则k的值是()

A.

B.-

C.2

D.-2答案:B23.已知抛物线的顶点在坐标原点,焦点在x轴正半轴,抛物线上一点M(3,m)到焦点的距离为5,求m的值及抛物线方程.答案:∵抛物线顶点在原点,焦点在x轴上,其上一点M(3,m)∴设抛物线方程为y2=2px∵其上一点M(3,m)到焦点的距离为5,∴3+p2=5,可得p=4∴抛物线方程为y2=8x.24.某一批花生种子,如果每1粒发芽的概率为,那么播下4粒种子恰有2粒发芽的概率是(

A.

B.

C.

D.答案:B25.已知a,b,c∈R,a+2b+3c=6,则a2+4b2+9c2的最小值为______.答案:∵a+2b+3c=6,∴根据柯西不等式,得(a+2b+3c)2=(1×a+1×2b+1×3c)2≤(12+12+12)[a2+(2b)2+(3c)2]化简得62≤3(a2+4b2+9c2),即36≤3(a2+4b2+9c2)∴a2+4b2+9c2≥12,当且仅当a:2b:3c=1:1:1时,即a=2,b=1,c=23时等号成立由此可得:当且仅当a=2,b=1,c=23时,a2+4b2+9c2的最小值为12故为:1226.图是正方体平面展开图,在这个正方体中

①BM与ED垂直;

②DM与BN垂直.

③CN与BM成60°角;④CN与BE是异面直线.

以上四个命题中,正确命题的序号是______.答案:由已知中正方体的平面展开图,我们可以得到正方体的直观图如下图所示:由正方体的几何特征可得:①BM与ED垂直,正确;

②DM与BN垂直,正确;③CN与BM成60°角,正确;④CN与BE平行,故CN与BE是异面直线,错误;故为:①②③27.已知f(x)=2x2+1,则函数f(cosx)的单调减区间为______.答案:解;∵f(x)=2x2+1,∴f(cosx)=2cos2x+1=1+cos2x+1=cos2x+2,令2kπ≤2x≤2kπ+π,k∈Z.解得kπ≤x≤kπ+π2,k∈Z.∴函数f(cosx)的单调减区间为[kπ,π2+kπ],k∈Z.故为:[kπ,π2+kπ],k∈Z.28.在空间有三个向量AB、BC、CD,则AB+BC+CD=()A.ACB.ADC.BDD.0答案:如图:AB+BC+CD=AC+CD=AD.故选B.29.已知△ABC,D为AB边上一点,若AD=2DB,CD=13CA+λCB,则λ=

.答案:∵AD=2DB,CD=13CA+λCB,CD=CA+AD=CA+23AB=CA+23(

CB-CA)=13CA+23CB,∴λ=23,故为:23.30.点B是点A(1,2,3)在坐标平面yOz内的正投影,则|OB|等于()

A.

B.

C.

D.答案:B31.若复数z=a+bi(a、b∈R)是虚数,则a、b应满足的条件是()A.a=0,b≠0B.a≠0,b≠0C.a≠0,b∈RD.b≠0,a∈R答案:∵复数z=a+bi(a、b∈R)是虚数,∴根据虚数的定义得b≠0,a∈R,故选D.32.已知函数f(x)=2-x,x≤112+log2x,x>1,则满足f(x)≥1的x的取值范围为______.答案:当x≤1时,2-x≥1,解得-x≥0,即x≤0,所以x≤0;当x>1时,12+log2x≥1,解得x≥2,所以x≥2.所以满足f(x)≥1的x的取值范围为(-∞,0]∪[2,+∞).故为:(-∞,0]∪[2,+∞).33.在研究打酣与患心脏病之间的关系中,通过收集数据、整理分析数据得“打酣与患心脏病有关”的结论,并且有99%以上的把握认为这个结论是成立的.下列说法中正确的是()

A.100个心脏病患者中至少有99人打酣

B.1个人患心脏病,则这个人有99%的概率打酣

C.100个心脏病患者中一定有打酣的人

D.100个心脏病患者中可能一个打酣的人都没有答案:D34.设是定义在正整数集上的函数,且满足:“当成立时,总可推出成立”.那么,下列命题总成立的是A.若成立,则当时,均有成立B.若成立,则当时,均有成立C.若成立,则当时,均有成立D.若成立,则当时,均有成立答案:D解析:若成立,依题意则应有当时,均有成立,故A不成立,若成立,依题意则应有当时,均有成立,故B不成立,因命题“当成立时,总可推出成立”.“当成立时,总可推出成立”.因而若成立,则当时,均有成立,故C也不成立。对于D,事实上,依题意知当时,均有成立,故D成立。35.命题“方程|x|=1的解是x=±1”中,使用逻辑词的情况是()A.没有使用逻辑连接词B.使用了逻辑连接词“或”C.使用了逻辑连接词“且”D.使用了逻辑连接词“或”与“且”答案:∵命题“方程|x|=1的解是x=±1”等价于命题“方程|x|=1的解是x=1或x=-1.”∴该命题使用了逻辑连接词“或”.故选B.36.设向量与的夹角为θ,,,则cosθ等于()

A.

B.

C.

D.答案:D37.设一次试验成功的概率为p,进行100次独立重复试验,当p=______时,成功次数的标准差的值最大,其最大值为______.答案:由独立重复试验的方差公式可以得到Dξ=npq≤n(p+q2)2=n4,等号在p=q=12时成立,∴Dξ=100×12×12=25,σξ=25=5.故为:12;538.在△ABC所在平面存在一点O使得OA+OB+OC=0,则面积S△OBCS△ABC=______.答案:∵OA+OB+OC=0,∴OB+

OC=AO,设OB+OC=OD∴O是AD的中点,要求面积之比的两个三角形是同底的三角形,∴面积之比等于三角形的高之比,∴比值是13,故为:13.39.已知点D是△ABC的边BC的中点,若记AB=a,AC=b,则用a,b表示AD为______.答案:以AB,AC为临边作平行四边形ACEB,连接其对角线AE、BC交与点D,易知D是△ABC的边BC的中点,且D是AE的中点,如图:由向量的平行四边形法则可得AB+AC=a+b=AE=2AD,解得AD=12(a+b),故为:AD=12(a+b)40.在空间直角坐标系中,O为坐标原点,设A(,,),B(,,0),C(

,,),则(

A.OA⊥AB

B.AB⊥AC

C.AC⊥BC

D.OB⊥OC答案:C41.如图给出了一个算法程序框图,该算法程序框图的功能是()A.求a,b,c三数的最大数B.求a,b,c三数的最小数C.将a,b,c按从小到大排列D.将a,b,c按从大到小排列答案:逐步分析框图中的各框语句的功能,第一个条件结构是比较a,b的大小,并将a,b中的较小值保存在变量a中,第二个条件结构是比较a,c的大小,并将a,c中的较小值保存在变量a中,故变量a的值最终为a,b,c中的最小值.由此程序的功能为求a,b,c三个数的最小数.故选B42.①点P在△ABC所在的平面内,且②点P为△ABC内的一点,且使得取得最小值;③点P是△ABC所在平面内一点,且,上述三个点P中,是△ABC的重心的有()

A.0个

B.1个

C.2个

D.3个答案:D43.已知平面向量a,b,c满足a+b+c=0,且a与b的夹角为135°,c与b的夹角为120°,|c|=2,则|a|=______.答案:∵a+b+c=0∴三个向量首尾相接后,构成一个三角形且a与b的夹角为135°,c与b的夹角为120°,|c|=2,故所得三角形如下图示:其中∠C=45°,∠A=60°,AB=2∴|a|=AB?Sin∠Asin∠C=6故为:644.某校有老师300人,男学生1200人,女学生1000人.现用分层抽样的方法从所有师生中抽取一个容量为n的样本,已知从女学生中抽取的人数为80,则n=()

A.171

B.184

C.200

D.392答案:C45.

如图,已知PA为⊙O的切线,PBC为⊙O的割线,PA=6,PB=BC,⊙O的半径OC=5,那么弦BC的弦心距OM=()

A.4

B.3

C.5

D.6

答案:A46.为了调查甲、乙两个网站受欢迎的程度,随机选取了14天,统计上午8:00-10:00间各自的点击量,得如下所示的统计图,根据统计图:

(1)甲、乙两个网站点击量的极差,中位数分别是多少?

(2)甲网站点击量在[10,40]间的频率是多少?(结果用分数表示)

(3)甲、乙两个网站哪个更受欢迎?并说明理由。答案:解:(1)甲网站的极差为73-8=65,乙网站的极差为71-5=66;甲网站的中位数是56.5,乙网站的中位数是36.5。(2)甲网站点击量在[10,40]间的频率是;(3)甲网站的点击量集中在茎叶图的下方,而乙网站的点击量集中在茎叶图的上方,从数据的分布情况来看,甲网站更受欢迎。47.曲线(t为参数)上的点与A(-2,3)的距离为,则该点坐标是()

A.(-4,5)

B.(-3,4)或(-1,2)

C.(-3,4)

D.(-4,5)或(0,1)答案:B48.2008年9月25日下午4点30分,“神舟七号”载人飞船发射升空,其运行的轨道是以地球的中心F为一个焦点的椭圆,若这个椭圆的长轴长为2a,离心率为e,则“神舟七号”飞船到地球中心的最大距离为______.答案:如图,根据椭圆的几何性质可知,顶点B到椭圆的焦点F的距离最大.最大为a+c=a+ae.故为:a+ae.49.某产品的广告费用x与销售额y的统计数据如下表:

广告费用x(万元)

2

3

4

5

销售额y(万元)

27

39

48

54

根据上表可得回归方程y=bx+a中的b为9.4,据此模型预报广告费用为6万元时销售额为()

A.65.5万元

B.66.2万元

C.67.7万元

D.72.0万元答案:A50.已知复数z满足(1-i)•z=1,则z=______.答案:∵复数z满足(1-i)•z=1,∴z=11-i=1+i(1-i)(1+i)=12+12i,故为12+i2.第2卷一.综合题(共50题)1.下面程序框图输出的S表示什么?虚线框表示什么结构?答案:由框图知,当r=5时,输出的s=πr2所以程序框图输出的S表示:求半径为5的圆的面积的算法的程序框图,虚线框是一个顺序结构.2.已知顶点在坐标原点,焦点在x轴上的抛物线被直线y=2x+1截得的弦长为15,求此抛物线方程.答案:由题意可设抛物线的方程y2=2px(p≠0),直线与抛物线交与A(x1,y1),B(x2,y2)联立方程y2=2pxy=2x+1可得,4x2+(4-2p)x+1=0则x1+x2=12p-1,x1x2=14,y1-y2=2(x1-x2)AB=(x1-x2)2+(y1-y2)2=5(x1-x2)2=5[(x1+x2)2-4x1x2

]=5(12p-1)2-5=15解得p=6或p=-2∴抛物线的方程为y2=12x或y2=-4x3.设集合A={1,2},则满足A∪B={1,2,3}的集合B的个数是()A.1B.3C.4D.8答案:A={1,2},A∪B={1,2,3},则集合B中必含有元素3,即此题可转化为求集合A={1,2}的子集个数问题,所以满足题目条件的集合B共有22=4个.故选择C.4.参数方程(θ为参数)表示的曲线为()

A.圆的一部分

B.椭圆的一部分

C.双曲线的一部分

D.抛物线的一部分答案:D5.点M,N分别是曲线ρsinθ=2和ρ=2cosθ上的动点,则|MN|的最小值是______.答案:∵曲线ρsinθ=2和ρ=2cosθ分别为:y=2和x2+y2=2x,即直线y=2和圆心在(1,0)半径为1的圆.显然|MN|的最小值为1.故为:1.6.在直角坐标系xoy

中,已知曲线C1:x=t+1y=1-2t(t为参数)与曲线C2:x=asinθy=3cosθ(θ为参数,a>0

有一个公共点在X轴上,则a等于______.答案:曲线C1:x=t+1y=1-2t(t为参数)化为普通方程:2x+y-3=0,令y=0,可得x=32曲线C2:x=asinθy=3cosθ(θ为参数,a>0

)化为普通方程:x2a2+y29=1∵两曲线有一个公共点在x轴上,∴94a2=1∴a=32故为:327.设,,,则P,Q,R的大小顺序是(

)

A.P>Q>R

B.P>R>Q

C.Q>P>R

D.Q>R>P答案:B8.下列函数中,既是偶函数,又在(0,1)上单调递增的函数是()A.y=|log3x|B.y=x3C.y=e|x|D.y=cos|x|答案:对于A选项,函数定义域是(0,+∞),故是非奇非偶函数,不合题意,A选项不正确;对于B选项,函数y=x3是一个奇函数,故不是正确选项;对于C选项,函数的定义域是R,是偶函数,且当x∈(0,+∞)时,函数是增函数,故在(0,1)上单调递增,符合题意,故C选项正确;对于D选项,函数y=cos|x|是偶函数,在(0,1)上单调递减,不合题意综上知,C选项是正确选项故选C9.已知向量a,b,向量c=2a+b,且|a|=1,|b|=2,a与b的夹角为60°

(1)求|c|2;(2)若向量d=ma-b,且d∥c,求实数m的值.答案:(1)∵|a|=1,|b|=2,a和b的夹角为60°∴a•b=|a||b|cos60°=1∴|c|2=(

2a+b)2=4a2+4ab+b2=4+4+4=12(2)∵d∥c∴存在实数λ使得d=λc即ma-b=λ(2a+b)又∵a,b不共线∴2λ=m,λ=-1∴m=-210.若x,y∈R,则“x=0”是“x+yi为纯虚数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.不充分也不必要条件答案:根据复数的分类,x+yi为纯虚数的充要条件是x=0,y≠0.“若x=0则x+yi为纯虚数”是假命题,反之为真.∴x,y∈R,则“x=0”是“x+yi为纯虚数”的必要不充分条件故选B11.双曲线的实轴长和焦距分别为()

A.

B.

C.

D.答案:C12.设O是正△ABC的中心,则向量AO,BO.CO是()

A.相等向量

B.模相等的向量

C.共线向量

D.共起点的向量答案:B13.已知边长为1的正方形ABCD,则|AB+BC+CD|=______.答案:利用向量加法的几何性质,得AB+BC=AC∴AB+BC+CD=AD因为正方形的边长等于1所以|AB+BC+CD|=|AD|

=1故为:114.系数矩阵为.2132.,解为xy=12的一个线性方程组是______.答案:可设线性方程组为2132xy=mn,由于方程组的解是xy=12,∴mn=47,∴所求方程组为2x+y=43x+2y=7,故为:2x+y=43x+2y=7.15.①某寻呼台一小时内收到的寻呼次数X;

②长江上某水文站观察到一天中的水位X;

③某超市一天中的顾客量X.

其中的X是连续型随机变量的是()

A.①

B.②

C.③

D.①②③答案:B16.已知M为椭圆x2a2+y2b2=1(a>b>0)上的动点,F1、F2为椭圆焦点,延长F2M至点B,则ρF1MB的外角的平分线为MN,过点F1作

F1Q⊥MN,垂足为Q,当点M在椭圆上运动时,则点Q的轨迹方程是______.答案:点F1关于∠F1MF2的外角平分线MQ的对称点N在直线F1M的延长线上,故|F1N|=|PF1|+|PF2|=2a(椭圆长轴长),又OQ是△F2F1N的中位线,故|OQ|=a,点Q的轨迹是以原点为圆心,a为半径的圆,点Q的轨迹方程是x2+y2=a2故为:x2+y2=a217.若2x+3y=1,求4x2+9y2的最小值,并求出最小值点.答案:由柯西不等式(4x2+9y2)(12+12)≥(2x+3y)2=1,∴4x2+9y2≥12.当且仅当2x?1=3y?1,即2x=3y时取等号.由2x=3y2x+3y=1得x=14y=16∴4x2+9y2的最小值为12,最小值点为(14,16).18.已知不等式a≤对x取一切负数恒成立,则a的取值范围是____________.答案:a≤2解析:要使a≤对x取一切负数恒成立,令t=|x|>0,则a≤.而≥=2,∴a≤2.19.设α,β是方程4x2-4mx+m+2=0,(x∈R)的两个实根,当m为何值时,α2+β2有最小值?并求出这个最小值.答案:若α,β是方程4x2-4mx+m+2=0,(x∈R)的两个实根则△=16m2-16(m+2)≥0,即m≤-1,或m≥2则α+β=m,α×β=m+24,则α2+β2=(α+β)2-2αβ=m2-2×m+24=m2-12m-1=(m-14)2-1716∴当m=-1时,α2+β2有最小值,最小值是12.20.巳知椭圆{xn}与{yn}的中心在坐标原点,长轴在x轴上,离心率为32,且G上一点到G的两个焦点的距离之和为12,则椭圆G的方程为______.答案:由题设知e=32,2a=12,∴a=6,b=3,∴所求椭圆方程为x236+y29=1.:x236+y29=1.21.节假日时,国人发手机短信问候亲友已成为一种时尚,若小李的40名同事中,给其发短信问候的概率为1,0.8,0.5,0的人数分别是8,15,14,3(人),通常情况下,小李应收到同事问候的信息条数为()

A.27

B.37

C.38

D.8答案:A22.在调试某设备的线路设计中,要选一个电阻,调试者手中只有阻值分别为0.7KΩ,1.1KΩ,1.9KΩ,2.0KΩ,3.5KΩ,4.5KΩ,5.5KΩ七种阻值不等的定值电阻,他用分数法进行优法进行优选试验时,依次将电阻值从小到大安排序号,则第1个试点的电阻的阻值是(

).答案:3.5kΩ23.设一次试验成功的概率为p,进行100次独立重复试验,当p=______时,成功次数的标准差的值最大,其最大值为______.答案:由独立重复试验的方差公式可以得到Dξ=npq≤n(p+q2)2=n4,等号在p=q=12时成立,∴Dξ=100×12×12=25,σξ=25=5.故为:12;524.已知直线3x+2y-3=0和6x+my+1=0互相平行,则它们之间的距离是()

A.

B.

C.

D.答案:B25.种植两株不同的花卉,它们的存活率分别为p和q,则恰有一株存活的概率为(

)A.p+q-2pqB.p+q-pqC.p+qD.pq答案:A解析:恰有一株存活的概率为p(1-q)+(1-p)q=p+q-2pq。26.某年级共有210名同学参加数学期中考试,随机抽取10名同学成绩如下:

成绩(分)506173859094人数221212则总体标准差的点估计值为______(结果精确到0.01).答案:由题意知本题需要先做出这组数据的平均数50×2+61×2+73+2×85+90+2×9410=74.9,这组数据的总体方差是(2×24.92+1.92+2×13.92+15.12+2×19.12)÷10=309.76,∴总体标准差是309.76≈17.60,故为:17.60.27.若曲线的极坐标方程为ρ=2sinθ+4cosθ,以极点为原点,极轴为x轴正半轴建立直角坐标系,则该曲线的直角坐标方程为______.答案:曲线的极坐标方程为ρ=2sinθ+4cosθ,即ρ2=2ρsinθ+4ρcosθ,即x2+y2=2y+4x,化简为(x-2)2+(y-1)2=5,故为(x-2)2+(y-1)2=5.28.一个总体中有100个个体,随机编号为0,1,2,3,…,99,依编号顺序平均分成10个小组,组号依次为1,2,3,…10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m,那么在第k组中抽取的号码个位数字与m+k号码的个位数字相同,若m=6,则在第7组中抽取的号码是()

A.66

B.76

C.63

D.73答案:C29.请写出所给三视图表示的简单组合体由哪些几何体组成.______.答案:由已知中的三视图我们可以判断出该几何体是由一个底面面积相等的圆锥和圆柱组合而成故为:圆柱体,圆锥体30.如图,弯曲的河流是近似的抛物线C,公路l恰好是C的准线,C上的点O到l的距离最近,且为0.4千米,城镇P位于点O的北偏东30°处,|OP|=10千米,现要在河岸边的某处修建一座码头,并修建两条公路,一条连接城镇,一条垂直连接公路l,以便建立水陆交通网.

(1)建立适当的坐标系,求抛物线C的方程;

(2)为了降低修路成本,必须使修建的两条公路总长最小,请给出修建方案(作出图形,在图中标出此时码头Q的位置),并求公路总长的最小值(精确到0.001千米)答案:(1)过点O作准线的垂线,垂足为A,以OA所在直线为x轴,OA的垂直平分线为y轴,建立平面直角坐标系…(2分)由题意得,p2=0.4…(4分)所以,抛物线C:y2=1.6x…(6分)(2)设抛物线C的焦点为F由题意得,P(5,53)…(8分)根据抛物线的定义知,公路总长=|QF|+|QP|≥|PF|≈9.806…(12分)当Q为线段PF与抛物线C的交点时,公路总长最小,最小值为9.806千米…(16分)31.设函数g(x)=ex

x≤0lnx,x>0,则g(g(12))=______.答案:g(g(12))

=g(ln12)

=eln12=12故为:12.32.已知|a|=1,|b|=2,向量a与b的夹角为60°,则|a+b|=______.答案:∵已知|a|=1,|b|=2,向量a与b的夹角为60°,∴a2=1,b2=4,a?b=1×2×cos60°=1,.∴|.a+b|2=a2+b2+2a?b=1+4+2=7,∴|.a+b|

=7,故为7.33.已知事件A与B互斥,且P(A)=0.3,P(B)=0.6,则P(A|.B)=______.答案:∵P(B)=0.6,∴P(.B)=0.4.又事件A与B互斥,且P(A)=0.3,∴P(A|.B)=P(A)P(.B)=0.30.4=34.故为:34.34.A、B为球面上相异两点,则通过A、B两点可作球的大圆有()A.一个B.无穷多个C.零个D.一个或无穷多个答案:如果A,B两点为球面上的两极点(即球直径的两端点)则通过A、B两点可作球的无数个大圆如果A,B两点不是球面上的两极点(即球直径的两端点)则通过A、B两点可作球的一个大圆故选:D35.已知圆C1:(x-2cosθ)2+(y-2sinθ)2=1与圆C2:x2+y2=1,在下列说法中:

①对于任意的θ,圆C1与圆C2始终相切;

②对于任意的θ,圆C1与圆C2始终有四条公切线;

③当θ=π6时,圆C1被直线l:3x-y-1=0截得的弦长为3;

④P,Q分别为圆C1与圆C2上的动点,则|PQ|的最大值为4.

其中正确命题的序号为

______.答案:①由圆C1:(x-2cosθ)2+(y-2sinθ)2=1与圆C2:x2+y2=1,得到圆C1的圆心(2cosθ,2sinθ),半径R=1;圆C2的圆心(0,0),半径r=1,则两圆心之间的距离d=(2cosθ)2+(2sinθ)2=2,而R+r=1+1=2,所以两圆的位置关系是外切,此正确;②由①得两圆外切,所以公切线的条数是3条,所以此错误;③把θ=π6代入圆C1:(x-2cosθ)2+(y-2sinθ)2=1得:(x-3)2+(y-1)2=1,圆心(3,1)到直线l的距离d=|3-2|3+1=12,则圆被直线l截得的弦长=21-(12)2=3,所以此正确;④由两圆外切得到|PQ|=2+2=4,此正确.综上,正确的序号为:①③④.故为:①③④36.设a=(x,y,3),b=(3,3,5),且a⊥b,则x+y=()A.1B.-1C.-5D.5答案:∵a=(x,y,3),b=(3,3,5),且a⊥b,∴a•b=3x+3y+15=0,∴x+y=-5,故选

C.37.设A、B、C、D是半径为r的球面上的四点,且满足AB⊥AC、AD⊥AC、AB⊥AD,则S△ABC+S△ABD+S△ACD的最大值是[

]A、r2

B、2r2

C、3r2

D、4r2答案:B38.为了了解1200名学生对学校某项教改试验的意见,打算从中抽取一个容量为40的样考虑用系统抽样,则分段的间隔k为______答案:由题意知本题是一个系统抽样,总体中个体数是1200,样本容量是40,根据系统抽样的步骤,得到分段的间隔K=120040=30,故为:30.39.直线x=1和函数y=f(x)的图象的公共点的个数为______.答案:由函数定义知当函数在x=1处有定义时,直线x=1和函数y=f(x)的图象的公共点的个数为1,若函数在x=1处有无定义时,直线x=1和函数y=f(x)的图象的公共点的个数为0故线x=1和函数y=f(x)的图象的公共点的个数为0或1故为0或140.已知,,且与垂直,则实数λ的值为()

A.±

B.1

C.-

D.答案:D41.设随机变量ξ服从正态分布N(u,9),若p(ξ>3)=p(ξ<1),则u=______.答案:∵随机变量ξ服从正态分布N(u,9),p(ξ>3)=p(ξ<1),∴u=3+12=2故为242.设F1,F2为定点,|F1F2|=6,动点M满足|MF1|+|MF2|=6,则动点M的轨迹是()A.椭圆B.直线C.圆D.线段答案:对于在平面内,若动点M到F1、F2两点的距离之和等于6,而6正好等于两定点F1、F2的距离,则动点M的轨迹是以F1,F2为端点的线段.故选D.43.不等式的解集

.答案:;解析:略44.△ABC中,A(1,2),B(3,1),重心G(3,2),则C点坐标为______.答案:设点C(x,y)由重心坐标公式知3×3=1+3+x,6=2+1+y解得x=5,y=3故点C的坐标为(5,3)故为(5,3)45.已知函数f(x)=2x+a的图象不过第三象限,则常数a的取值范围是

______.答案:函数f(x)=2x+a的图象可根据指数函数f(x)=2x的图象向上(a>0)或者向下(a<0)平移|a|个单位得到,若函数f(x)=2x+a的图象不过第三象限,则只能向上平移或者不平移,因此,a的取值范围是a≥0.故为:a≥0.46.“a>1”是“1a<1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:由1a<1得:当a>0时,有1<a,即a>1;当a<0时,不等式恒成立.所以1a<1?a>1或a<0从而a>1是1a<1的充分不必要条件.故应选:A47.若矩阵满足下列条件:①每行中的四个数所构成的集合均为{1,2,3,4};②四列中有且只有两列的上下两数是相同的.则这样的不同矩阵的个数为()

A.24

B.48

C.144

D.288答案:C48.已知f(x)=2x,g(x)=3x.

(1)当x为何值时,f(x)=g(x)?

(2)当x为何值时,f(x)>1?f(x)=1?f(x)<1?

(3)当x为何值时,g(x)>3?g(x)=3?g(x)<3?答案:(1)作出函数f(x),g(x)的图象,如图所示.∵f(x),g(x)的图象都过点(0,1),且这两个图象只有一个公共点,∴当x=0时,f(x)=g(x)=1.(2)由图可知,当x>0时,f(x)>1;当x=0时,f(x)=1;当x<0时,f(x)<1.(3)由图可知:当x>1时,g(x)>3;当x=1时,g(x)=3;当x<1时,g(x)<3.49.引入复数后,数系的结构图为()

A.

B.

C.

D.

答案:A50.若直线过点(1,2),(),则此直线的倾斜角是()

A.60°

B.45°

C.30°

D.90°答案:C第3卷一.综合题(共50题)1.(理科)若随机变量ξ~N(2,22),则D(14ξ)的值为______.答案:解;∵随机变量ξ服从正态分布ξ~N(2,22),∴可得随机变量ξ方差是4,∴D(14ξ)的值为142D(ξ)=142×4=14.故为:14.2.抛掷甲、乙两骰子,记事件A:“甲骰子的点数为奇数”;事件B:“乙骰子的点数为偶数”,则P(B|A)的值等于()

A.

B.

C.

D.答案:B3.某工厂生产的产品,用速度恒定的传送带将产品送入包装车间之前,质检员每隔3分钟从传送带上是特定位置取一件产品进行检测,这种抽样方法是()

A.简单随机抽样

B.系统抽样

C.分层抽样

D.其它抽样方法答案:B4.电子跳蚤游戏盘是如图所示的△ABC,AB=8,AC=9,BC=10,如果跳蚤开始时在BC边的点P0处,BP0=4.跳蚤第一步从P0跳到AC边的P1(第1次落点)处,且CP1=CP0;第二步从P1跳到AB边的P2(第2次落点)处,且AP2=AP1;第三步从P2跳到BC边的P3(第3次落点)处,且BP3=BP2;跳蚤按上述规则一直跳下去,第n次落点为Pn(n为正整数),则点P2010与C间的距离为______答案:∵由题意可以发现每边各有两点,其中BC边上P0,P6,P12…重合,P3,P9,P15…重合,AC边上P1,P7,P13…重合,P4,P10,P16…重合,AB边上P2,P8,P14…重合,P5,P11,P17…重合.发现规律2010为六的倍数所以与P0重合,∴与C点之间的距离为6故为:65.“神六”上天并顺利返回,让越来越多的青少年对航天技术发生了兴趣.某学校科技小组在计算机上模拟航天器变轨返回试验,设计方案

如图:航天器运行(按顺时针方向)的轨迹方程为x2100+y225=1,变轨(航天器运行轨迹由椭圆变为抛物线)后返回的轨迹是以y轴为

对称轴、M(0,647)为顶点的抛物线的实线部分,降落点为D(8,0),观测点A(4,0)、B(6,0)同时跟踪航天器.试问:当航天器在x轴上方时,观测点A、B测得离航天器的距离分别为______时航天器发出变轨指令.答案:设曲线方程为y=ax2+647,由题意可知,0=a•64+647.∴a=-17,∴曲线方程为y=-17x2+647.设变轨点为C(x,y),根据题意可知,抛物线方程与椭圆方程联立,可得4y2-7y-36=0,y=4或y=-94(不合题意,舍去).∴y=4.∴x=6或x=-6(不合题意,舍去).∴C点的坐标为(6,4),|AC|=25,|BC|=4.故为:25、4.6.某个几何体的三视图如图所示,则该几何体的体积是()A.23B.3C.334D.332答案:由三视图可知该几何体是直三棱柱,高为1,底面三角形一边长为2,此边上的高为3,所以V=Sh=12×2×3×1=3故选B.7.规定符号“△”表示一种运算,即a△b=ab+a+b,其中a、b∈R+;若1△k=3,则函数f(x)=k△x的值域______.答案:1△k=k+1+k=3,解得k=1,∴k=1∴f(x)=k△x=kx+k+x=x+x+1对于x需x≥0,∴对于f(x)=x+x+1=(x+12)2+34≥1故函数f(x)的值域为[1,+∞)故为:[1,+∞)8.若以连续掷两次骰子分别得到的点数m、n作为点P的坐标,则点P落在圆x2+y2=16内的概率是______.答案:由题意知,本题是一个古典概型,试验发生包含的事件是连续掷两次骰子分别得到的点数m、n作为点P的坐标,共有6×6=36种结果,而满足条件的事件是点P落在圆x2+y2=16内,列举出落在圆内的情况:(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)(3,1)(3,2),共有8种结果,根据古典概型概率公式得到P=836=29,故为:299.设、、是三角形的边长,求证:

≥答案:证明见解析解析:证明:由不等式的对称性,不防设≥≥,则≥左式-右式≥≥≥010.在⊙O中,弦AB=1.8cm,圆周角∠ACB=30°,则⊙O的直径等于()

A.3.2cm

B.3.4cm

C.3.6cm

D.4.0cm答案:C11.已知M(-2,7)、N(10,-2),点P是线段MN上的点,且PN=-2PM,则P点的坐标为______.答案:设P(x,y),则PN=(10-x,-2-y),PM=(-2-x,7-y),∵PN=-2PM,∴10-x=-2(-2-x)-2-y=-2(7-y),∴x=2y=4∴P点的坐标为(2,4).故为:(2,4)12.是x1,x2,…,x100的平均数,a是x1,x2,…,x40的平均数,b是x41,x42,…,x100的平均数,则下列各式正确的是()

A.=

B=

C.=a+b

D.答案:A13.命题:“方程x2-1=0的解是x=±1”,其使用逻辑联结词的情况是()A.使用了逻辑联结词“且”B.使用了逻辑联结词“或”C.使用了逻辑联结词“非”D.没有使用逻辑联结词答案:“x=±1”可以写成“x=1或x=-1”,故选B.14.下列图象中不能作为函数图象的是()A.

B.

C.

D.

答案:根据函数的概念:如果在一个变化过程中,有两个变量x、y,对于x的每一个值,y都有唯一确定的值与之对应,这时称y是x的函数.结合选项可知,只有选项B中是一个x对应1或2个y故选B.15.已知G是△ABC的重心,过G的一条直线交AB、AC两点分别于E、F,且有AE=λAB,AF=μAC,则1λ+1μ=______.答案:∵G是△ABC的重心∴取过G平行BC的直线EF∵AE=λAB,AF=μAC∴λ=23,μ=23∴1λ+1μ=32+32=3故为316.实数变量m,n满足m2+n2=1,则坐标(m+n,mn)表示的点的轨迹是()

A.抛物线

B.椭圆

C.双曲线的一支

D.抛物线的一部分答案:A17.已知α,β表示两个不同的平面,m为平面α内的一条直线,则“α⊥β”是“m⊥β”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:由平面与平面垂直的判定定理知如果m为平面α内的一条直线,m⊥β,则α⊥β,反过来则不一定所以“α⊥β”是“m⊥β”的必要不充分条件.故选B.18.为了了解某地母亲身高x与女儿身高Y的相关关系,随机测得10对母女的身高如下表所示:

母亲身x(cm)159160160163159154159158159157女儿身Y(cm)158159160161161155162157162156计算x与Y的相关系数r≈0.71,通过查表得r的临界值r0.05=0.632,从而有______的把握认为x与Y之间具有线性相关关系,因而求回归直线方程是有意义的.通过计算得到回归直线方程为y═34.92+0.78x,因此,当母亲的身高为161cm时,可以估计女儿的身高大致为______.答案:查对临界值表,由临界值r0.05=0.632,可得有95%的把握认为x与Y之间具有线性相关关系,回归直线方程为y=34.92+0.78x,因此,当x=161cm时,y=34.92+0.78x=34.92+0.78×161=161cm故为:95%,161cm.19.平面ABCD中,点A坐标为(0,1,1),点B坐标为(1,2,1),点C坐标为(-1,0,-1).若向量a=(-2,y,z),且a为平面ABC的法向量,则yz=()A.2B.0C.1D.-1答案:AB=(1,1,0),AC=(-1,-1,-2),与平面ABC垂直的向量应与上面的向量的数量积为零,向量a=(-2,y,z),且a为平面ABC的法向量,则a⊥AB且a⊥AC,即a•AB=0,且a•AC=0,即-2+y+0=0且2-y-2z=0,即y=2z=0,∴则yz=20=1,故选C.20.在z轴上与点A(-4,1,7)和点B(3,5,-2)等距离的点C的坐标为

______.答案:由题意设C(0,0,z),∵C与点A(-4,1,7)和点B(3,5,-2)等距离,∴|AC|=|BC|,∴16+1+(7-z)2=9+25+(z+2)2,∴18z=28,∴z=149,∴C点的坐标是(0,0,149)故为:(0,0,149)21.已知函数f(x)=2-x,x≤112+log2x,x>1,则满足f(x)≥1的x的取值范围为______.答案:当x≤1时,2-x≥1,解得-x≥0,即x≤0,所以x≤0;当x>1时,12+log2x≥1,解得x≥2,所以x≥2.所以满足f(x)≥1的x的取值范围为(-∞,0]∪[2,+∞).故为:(-∞,0]∪[2,+∞).22.已知椭圆的短轴长等于2,长轴端点与短轴端点间的距离等于5,则此椭圆的标准方程是______.答案:由题意可得2b=2a2+b2=(5)2,解得b=1a=2.故椭圆的标准方程是x24+y2=1或y24+x2=1.故为x24+y2=1或y24+x2=1.23.已知集合A={(x,y)|y=x2,x∈R},B={(x,y)|y=x,x∈R},则集合A∩B中的元素个数为(

)

A.0个

B.1个

C.2个

D.无穷多个答案:C24.球的表面积与它的内接正方体的表面积之比是()A.π3B.π4C.π2D.π答案:设:正方体边长设为:a则:球的半径为3a2所以球的表面积S1=4?π?R2=4π34a2=3πa2而正方体表面积为:S2=6a2所以比值为:S1S2=π2故选C25.某会议室第一排共有8个座位,现有3人就座,若要求每人左右均有空位,那么不同的坐法种数为()A.12B.16C.24D.32答案:将空位插到三个人中间,三个人有两个中间位置和两个两边位置就是将空位分为四部分,五个空位四分只有1,1,1,2空位五差别,只需要空位2分别占在四个位置就可以有四种方法,另外三个人排列A33=6根据分步计数可得共有4×6=24故选C.26.在市场上供应的灯泡中,甲厂产品占70%,乙厂占30%,甲厂产品的合格率是95%,乙厂的合格率是80%,则从市场上买到一个甲厂生产的合格灯泡的概率是______.答案:由题意知本题是一个相互独立事件同时发生的概率,∵甲厂产品占70%,甲厂产品的合格率是95%,∴从市场上买到一个甲厂生产的合格灯泡的概率是0.7×0.95=0.665故为:0.66527.已知双曲线的顶点到渐近线的距离为2,焦点到渐近线的距离为6,则该双曲线的离心率为(

A.

B.

C.3

D.2答案:C28.直线y=2的倾斜角和斜率分别是()A.90°,斜率不存在B.90°,斜率为0C.180°,斜率为0D.0°,斜率为0答案:由题意,直线y=2的倾斜角是0°,斜率为0故选D.29.若一辆汽车每天行驶的路程比原来多19km,则该汽车在8天内行驶的路程s(km)就超过2200km;若它每天行驶的路程比原来少12km,则它行驶同样的路程s(km)就得花9天多的时间。这辆汽车原来每天行驶的路程(km)的范围是(

A.(259,260)

B.(258,260)

C.(257,260)

D.(256,260)答案:D30.有这样一段“三段论”推理,对于可导函数f(x),大前提:如果f’(x0)=0,那么x=x0是函数f(x)的极值点;小前提:因为函数f(x)=x3在x=0处的导数值f’(0)=0,结论:所以x=0是函数f(x)=x3的极值点.以上推理中错误的原因是______错误(填大前提、小前提、结论).答案:∵大前提是:“对于可导函数f(x),如果f'(x0)=0,那么x=x0是函数f(x)的极值点”,不是真命题,因为对于可导函数f(x),如果f'(x0)=0,且满足当x>x0时和当x<x0时的导函数值异号时,那么x=x0是函数f(x)的极值点,∴大前提错误,故为:大前提.31.在极坐标系中,曲线ρ=4cosθ围成的图形面积为()

A.π

B.4

C.4π

D.16答案:C32.以椭圆上一点和椭圆两焦点为顶点的三角形的面积最大值为1时,椭圆长轴的最小值为()

A.

B.

C.2

D.2

答案:D33.(理)某单位有8名员工,其中有5名员工曾经参加过一种或几种技能培训,另外3名员工没有参加过任何技能培训,现要从8名员工中任选3人参加一种新的技能培训;

(I)求恰好选到1名曾经参加过技能培训的员工的概率;

(Ⅱ)这次培训结束后,仍然没有参加过任何技能培训的员工人数X是一个随机变量,求X的分布列和数学期望.答案:(I)由题意知本题是一个等可能事件的概率,∵试验发生包含的事件是从8人中选3个,共有C83=56种结果,满足条件的事件是恰好选到1名曾经参加过技能培训的员工,共有C51C32=15∴恰好选到1名已参加过其他技能培训的员工的概率P=1556(II)随机变量X可能取的值是:0,1,2,3.P(X=0)=156P(X=1)=1556P(X=2)=1528P(X=3)=C35C38=528∴随机变量X的分布列是X0123P15615561528528∴X的数学期望是1×1556+2×

1528+3×528=15834.如图所示的程序框图,运行相应的程序,若输出S的值为254,则判断框①中应填入的条件是()A.n≤5B.n≤6C.n≤7D.n≤8答案:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是输出满足条件S=2+22+

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论