2023年潍坊工程职业学院高职单招(数学)试题库含答案解析_第1页
2023年潍坊工程职业学院高职单招(数学)试题库含答案解析_第2页
2023年潍坊工程职业学院高职单招(数学)试题库含答案解析_第3页
2023年潍坊工程职业学院高职单招(数学)试题库含答案解析_第4页
2023年潍坊工程职业学院高职单招(数学)试题库含答案解析_第5页
已阅读5页,还剩39页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年潍坊工程职业学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.x>1是x>2的()A.充分但不必要条件B.充要条件C.必要但不充分条件D.既不充分又不必要条件答案:由x>1,我们不一定能得出x>2,比如x=1.5,所以x>1不是x>2的充分条件;∵x>2>1,∴由x>2,能得出x>1,∴x>1是x>2的必要条件∴x>1是x>2的必要但不充分条件故选C.2.下列函数f(x)与g(x)表示同一函数的是

()A.f(x)=x0与g(x)=1B.f(x)=2lgx与g(x)=lgx2C.f(x)=|x|与g(x)=(x)2D.f(x)=x与g(x)=3x3答案:A、∵f(x)=x0,其定义域为{x|x≠0},而g(x)的定义域为R,故A错误;B、∵f(x)=2lgx,的定义域为{x|x>0},而g(x)=lgx2的定义域为R,故B错误;C、∵f(x)=|x|与g(x)=(x)2=x,其中f(x)的定义域为R,g(x)的定义域为{x|x≥0},故C错误;D、∵f(x)=x与g(x)=3x3=x,其中f(x)与g(x)的定义域为R,故D正确.故选D.3.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“是乙或丙获奖.”乙说:“甲、丙都未获奖.”丙说:“我获奖了.”丁说:“是乙获奖.”四位歌手的话只有两句是对的,则获奖的歌手是()A.甲B.乙C.丙D.丁答案:若甲是获奖的歌手,则都说假话,不合题意.若乙是获奖的歌手,则甲、乙、丁都说真话,丙说假话,不符合题意.若丁是获奖的歌手,则甲、丁、丙都说假话,乙说真话,不符合题意.故获奖的歌手是丙故先C4.若非零向量满足,则()

A.

B.

C.

D.答案:C5.引入复数后,数系的结构图为()

A.

B.

C.

D.

答案:A6.已知点A(-1,-2),B(2,3),若直线l:x+y-c=0与线段AB有公共点,则直线l在y轴上的截距的取值范围是()

A.[-3,5]

B.[-5,3]

C.[3,5]

D.[-5,-3]答案:A7.用0、1、2、3、4、5这6个数字,可以组成无重复数字的五位偶数的个数为______(用数字作答).答案:末尾是0时,有A55=120种;末尾不是0时,有2种选择,首位有4种选择,中间有A44,故有2×4×A44=192种故共有120+192=312种.故为:3128.P为椭圆x225+y216=1上一点,F1,F2分别为其左,右焦点,则△PF1F2周长为______.答案:由题意知△PF1F2周长=2a+2c=10+6=16.9.两封信随机投入A、B、C三个空邮箱,则A邮箱的信件数ξ的数学期望Eξ=______;答案:由题意知ξ的取值有0,1,2,当ξ=0时,即A邮箱的信件数为0,由分步计数原理知两封信随机投入A、B、C三个空邮箱,共有3×3种结果,而满足条件的A邮箱的信件数为0的结果数是2×2,由古典概型公式得到ξ=0时的概率,同理可得ξ=1时,ξ=2时,ξ=3时的概率p(ξ=0)=2×29=49,p(ξ=1)=C12C129=49,p(ξ=2)=19,∴Eξ=0×49+1×49+2×19=23故为:23.10.化简的结果是()

A.a2

B.a

C.a

D.a答案:C11.已知圆C:x2+y2-4y-6y+12=0,求:

(1)过点A(3,5)的圆的切线方程;

(2)在两条坐标轴上截距相等的圆的切线方程.答案:(l)设过点A(3,5)的直线ɭ的方程为y-5=k(x-3).因为直线ɭ与⊙C相切,而圆心为C(2,3),则|2k-3-3k+5|k2+1=1,解得k=34所以切线方程为y-5=34(x-3),即3x-4y+11=0.由于过圆外一点A与圆相切的直线有两条,因此另一条切线方程为x=3.(2)因为原点在圆外,所以设在两坐标轴上截距相等的直线方程x+y=a或y=kx.由直线与圆相切得,|2+3-a|2=1或|2k-3|k2+1=1,解得a=5士2,k=6±223故所求的切线方程为x+y=5士2或y=6±223x.12.圆锥的侧面展开图是一个半径长为4的半圆,则此圆锥的底面半径为

______.答案:设圆锥的底面半径为R,则由题意得,2πR=π×4,即R=2,故为:2.13.将正方形ABCD沿对角线BD折起,使平面ABD⊥平面CBD,E是CD中点,则∠AED的大小为()

A.45°

B.30°

C.60°

D.90°答案:D14.设双曲线x2a2-y2b2=1(a>b>0)的半焦距为c,直线l过(a,0),(0,b)两点,已知原点到直线l的距离为34c,则双曲线的离心率为______.答案:∵直线l过(a,0),(0,b)两点,∴直线l的方程为:xa+yb=1,即bx+ay-ab=0,∵原点到直线l的距离为34c,∴|ab|a2+b2=3c4,又c2=a2+b2,∴3e4-16e2+16=0,∴e2=4,或e2=43.∵a>b>0,∴离心率为e=2或e=233;故为2或233.15.对任意实数x,y,定义运算x*y=ax+by+cxy,其中a,b,c是常数,等式右边的运算是通常的加法和乘法运算。已知1*2=3,2*3=4,并且有一个非零常数m,使得对任意实数x,都有x*m=x,则m的值是(

)。答案:416.甲、乙两人破译一种密码,它们能破译的概率分别为和,求:

(1)恰有一人能破译的概率;(2)至多有一人破译的概率;

(3)若要破译出的概率为不小于,至少需要多少甲这样的人?答案:(1)(2)(3)至少需4个甲这样的人才能满足题意.解析:(1)设A为“甲能译出”,B为“乙能译出”,则A、B互相独立,从而A与、与B、与均相互独立.“恰有一人能译出”为事件,又与互斥,则(2)“至多一人能译出”的事件,且、、互斥,∴(3)设至少需要n个甲这样的人,而n个甲这样的人译不出的概率为,∴n个甲这样的人能译出的概率为,由∴至少需4个甲这样的人才能满足题意.17.曲线(t为参数)上的点与A(-2,3)的距离为,则该点坐标是()

A.(-4,5)

B.(-3,4)或(-1,2)

C.(-3,4)

D.(-4,5)或(0,1)答案:B18.如图是抛物线形拱桥,当水面在l时,拱顶离水面2米,水面宽4米.水位下降1米后,水面宽为______米.答案:如图建立直角坐标系,设抛物线方程为x2=my,将A(2,-2)代入x2=my,得m=-2∴x2=-2y,代入B(x0,-3)得x0=6,故水面宽为26m.故为:26.19.点P(1,2,2)到原点的距离是()

A.9

B.3

C.1

D.5答案:B20.已知二元一次方程组a1x+b1y=c1a2x+b2y=c2的增广矩阵是1-11113,则此方程组的解是______.答案:由题意,方程组

x-

y=1x+y=3解之得x=2y=1故为x=2y=121.规定运算.abcd.=ad-bc,则.1i-i2.=______.答案:根据题目的新规定知,.1i-i2.=1×2-(-i)i=2+i2=2-1=1.故为:1.22.方程|x|-1=2y-y2表示的曲线为()A.两个半圆B.一个圆C.半个圆D.两个圆答案:两边平方整理得:(|x|-1)2=2y-y2,化简得(|x|-1)2+(y-1)2=1,由|x|-1≥0得x≥1或x≤-1,当x≥1时,方程为(x-1)2+(y-1)2=1,表示圆心为(1,1)且半径为1的圆的右半圆;当x≤1时,方程为(x+1)2+(y-1)2=1,表示圆心为(-1,1)且半径为1的圆的右半圆综上所述,得方程|x|-1=2y-y2表示的曲线为为两个半圆故选:A23.已知命题p:“△ABC是等腰三角形”,命题q:“△ABC是直角三角形”,则命题“△ABC是等腰直角三角形”的形式是()A.p或qB.p且qC.非pD.以上都不对答案:因为“△ABC是等腰直角三角形”即为“△ABC是等腰且直角三角形”,所以命题“△ABC是等腰直角三角形”的形式是p且q,故选B.24.下列叙述中:

①变量间关系有函数关系,还有相关关系;②回归函数即用函数关系近似地描述相关关系;③=x1+x2+…+xn;④线性回归方程一定可以近似地表示所有相关关系.其中正确的有()

A.①②③

B.①②④

C.①③

D.③④答案:A25.设两个正态分布N(μ1,σ12)(σ1>0)和N(μ2,σ22)(σ2>0)的密度曲线如图所示,则有()

A.μ1<μ2,σ1<σ2

B.μ1<μ2,σ1>σ2

C.μ1>μ2,σ1<σ2

D.μ1>μ2,σ1>σ2

答案:A26.已知,棱长都相等的正三棱锥内接于一个球,某学生画出四个过球心的平面截球与正三棱锥所得的图形,如下图所示,则

A、以上四个图形都是正确的

B、只有(2)(4)是正确的

C、只有(4)是错误的

D、只有(1)(2)是正确的答案:C27.巳知椭圆{xn}与{yn}的中心在坐标原点,长轴在x轴上,离心率为32,且G上一点到G的两个焦点的距离之和为12,则椭圆G的方程为______.答案:由题设知e=32,2a=12,∴a=6,b=3,∴所求椭圆方程为x236+y29=1.:x236+y29=1.28.如图,△ABC中,D,E,F分别是边BC,AB,CA的中点,在以A、B、C、D、E、F为端点的有向线段中所表示的向量中,

(1)与向量FE共线的有

______.

(2)与向量DF的模相等的有

______.

(3)与向量ED相等的有

______.答案:(1)∵EF是△ABC的中位线,∴EF∥BC且EF=12BC,则与向量FE共线的向量是BC、BD、DC、CB、DB、CD;(2))∵DF是△ABC的中位线,∴DF∥AC且DF=12AC,则与向量DF的模相等的有CE,EA,EC,AF;(3)∵DE是△ABC的中位线,∴DE∥AB且DE=12AB,则与向量ED相等的有AF,FB.29.如图,在空间直角坐标系中,已知直三棱柱的顶点A在x轴上,AB平行于y轴,侧棱AA1平行于z轴.当顶点C在y轴正半轴上运动时,以下关于此直三棱柱三视图的表述正确的是()

A.该三棱柱主视图的投影不发生变化

B.该三棱柱左视图的投影不发生变化

C.该三棱柱俯视图的投影不发生变化

D.该三棱柱三个视图的投影都不发生变化

答案:B30.已知,,且与垂直,则实数λ的值为()

A.±

B.1

C.-

D.答案:D31.若A、B两点的极坐标为A(4

π3),B(6,0),则AB中点的极坐标是

______(极角用反三角函数值表示)答案:A的直角坐标为:(2,23),所以AB的中点坐标为:(4,3)所以极径为:19;极角为:α,tanα=34所以α=arctan34;AB中点的极坐标是:(19,

arctan34)故为:(19,

arctan34)32.如图算法输出的结果是______.答案:当I=1时,满足循环的条件,进而循环体执行循环则S=2,I=4;当I=4时,满足循环的条件,进而循环体执行循环则S=4,I=7;当I=7时,满足循环的条件,进而循环体执行循环则S=8,I=10;当I=10时,满足循环的条件,进而循环体执行循环则S=16,I=13;当I=13时,不满足循环的条件,退出循环,输出S值16故为:1633.在某电视歌曲大奖赛中,最有六位选手争夺一个特别奖,观众A,B,C,D猜测如下:A说:获奖的不是1号就是2号;A说:获奖的不可能是3号;C说:4号、5号、6号都不可能获奖;D说:获奖的是4号、5号、6号中的一个.比赛结果表明,四个人中恰好有一个人猜对,则猜对者一定是观众

获特别奖的是

号选手.答案:C,3.解析:推理如下:因为只有一人猜对,而C与D互相否定,故C、D中一人猜对。假设D对,则推出B也对,与题设矛盾,故D猜错,所以猜对者一定是C;于是B一定猜错,故获奖者是3号选手(此时A错).34.写出系数矩阵为1221,且解为xy=11的一个线性方程组是______.答案:由题意得:线性方程组为:x+2y=32x+y=3解之得:x=1y=1;故所求的一个线性方程组是x+2y=32x+y=3故为:x+2y=32x+y=3.35.椭圆有这样的光学性质:从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线经过椭圆的另一焦点.一水平放置的椭圆形台球盘,F1,F2是其焦点,长轴长2a,焦距为2c.一静放在F1点处的小球(半径忽略不计),受击打后沿直线运动(不与直线F1F2重合),经椭圆壁反弹后再回到点F1时,小球经过的路程是()

A.4c

B.4a

C.2(a+c)

D.4(a+c)答案:B36.由圆C:x=2+cosθy=3+sinθ(θ为参数)求圆的标准方程.答案:圆的参数方程x=2+cosθy=3+sinθ变形为:cosθ=2-xsinθ=3-y,根据同角的三角函数关系式cos2θ+sin2θ=1,可得到标准方程:(x-2)2+(y-3)2=1.所以为(x-2)2+(y-3)2=1.37.(几何证明选讲选做题)已知AD是△ABC的外角∠EAC的平分线,交BC的延长线于点D,延长DA交△ABC的外接圆于点F,连接FB,FC.

(1)求证:FB=FC;

(2)若AB是△ABC外接圆的直径,∠EAC=120°,BC=33,求AD的长.答案:(1)证明:∵AD平分∠EAC,∴∠EAD=∠DAC;∵四边形AFBC内接于圆,∴∠DAC=∠FBC;

…2′∵∠EAD=∠FAB=∠FCB∴∠FBC=∠FCB∴FB=FC.…5(2)∵AB是圆的直径,∴∠ACD=90°∵∠EAC=120°,∴∠DAC=60°,∴∠D=30°…7′在Rt△ACB中,∵BC=33,∠BAC=60°,∴AC=3又在Rt△ACD中,∠D=30°,AC=3,∴AD=6

…10′38.直线l过抛物线y2=2px(p>0)的焦点,且与抛物线交于A、B两点,若线段AB的长是8,AB的中点到y轴的距离是2,则此抛物线方程是()A.y2=12xB.y2=8xC.y2=6xD.y2=4x答案:设A(x1,y1),B(x2,y2),根据抛物线定义,x1+x2+p=8,∵AB的中点到y轴的距离是2,∴x1+x22=2,∴p=4;∴抛物线方程为y2=8x故选B39.证明空间任意无三点共线的四点A、B、C、D共面的充分必要条件是:对于空间任一点O,存在实数x、y、z且x+y+z=1,使得OA=xOB+yOC+zOD.答案:(必要性)依题意知,B、C、D三点不共线,则由共面向量定理的推论知:四点A、B、C、D共面⇔对空间任一点O,存在实数x1、y1,使得OA=OB+x1BC+y1BD=OB+x1(OC-OB)+y1(OD-OB)=(1-x1-y1)OB+x1OC+y1OD,取x=1-x1-y1、y=x1、z=y1,则有OA=xOB+yOC+zOD,且x+y+z=1.(充分性)对于空间任一点O,存在实数x、y、z且x+y+z=1,使得OA=xOB+yOC+zOD.所以x=1-y-z得OA=(1-y-z)OB+yOC+zOD.OA=OB+yBC+zBD,即:BA=yBC+zBD,所以四点A、B、C、D共面.所以,空间任意无三点共线的四点A、B、C、D共面的充分必要条件是:对于空间任一点O,存在实数x、y、z且x+y+z=1,使得OA=xOB+yOC+zOD.40.已知O是空间任意一点,A、B、C、D四点满足任三点均不共线,但四点共面,且=2x+3y+4z,则2x+3y+4z=(

)答案:﹣141.已知线段AB的两端点坐标为A(9,-3,4),B(9,2,1),则线段AB与坐标平面()A.xOy平行B.xOz平行C.yOz平行D.yOz相交答案:∵A(9,-3,4),B(9,2,1),∴AB=(9,2,1)-(9,-3,4)=(0,5,-3),∵yOz平面内的向量的一般形式为a=(0,y,z)∴向量AB∥a,可得AB∥平面yOz.故选:C42.已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为32,过右焦点F且斜率为k(k>0)的直线与C相交于A、B两点,若AF=3FB,则k=______.答案:设l为椭圆的右准线,过A、B作AA1,BB1垂直于l,A1,B1为垂足,过B作BE⊥AA1于E,则|AA1|=|AF|e,|BB1|=|BF|e,由AF=3FB知,|AA1|=3|BF|e,∴cos<BAE=|AE||AB|=2|BF|e4|BF|=12e=33,∴sin∠BAE=63,∴tan∠BAE=2.∴k=2.故:2.43.在空间直角坐标系中,点P(2,-4,6)关于y轴对称点P′的坐标为P′(-2,-4,-6)P′(-2,-4,-6).答案:∵在空间直角坐标系中,点(2,-4,6)关于y轴对称,∴其对称点为:(-2,-4,-6),故为:(-2,-4,-6).44.x+y+z=1,则2x2+3y2+z2的最小值为()

A.1

B.

C.

D.答案:C45.若双曲线的渐近线方程为y=±34x,则双曲线的离心率为______.答案:由题意可得,当焦点在x轴上时,ba=34,∴ca=a2+b2a=a2+(3a4)2a=54.当焦点在y轴上时,ab=34,∴ca=a2+b2a=a2+(4a3)2a=53,故为:53

或54.46.化简:AB+CD+BC=______.答案:如图:AB+CD+BC=AB+BC+CD=AC+CD=AD.故为:AD.47.数列{an}满足a1=1且an+1=(1+1n2+n)an+12n(n≥1).

(Ⅰ)用数学归纳法证明:an≥2(n≥2);

(Ⅱ)已知不等式ln(1+x)<x对x>0成立,证明:an<e2(n≥1),其中无理数e=2.71828….答案:(Ⅰ)证明:①当n=2时,a2=2≥2,不等式成立.②假设当n=k(k≥2)时不等式成立,即ak≥2(k≥2),那么ak+1=(1+1k(k+1))ak+12k≥2.这就是说,当n=k+1时不等式成立.根据(1)、(2)可知:ak≥2对所有n≥2成立.(Ⅱ)由递推公式及(Ⅰ)的结论有an+1=(1+1n2+n)an+12n≤(1+1n2+n+12n)an(n≥1)两边取对数并利用已知不等式得lnan+1≤ln(1+1n2+n+12n)+lnan≤lnan+1n2+n+12n故lnan+1-lnan≤1n(n+1)+12n(n≥1).上式从1到n-1求和可得lnan-lna1≤11×2+12×3+…+1(n-1)n+12+122+…+12n-1=1-12+(12-13)+…+1n-1-1n+12•1-12n1-12=1-1n+1-12n<2即lnan<2,故an<e2(n≥1).48.在平面直角坐标系中,点A(4,-2)按向量a=(-1,3)平移,得点A′的坐标是()A.(5,-5)B.(3,1)C.(5,1)D.(3,-5)答案:设A′的坐标为(x′,y′),则x′=4-1=3y′=-2+3=1,∴A′(3,1).故选B.49.求证:答案:证明见解析解析:证明:此题采用了从第三项开始拆项放缩的技巧,放缩拆项时,不一定从第一项开始,须根据具体题型分别对待,即不能放的太宽,也不能缩的太窄,真正做到恰倒好处。50.已知点A(-3,8),B(2,4),若y轴上的点P满足PA的斜率是PB斜率的2倍,则P点的坐标为______.答案:设P(0,y),则∵点P满足PA的斜率是PB斜率的2倍,∴y-80+3=2•y-40-2∴y=5∴P(0,5)故为:(0,5)第2卷一.综合题(共50题)1.现有一个关于平面图形的命题:如图,同一个平面内有两个边长都是a的正方形,其中一个的某顶点在另一个的中心,则这两个正方形重叠部分的面积恒为a24.类比到空间,有两个棱长均为a的正方体,其中一个的某顶点在另一个的中心,则这两个正方体重叠部分的体积恒为______.答案:∵同一个平面内有两个边长都是a的正方形,其中一个的某顶点在另一个的中心,则这两个正方形重叠部分的面积恒为a24,类比到空间有两个棱长均为a的正方体,其中一个的某顶点在另一个的中心,则这两个正方体重叠部分的体积恒为a38,故为a38.2.不等式ax2+bx+2>0的解集是(-,),则a+b的值是()

A.10

B.-10

C.14

D.-14答案:D3.点O是四边形ABCD内一点,满足OA+OB+OC=0,若AB+AD+DC=λAO,则λ=______.答案:设BC中点为E,连接OE.则OB+OC=2OE,又有已知OB+OC=AO,所以AO=2OE,A,O,E三点都在BC边的中线上,且|AO|=2|OE|,所以O为△ABC重心.AB+AD+DC=

AB+(AD+DC)=AB+AC=2AE=2×32AO=3AO,∴λ=3故为:3.4.若k∈R,则“k>3”是“方程表示双曲线”的()

A.充分不必要条件

B.必要不充分条件

C.充要条件

D.既不充分也不必要条件答案:A5.如图所示的几何体ABCDE中,DA⊥平面EAB,CB∥DA,EA=DA=AB=2CB,EA⊥AB,M是EC的中点,

(Ⅰ)求证:DM⊥EB;

(Ⅱ)设二面角M-BD-A的平面角为β,求cosβ.答案:分别以直线AE,AB,AD为x轴、y轴、z轴,建立如图所示的空间直角坐标系A-xyz,设CB=a,则A(0,0,0),E(2a,0,0),B(0,2a,0),C(0,2a,a),D(0,0,2a)所以M(a,a,a2).(Ⅰ):DM=(a,a,-3a2)

,EB=(-2a,2a,0)DM•EB=a•(-2a)+a•2a+0=0.∴DM⊥EB,即DM⊥EB.(Ⅱ)设平面MBD的法向量为n=(x,y,z),DB=(0,2a,-2a),由n⊥DB,n⊥DM,得n•DB=2ay-2az=0n•DM=ax+ay-3a2z=0⇒y=zx+y-3z2=0取z=2得平面MBD的一非零法向量为n=(1,2,2),又平面BDA的一个法向量n1=(1,0,0).∴cos<n,n1>

=1+0+012+22+22•12+02+

02=13,即cosβ=136.4名学生参加3项不同的竞赛,则不同参赛方法有()A.34B.A43C.3!D.43答案:由题意知本题是一个分步计数问题,首先第一名学生从三种不同的竞赛中选有三种不同的结果,第二名学生从三种不同的竞赛中选有3种结果,同理第三个和第四个同学从三种竞赛中选都有3种结果,∴根据分步计数原理得到共有3×3×3×3=34故选A.7.若直线l经过原点和点A(-2,-2),则它的斜率为()

A.-1

B.1

C.1或-1

D.0答案:B8.函数y=a|x|(a>1)的图象是()

A.

B.

C.

D.

答案:B9.若以(y+2)2=4(x-1)上任一点P为圆心作与y轴相切的圆,那么这些圆必定过平面内的点()

A.(1,-2)

B.(3,-2)

C.(2,-2)

D.不存在这样的点答案:C10.已知抛物线的顶点在坐标原点,焦点在x轴正半轴,抛物线上一点M(3,m)到焦点的距离为5,求m的值及抛物线方程.答案:∵抛物线顶点在原点,焦点在x轴上,其上一点M(3,m)∴设抛物线方程为y2=2px∵其上一点M(3,m)到焦点的距离为5,∴3+p2=5,可得p=4∴抛物线方程为y2=8x.11.若不共线的平面向量,,两两所成角相等,且||=1,||=1,||=3,则|++|等于(

A.2

B.5

C.2或5

D.或答案:A12.已知命题p、q,若命题“p∨q”与命题“¬p”都是真命题,则()A.命题q一定是真命题B.命题q不一定是真命题C.命题p不一定是假命题D.命题p与命题q的真值相等答案:∵命题“¬p”与命题“p∨q”都是真命题,∴命题p为假命题,q为真命题.故选A.13.在极坐标系中,曲线ρ=2cosθ所表示图形的面积为______.答案:将原极坐标方程为p=2cosθ,化成:p2=2ρcosθ,其直角坐标方程为:∴x2+y2=2x,是一个半径为1的圆,其面积为π.故填:π.14.已知不等式a≤对x取一切负数恒成立,则a的取值范围是____________.答案:a≤2解析:要使a≤对x取一切负数恒成立,令t=|x|>0,则a≤.而≥=2,∴a≤2.15.在线性回归模型y=bx+a+e中,下列说法正确的是()A.y=bx+a+e是一次函数B.因变量y是由自变量x唯一确定的C.随机误差e是由于计算不准确造成的,可以通过精确计算避免随机误差e的产生D.因变量y除了受自变量x的影响外,可能还受到其它因素的影响,这些因素会导致随机误差e的产生答案:线性回归是利用数理统计中的回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法之一,分析按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析.A不正确,根据线性回归方程做出的y的值是一个预报值,不是由x唯一确定,故B不正确,随机误差不是由于计算不准造成的,故C不正确,y除了受自变量x的影响之外还受其他因素的影响,故D正确,故选D.16.已知直线l经过点P(3,1),且被两平行直线l1;x+y+1=0和l2:x+y+6=0截得的线段之长为5,求直线l的方程.答案:解法一:若直线l的斜率不存在,则直线l的方程为x=3,此时与l1、l2的交点分别为A′(3,-4)或B′(3,-9),截得的线段AB的长|AB|=|-4+9|=5,符合题意.若直线l的斜率存在,则设直线l的方程为y=k(x-3)+1.解方程组y=k(x-3)+1x+y+1=0得A(3k-2k+1,-4k-1k+1).解方程组y=k(x-3)+1x+y+6=0得B(3k-7k+1,-9k-1k+1).由|AB|=5.得(3k-2k+1-3k-7k+1)2+(-4k-1k+1+9k-1k+1)2=52.解之,得k=0,直线方程为y=1.综上可知,所求l的方程为x=3或y=1.解法二:由题意,直线l1、l2之间的距离为d=|1-6|2=522,且直线L被平行直线l1、l2所截得的线段AB的长为5,设直线l与直线l1的夹角为θ,则sinθ=5225=22,故θ=45°.由直线l1:x+y+1=0的倾斜角为135°,知直线l的倾斜角为0°或90°,又由直线l过点P(3,1),故直线l的方程为:x=3或y=1.解法三:设直线l与l1、l2分别相交A(x1,y1)、B(x2,y2),则x1+y1+1=0,x2+y2+6=0.两式相减,得(x1-x2)+(y1-y2)=5.①又(x1-x2)2+(y1-y2)2=25.②联立①、②可得x1-x2=5y1-y2=0或x1-x2=0y1-y2=5由上可知,直线l的倾斜角分别为0°或90°.故所求的直线方程为x=3或y=1.17.某水产试验厂实行某种鱼的人工孵化,10000个卵能孵化出7645尾鱼苗.根据概率的统计定义解答下列问题:

(1)求这种鱼卵的孵化概率(孵化率);

(2)30000个鱼卵大约能孵化多少尾鱼苗?

(3)要孵化5000尾鱼苗,大概得准备多少鱼卵?(精确到百位)答案:(1)这种鱼卵的孵化概率为:764510000=0.7645(2)由(1)知,30000个鱼卵大约能孵化:30000×0.7645=22935尾鱼苗(3)要孵化5000尾鱼苗,需准备50000.7645=6500个鱼卵.18.函数f(x)=log2(3x+1)的值域为()

A.(0,+∞)B.[0,+∞)C.(1,+∞)D.[1,+∞)答案:根据对数函数的定义可知,真数3x+1>0恒成立,解得x∈R.因此,该函数的定义域为R,原函数f(x)=log2(3x+1)是由对数函数y=log2t和t=3x+1复合的复合函数.由复合函数的单调性定义(同増异减)知道,原函数在定义域R上是单调递增的.根据指数函数的性质可知,3x>0,所以,3x+1>1,所以f(x)=log2(3x+1)>log21=0,故选A.解析:试题分析19.已知求证:答案:证明见解析解析:证明:20.若不等式对一切x恒成立,求实数m的范围.答案:见解析解析:∵x2-8x+20=(x-4)2+4>0,∴只须mx2-mx-1<0恒成立,即可:①

当m=0时,-1<0,不等式成立;②

当m≠0时,则须,解得-4<m<0.由(1)、(2)得:-4<m≤0.</m<0.21.在输入语句中,若同时输入多个变量,则变量之间的分隔符号是()

A.逗号

B.空格

C.分号

D.顿号答案:A22.否定结论“至少有一个解”的说法中,正确的是()

A.至多有一个解

B.至少有两个解

C.恰有一个解

D.没有解答案:D23.若圆O1方程为(x+1)2+(y+1)2=4,圆O2方程为(x-3)2+(y-2)2=1,则方程(x+1)2+(y+1)2-4=(x-3)2+(y-2)2-1表示的轨迹是()

A.经过两点O1,O2的直线

B.线段O1O2的中垂线

C.两圆公共弦所在的直线

D.一条直线且该直线上的点到两圆的切线长相等答案:D24.已知向量与的夹角为120°,若向量,且,则=()

A.2

B.

C.

D.答案:C25.已知P为抛物线y2=4x上一点,设P到准线的距离为d1,P到点A(1,4)的距离为d2,则d1+d2的最小值为______.答案:∵y2=4x,焦点坐标为F(1,0)根据抛物线定义可知P到准线的距离为d1=|PF|d1+d2=|PF|+|PA|进而可知当A,P,F三点共线时,d1+d2的最小值=|AF|=4故为426.设函数f(x)=(1-2a)x+b是R上的增函数,则()A.a>12B.a<12C.a≥12D.a≤12答案:∵函数f(x)=(1-2a)x+b是R上的增函数,∴1-2a>0,∴a<12.故选B.27.把一颗骰子掷两次,观察出现的点数,并记第一次出现的点数为a,第二次出现的点数为b,则点(a,b)在直线x+y=5左下方的概率为()A.16B.56C.112D.1112答案:由题意知本题是一个古典概型,试验发生包含的事件数是6×6=36种结果,满足条件的事件是点(a,b)在直线x+y=5左下方即a+b<5,可以列举出所有满足的情况(1,1)(1,2)(1,3),(2,1),(2,2)(3,1)共有6种结果,∴点在直线的下方的概率是636=16故选A.28.以下四组向量中,互相平行的是.()

(1)=(1,2,1),=(1,-2,3);

(2)=(8,4,-6),=(4,2,-3);

(3)=(0,1,-1),=(0,-3,3);

(4)=(-3,2,0),=(4,-3,3).

A.(1)(2)

B.(2)(3)

C.(2)(4)

D.(1)(3)答案:B29.曲线C:x=t-2y=1t+1(t为参数)的对称中心坐标是______.答案:曲线C:x=t-2y=1t+1(t为参数)即y-1=1x+2,其对称中心为(-2,1).故为:(-2,1).30.已知l1、l2是过点P(-2,0)的两条互相垂直的直线,且l1、l2与双曲线y2-x2=1各有两个交点,分别为A1、B1和A2、B2.

(1)求l1的斜率k1的取值范围;

(2)若|A1B1|=5|A2B2|,求l1、l2的方程.答案:(1)显然l1、l2斜率都存在,否则l1、l2与曲线不相交.设l1的斜率为k1,则l1的方程为y=k1(x+2).联立得y=k1(x+2),y2-x2=1,消去y得(k12-1)x2+22k12x+2k12-1=0.①根据题意得k12-1≠0,②△1>0,即有12k12-4>0.③完全类似地有1k21-1≠0,④△2>0,即有12•1k21-4>0,⑤从而k1∈(-3,-33)∪(33,3)且k1≠±1.(2)由弦长公式得|A1B1|=1+k2112k21-4(k21-1)2.⑥完全类似地有|A2B2|=1+1k2112-4k21(k21-1)2.⑦∵|A1B1|=5|A2B2|,∴k1=±2,k2=.+22.从而l1:y=2(x+2),l2:y=-22(x+2)或l1:y=-2(x+2),l2:y=22(x+2).31.求原点至3x+4y+1=0的距离?答案:由原点坐标为(0,0),得到原点到已知直线的距离d=|3?0+4?0+1|32+42=15.32.(1)已知p3+q3=2,求证p+q≤2,用反证法证明时,可假设p+q≥2;

(2)已知a,b∈R,|a|+|b|<1,求证方程x2+ax+b=0的两根的绝对值都小于1.用反证法证明时可假设方程有一根x1的绝对值大于或等于1,即假设|x1|≥1,以下结论正确的是()

A.(1)的假设错误,(2)的假设正确

B.(1)与(2)的假设都正确

C.(1)的假设正确,(2)的假设错误

D.(1)与(2)的假设都错误答案:A33.一个公司共有240名员工,下设一些部门,要采用分层抽样方法从全体员工中抽取一个容量为20的样本.已知某部门有60名员工,那么从这一部门抽取的员工人数是______.答案:每个个体被抽到的概率是

20240=112,那么从甲部门抽取的员工人数是60×112=5,故为:5.34.将包含甲、乙两人的4位同学平均分成2个小组参加某项公益活动,则甲、乙两名同学分在同一小组的概率为()

A.

B.

C.

D.答案:C35.已知空间两点A(4,a,-b),B(a,a,2),则向量AB=()A.(a-4,0,2+b)B.(4-a,0,-b-2)C.(0,a-4,2+b)D.(a-4,0,-b-2)答案:∵A(4,a,-b),B(a,a,2)∴AB=(a-4,a-a,2-(-b))=(a-4,0,2+b)故选A36.已知椭圆中心在原点,一个焦点为(3,0),且长轴长是短轴长的2倍,则该椭圆的标准方程是______.答案:根据题意知a=2b,c=3又∵a2=b2+c2∴a2=4

b2=1∴x24+

y2=1故为:∴x24+

y2=1.37.用“辗转相除法”求得和的最大公约数是(

)A.B.C.D.答案:D解析:是和的最大公约数,也就是和的最大公约数38.如图所示的程序框图,运行相应的程序,若输出S的值为254,则判断框①中应填入的条件是()A.n≤5B.n≤6C.n≤7D.n≤8答案:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是输出满足条件S=2+22+23+…+2n=126时S的值∵2+22+23+…+27=254,故最后一次进行循环时n的值为7,故判断框中的条件应为n≤7.故选C.39.如图中的阴影部分用集合表示为______.答案:由已知中阴影部分所表示的集合元素满足是A的元素且C的元素,或是B的元素”,故阴影部分所表示的集合是(A∪C)∩(CUB)故为:B∪(A∩C)40.已知函数f

(x)=logx,则方程()|x|=|f(x)|的实根个数是()

A.1

B.2

C.3

D.2006答案:B41.已知直线l的斜率为k=-1,经过点M0(2,-1),点M在直线上,以M0M的数量t为参数,则直线l的参数方程为______.答案:∵直线l经过点M0(2,-1),斜率为k=-1,倾斜角为3π4,∴直线l的参数方程为x=2+tcos3π4y=-1+tsin3π4

(t为参数);即为x=2-22ty=-1+22t(t为参数).故为:x=2-22ty=-1+22t(t为参数).42.假设要抽查某种品牌的850颗种子的发芽率,抽取60粒进行实验.利用随机数表抽取种子时,先将850颗种子按001,002,…,850进行编号,如果从随机数表第8行第2列的数3开始向右读,请你依次写出最先检测的4颗种子的编号______,______,______,______.

(下面摘取了随机数表第7行至第9行)

84

42

17

53

31

57

24

55

06

88

77

04

74

47

67

21

76

33

50

25

83

92

12

06

76

63

01

63

78

59

16

95

55

67

19

98

10

50

71

75

12

86

73

58

07

44

39

52

38

79

33

21

12

34

29

78

64

56

07

82

52

42

07

44

38

15

51

00

13

42

99

66

02

79

54.答案:第8行第2列的数3开始向右读第一个小于850的数字是301,第二个数字是637,也符合题意,第三个数字是859,大于850,舍去,第四个数字是169,符合题意,第五个数字是555,符合题意,故为:301,637,169,55543.命题“若a>3,则a>5”的逆命题是______.答案:∵原命题“若a>3,则a>5”的条件是a>3,结论是a>5∴逆命题是“若a>5,则a>3”故为:若a>5,则a>344.已知复数z满足(1-i)•z=1,则z=______.答案:∵复数z满足(1-i)•z=1,∴z=11-i=1+i(1-i)(1+i)=12+12i,故为12+i2.45.如图,在扇形OAB中,∠AOB=60°,C为弧AB上且与A,B不重合的一个动点,OC=xOA+yOB,若u=x+λy,(λ>0)存在最大值,则λ的取值范围为()A.(12,1)B.(1,3)C.(12,2)D.(13,3)答案:设射线OB上存在为B',使OB′=1λOB,AB'交OC于C',由于OC=xOA+yOB=xOA+λy?1λOB=xOA+λy?OB′,设OC=tOC′,OC′=x′OA+λy′OB′,由A,B',C'三点共线可知x'+λy'=1,所以u=x+2y=tx'+t?2y'=t,则u=|OC||OC′|存在最大值,即在弧AB(不包括端点)上存在与AB'平行的切线,所以λ∈(12,2).故选C.46.已知,求证:.答案:证明略解析:因为是轮换对称不等式,可考虑由局部证整体.,相加整理得.当且仅当时等号成立.【名师指引】综合法证明不等式常用两个正数的算术平均数不小于它们的几何平均数这一结论,运用时要结合题目条件,有时要适当变形.47.一条直线的倾斜角的余弦值为32,则此直线的斜率为()A.3B.±3C.33D.±33答案:设直线的倾斜角为α,∵α∈[0,π),cosα=32∴α=π6因此,直线的斜率k=tanα=33故选:C48.给定两个长度为1且互相垂直的平面向量OA和OB,点C在以O为圆心的圆弧AB上变动.若OC=2xOA+yOB,其中x,y∈R,则x+y的最大值是______.答案:由题意|OC|=1,即4x2+y2=1,令x=12cosθ,y=sinθ则x+y=12cosθ+sinθ=(12)2+1sin(θ+φ)≤52故x+y的最大值是52故为:5249.如果双曲线的焦距为6,两条准线间的距离为4,那么该双曲线的离心率为()

A.

B.

C.

D.2答案:C50.在平行四边形ABCD中,AC与BD交于点O,E是线段CD的中点,若AC=a,BD=b,则AE=______.(用a、b表示)答案:∵平行四边形ABCD中,AC与BD交于点O,E是线段CD的中点,若AC=a,BD=b,∴AE=AO+OE=12a+OD+OC2=12a+a+b4=3a4+14b.故为:34a+14b.第3卷一.综合题(共50题)1.已知:如图,CD是⊙O的直径,AE切⊙O于点B,DC的延长线交AB于点A,∠A=20°,则

∠DBE=______.答案:连接BC,∵CD是⊙O的直径,∴∠CBD=90°,∵AE是⊙O的切线,∴∠DBE=∠1,∠2=∠D;又∵∠1+∠D=90°,即∠1+∠2=90°---(1),∠A+∠2=∠1----(2),(1)-(2)得∠1=55°即∠DBE=55°.故为:∠DBE=55°.2.有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题记分.

(1)选修4-2:矩阵与变换

已知点A(1,0),B(2,2),C(3,0),矩阵M表示变换”顺时针旋转45°”.

(Ⅰ)写出矩阵M及其逆矩阵M-1;

(Ⅱ)请写出△ABC在矩阵M-1对应的变换作用下所得△A1B1C1的面积.

(2)选修4-4:坐标系与参数方程

过P(2,0)作倾斜角为α的直线l与曲线E:x=cosθy=22sinθ(θ为参数)交于A,B两点.

(Ⅰ)求曲线E的普通方程及l的参数方程;

(Ⅱ)求sinα的取值范围.

(3)(选修4-5

不等式证明选讲)

已知正实数a、b、c满足条件a+b+c=3,

(Ⅰ)求证:a+b+c≤3;

(Ⅱ)若c=ab,求c的最大值.答案:(1)(Ⅰ)M=cos(-45°)-sin(-45°)sin(-45°)

cos(-45°)=2222-2222∵矩阵M表示变换“顺时针旋转45°”∴矩阵M-1表示变换“逆时针旋转45°”∴M-1=cos45°-sin45°sin45°

cos45°=22-2222

22(Ⅱ)三角形ABC的面积S△ABC=12×(3-1)×2=2,由于△ABC在旋转变换下所得△A1B1C1与△ABC全等,故三角形的面积不变,即S△A1B1C1=2.(2)(Ⅰ)曲线E的普通方程为x2+2y2=1L的参数方程为x=2+tcosαy=tsinα(t为参数)

(Ⅱ)将L的参数方程代入由线E的方程得(1+sin2α)t2+(4cosα)t+3=0由△=(4cosα)2-4(1+sin2α)×3≥0得sin2α≤17∴0≤sinα≤77(3)(Ⅰ)证明:由柯西不等式得(a+b+c)2≤(a+b+c)(1+1+1)代入已知a+b+c=3,∴(a+b+c)2≤9a+b+c≤3当且仅当a=b=c=1,取等号.(Ⅱ)由a+b≥2ab得2ab+c≤3,若c=ab,则2c+c≤3,(c+3)(c-1)≤0,所以c≤1,c≤1,当且仅当a=b=1时,c有最大值1.3.若a为实数,,则a等于()

A.

B.-

C.2

D.-2答案:B4.若f(x)=ax(a>0且a≠1)的反函数g(x)满足:g()<0,则函数f(x)的图象向左平移一个单位后的图象大致是下图中的()

A.

B.

C.

D.

答案:B5.“cosα=12”是“α=π3”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案:∵“coa=12”?“a=π3+2kπ,k∈Z,或a=53π+2kπ,k∈Z”,“a=π3”?“coa=12”.故选D.6.为提高广东中小学生的健康素质和体能水平,广东省教育厅要求广东各级各类中小学每年都要在体育教学中实施“体能素质测试”,测试总成绩满分为100分.根据广东省标准,体能素质测试成绩在[85,100]之间为优秀;在[75,85]之间为良好;在[65,75]之间为合格;在(0,60)之间,体能素质为不合格.

现从佛山市某校高一年级的900名学生中随机抽取30名学生的测试成绩如下:

65,84,76,70,56,81,87,83,91,75,81,88,80,82,93,85,90,77,86,81,83,82,82,64,79,86,68,71,89,96.

(1)在答题卷上完成频率分布表和频率分布直方图,并估计该校高一年级体能素质为优秀的学生人数;

(2)在上述抽取的30名学生中任取2名,设ξ为体能素质为优秀的学生人数,求ξ的分布列和数学期望(结果用分数表示);

(3)请你依据所给数据和上述广东省标准,对该校高一学生的体能素质给出一个简短评价.答案:(1)由已知的数据可得频率分布表和频率分布直方图如下:

分组

频数

频率[55,60)

1

130[60,65)

1

130[65,70)

2

230[70,75)

2

230[75,80)

4

430[80,85)

10

1030[85,90)

6

630[90,95)

3

330[95,100)

1

130根据抽样,估计该校高一学生中体能素质为优秀的有1030×900=300人

…(5分)(2)ξ的可能取值为0,1,2.…(6分)P(ξ=0)=C220C230=3887,P(ξ=1)=C120C110C230=4087,P(ξ=2)=C210C230=987

…(8分)∴ξ分布列为:ξ012P38874087987…(9分)所以,数学期望Eξ=0×3887+1×4087+2×987=5887=23.…(10分)(3)根据抽样,估计该校高一学生中体能素质为优秀有1030×900=300人,占总人数的13,体能素质为良好的有1430×900=420人,占总人数的715,体能素质为优秀或良好的共有2430×900=720人,占总人数的45,但体能素质为不合格或仅为合格的共有630×900=180人,占总人数的15,说明该校高一学生体能素质良好,但仍有待进一步提高,还需积极参加体育锻炼.7.写出按从小到大的顺序重新排列x,y,z三个数值的算法.答案:算法如下:(1).输入x,y,z三个数值;(2).从三个数值中挑出最小者并换到x中;(3).从y,z中挑出最小者并换到y中;(4).输出排序的结果.8.方程2x2+ky2=1表示的曲线是长轴在y轴的椭圆,则实数k的范围是()A.(0,+∞)B.(2,+∞)C.(0,2)D.(2,0)答案:椭圆方程化为x212+y21k=1.焦点在y轴上,则1k>12,即k<2.又k>0,∴0<k<2.故选C.9.P为椭圆x225+y216=1上一点,F1,F2分别为其左,右焦点,则△PF1F2周长为______.答案:由题意知△PF1F2周长=2a+2c=10+6=16.10.(本小题满分10分)如图,D、E分别是AB、AC边上的点,且不与顶点重合,已知为方程的两根

(1)证明四点共圆

(2)若求四点所在圆的半径答案:(1)见解析;(2)解析:解:(Ⅰ)如图,连接DE,依题意在中,,由因为所以,∽,四点C、B、D、E共圆。(Ⅱ)当时,方程的根因而,取CE中点G,BD中点F,分别过G,F做AC,AB的垂线,两垂线交于点H,连接DH,因为四点C、B、D、E共圆,所以,H为圆心,半径为DH.,,所以,,点评:此题考查平面几何中的圆与相似三角形及方程等概念和性质。注意把握判定与性质的作用。11.某班有40名学生,其中有15人是共青团员.现将全班分成4个小组,第一组有学生10人,共青团员4人,从该班任选一个学生代表.在选到的学生代表是共青团员的条件下,他又是第一组学生的概率为()A.415B.514C.14D.34答案:由于所有的共青团员共有15人,而第一小组有4人是共青团员,故在选到的学生代表是共青团员的条件下,他又是第一组学生的概率为415,故选A.12.一射手对靶射击,直到第一次命中为止每次命中的概率为0.6,现有4颗子弹,命中后的剩余子弹数目ξ的期望为()

A.2.44

B.3.376

C.2.376

D.2.4答案:C13.设P点在x轴上,Q点在y轴上,PQ的中点是M(-1,2),则|PQ|等于______.答案:设P(a,0),Q(0,b),∵PQ的中点是M(-1,2),∴由中点坐标公式得a+02=-10+b2=2,解之得a=-2b=4,因此可得P(-2,0),Q(0,4),∴|PQ|=(-2-0)2+(0-4)2=25.故为:2514.已知命题p:“△ABC是等腰三角形”,命题q:“△ABC是直角三角形”,则命题“△ABC是等腰直角三角形”的形式是()A.p或qB.p且qC.非pD.以上都不对答案:因为“△ABC是等腰直角三角形”即为“△ABC是等腰且直角三角形”,所以命题“△ABC是等腰直角三角形”的形式是p且q,故选B.15.已知m2+n2=1,a2+b2=2,则am+bn的最大值是()

A.1

B.

C.

D.以上都不对答案:C16.如图是一个方形迷宫,甲、乙两人分别位于迷宫的A、B两处,两人同时以每一分钟一格的速度向东、西、南、北四个方向行走,已知甲向东、西行走的概率都为14,向南、北行走的概率为13和p,乙向东、西、南、北四个方向行走的概率均为q

(1)p和q的值;

(2)问最少几分钟,甲、乙二人相遇?并求出最短时间内可以相遇的概率.答案:(1)∵14+14+13+p=1,∴p=16,∵4q=1,∴q=14(2)t=2甲、乙两人可以相遇(如图,在C、D、E三处相遇)

设在C、D、E三处相遇的概率分别为PC、PD、PE,则:PC=(16×16)×(14×14)=1576PD=2(16×14)×2(14×14)=196PE=(14×14)×(14×14)=1256PC+PD+PE=372304即所求的概率为37230417.已知△ABC三个顶点的坐标为A(1,3)、B(-1,-1)、C(-3,5),求这个三角形外接圆的方程.答案:设圆的方程为(x-a)2+(y-b)2=r2,则(1-a)2+(3-b)2=r2(-1-a)2+(-1-b)2=r2(-3-a)2+(5-b)2=r2,整理得a+2b-2=02a-b+6=0,解之得a=-2,b=2,可得r2=10,因此,这个三角形外接圆的方程为(x+2)2+(y-2)2=10.18.求圆心在直线y=-4x上,并且与直线l:x+y-1=0相切于点P(3,-2)的圆的方程.答案:设圆的方程为(x-a)2+(y-b)2=r2(r>0)由题意有:b=-4a|a+b+1|2=rb+2a-3•(-1)=-1解之得a=1b=-4r=22∴所求圆的方程为(x-1)2+(y+4)2=819.

在△ABC中,点D在线段BC的延长线上,且BC=3CD,点O在线段CD上(与点C、D不重合),若AO=xAB+(1-x)AC,则x的取值范围是()

A.

B.

C.

D.答案:D20.如果椭圆x225+y216=1上一点P到焦点F1的距离为6,则点P到另一个焦点F2的距离为()A.5B.4C.8D.6答案:由椭圆的定义知|PF1|+|PF2|=2a=10,|PF1|=6,故|PF2|=4.故选B.21.下列各组集合,表示相等集合的是()

①M={(3,2)},N={(2,3)};

②M={3,2},N={2,3};

③M={(1,2)},N={1,2}.A.①B.②C.③D.以上都不对答案:①中M中表示点(3,2),N中表示点(2,3);②中由元素的无序性知是相等集合;③中M表示一个元素,即点(1,2),N中表示两个元素分别为1,2.所以表示相等的集合是②.故选B.22.若向量=(2,-3,1),=(2,0,3),=(0,2,2),则(+)=()

A.4

B.15

C.7

D.3答案:D23.在极坐标系中,过点p(3,)且垂直于极轴的直线方程为()

A.Pcosθ=

B.Psinθ=

C.P=cosθ

D.P=sinθ答案:A24.选做题:如图,点A、B、C是圆O上的点,且AB=4,∠ACB=30°,则圆O的面积等于______.答案:连接OA,OB,∵∠ACB=30°,∴∠AoB=60°,∴△AOB是一个等边三角形,∴OA=AB=4,∴⊙O的面积是16π故为16π25.在语句PRINT

3,3+2的结果是()

A.3,3+2

B.3,5

C.3,5

D.3,2+3答案:B26.如图,l1,l2,l3是同一平面内的三条平行直线,l1与l2间的距离是1,l3与l2间的距离是2,正△ABC的三顶点分别在l1,l2,l3上,则△ABC的边长是______.答案:如图,过A,C作AE,CF垂直于L2,点E,F是垂足,将Rt△BCF绕点B逆时针旋转60°至Rt△BAD处,延长DA交L2于点G.由作图可知:∠DBG=60°,AD=CF=2.在Rt△BDG中,∠BGD=30°.在Rt△AEG中,∠EAG=60°,AE=1,AG=2,DG=4.∴BD=433在Rt△ABD中,AB=BD2+AD2=2213故为:221327.参数方程(θ为参数)表示的曲线是()

A.直线

B.圆

C.椭圆

D.抛物线答案:C28.已知二阶矩阵A=2ab0属于特征值-1的一个特征向量为1-3,求矩阵A的逆矩阵.答案:由矩阵A属于特征值-1的一个特征向量为α1=1-3,可得2ab01-3=-1-3,得2-3a=-1b=3即a=1,b=3;

…(3分)解得A=2130,…(8分)∴A逆矩阵是A-1=dad-bc-bad-bc-cad-bcaad-bc=0131-23.29.直线x=-3+ty=1-t(t是参数)被圆x=5cosθy=5sinθ(θ是参数)所截得的弦长是______.答案:把直线和圆的参数方程化为普通方程得:直线x+y+2=0,圆x2+y2=25,画出函数图象,如图所示:过圆心O(0,0)作OC⊥AB,根据垂径定理得到:AC=BC=12AB,连接OA,则|OA|=5,且圆心O到直线x+y+2=0的距离|OC|=|2|2=2,在直角△ACO中,根据勾股定理得:AC=23,所以AB=223,则直线被圆截得的弦长为223.故为:22330.一个凸多面体的各个面都是四边形,它的顶点数是16,则它的面数为()

A.14

B.7

C.15

D.不能确定答案:A31.如图,已知AB是⊙O的直径,AB⊥CD于E,切线BF交AD的延长线于F,若AB=10,CD=8,则切线BF的长是

______.答案:连接OD,AB⊥CD于E,根据垂径定理得到DE=4,在直角△ODE中,根据勾股定理得到OE=3,因而AE=8,易证△ABF∽△AED,得到DEBF=AEAB=810,解得BF=5.32.一个盒子中装有4张卡片,上面分别写着四个函数:f1(x)=x3,f2(x)=x4,f3(x)=2|x|,f4(x)=x+1x,现从盒子中任取2张卡片,将卡片上的函数相乘得到一个新函数,所得函数为奇函数的概率是______.答案:要使所得函数为奇函数,取出的两个函数必须是一个奇函数、一个偶函数.而所给的4个函数中,有2个奇函数、2个偶函数.所有的取法种数为C24=6,满足条件的取法有2×2=4种,故所得函数为奇函数的概率是46=23,故为23.33.a=0是复数a+bi(a,b∈R)为纯虚数的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件答案:当a=0时,复数a+bi=bi,当b=0是不是纯虚数即“a=0”成立推不出“复数a+bi(a,b∈R)为纯虚数”反之,当复数a+bi(a,b∈R)为纯虚数,则有a=0且b≠0即“复数a+bi(a,b∈R)为纯虚数”成立能推出“a=0“成立故a=0是复数a+bi(a,b∈R)为纯虚数的必要不充分条件故选B34.某自动化仪表公

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论