2023年湖南大众传媒职业技术学院高职单招(数学)试题库含答案解析_第1页
2023年湖南大众传媒职业技术学院高职单招(数学)试题库含答案解析_第2页
2023年湖南大众传媒职业技术学院高职单招(数学)试题库含答案解析_第3页
2023年湖南大众传媒职业技术学院高职单招(数学)试题库含答案解析_第4页
2023年湖南大众传媒职业技术学院高职单招(数学)试题库含答案解析_第5页
已阅读5页,还剩40页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年湖南大众传媒职业技术学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.在画两个变量的散点图时,下面哪个叙述是正确的(

A.预报变量x轴上,解释变量y轴上

B.解释变量x轴上,预报变量y轴上

C.可以选择两个变量中任意一个变量x轴上

D.可以选择两个变量中任意一个变量y轴上答案:B2.与

向量

=(2,-1,2)共线且满足方程=-18的向量为()

A.不存在

B.-2

C.(-4,2,-4)

D.(4,-2,4)答案:D3.已知圆的极坐标方程为:ρ2-42ρcos(θ-π4)+6=0.

(1)将极坐标方程化为普通方程;

(2)若点P(x,y)在该圆上,求x+y的最大值和最小值.答案:(1)ρ2-42ρcos(θ-π4)+6=0

ρ2-42(22ρcosθ+22ρsinθ

),即x2+y2-4x-4y+6=0.(2)圆的参数方程为x=

2

+2cosαy=

2

+2sinα,∴x+y=4+2(sinα+cosα)=4+2sin(α+π4).由于-1≤sin(α+π4)≤1,∴2≤x+y≤6,故x+y的最大值为6,最小值等于2.4.如图1,一个“半圆锥”的主视图是边长为2的正三角形,左视图是直角三角形,俯视图是半圆及其圆心,这个几何体的体积为()A.33πB.36πC.23πD.3π答案:由已知中“半圆锥”的主视图是边长为2的正三角形,左视图是直角三角形,俯视图是半圆及其圆心,我们可以判断出底面的半径为1,母线长为2,则半圆锥的高为3故V=13×12×π×3=36π故选B5.柱坐标(2,,5)对应的点的直角坐标是

。答案:()解析:∵柱坐标(2,,5),且,2,∴对应直角坐标是()6.已知平行四边形的三个顶点A(-2,1),B(-1,3),C(3,4),求第四个顶点D的坐标.答案:若构成的平行四边形为ABCD1,即AC为一条对角线,设D1(x,y),则由AC中点也是BD1中点,可得

-2+32=x-121+42=y+32,解得

x=2y=2,∴D1(2,2).同理可得,若构成以AB为对角线的平行四边形ACBD2,则D2(-6,0);以BC为对角线的平行四边形ACD3B,则D3(4,6),∴第四个顶点D的坐标为:(2,2),或(-6,0),或(4,6).7.设椭圆=1(a>b>0)的离心率为,右焦点为F(c,0),方程ax2+bx-c=0的两个实根分别为x1和x2,则点P(x1,x2)()

A.必在圆x2+y2=2内

B.必在圆x2+y2=2上

C.必在圆x2+y2=2外

D.以上三种情形都有可能答案:A8.一个路口的红绿灯,红灯的时间为30秒,黄灯的时间为5秒,绿灯的时间为40秒,一学生到达该路口时,见到红灯的概率是()A.25B.58C.115D.35答案:由题意知本题是一个那可能事件的概率,试验发生包含的事件是总的时间长度为30+5+40=75秒,设红灯为事件A,满足条件的事件是红灯的时间为30秒,根据等可能事件的概率得到出现红灯的概率P(A)=构成事件A的时间长度总的时间长度=3075=25.故选A.9.a=(2,1),b=(3,4),则向量a在向量b方向上的投影为______.答案:根据向量在另一个向量上投影的定义向量a在向量b方向上的投影为a?b|b|∵a=(2,1),b=(3,4),∴a?b=10,|b|=5∴a?b|b|=2故为:210.若抛物线y2=4x上一点P到其焦点的距离为3,则点P的横坐标等于______.答案:∵抛物线y2=4x=2px,∴p=2,由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的,∴|MF|=3=x+p2=3,∴x=2,故为:2.11.从甲、乙两人手工制作的圆形产品中,各自随机抽取6件,测得其直径如下(单位:cm):

甲:9.00,9.20,9.00,8.50,9.10,9.20

乙:8.90,9.60,9.50,8.54,8.60,8.90

据以上数据估计两人的技术稳定性,结论是()

A.甲优于乙

B.乙优于甲

C.两人没区别

D.无法判断答案:A12.①某寻呼台一小时内收到的寻呼次数X;

②长江上某水文站观察到一天中的水位X;

③某超市一天中的顾客量X.

其中的X是连续型随机变量的是()

A.①

B.②

C.③

D.①②③答案:B13.在极坐标系(ρ,θ)(0≤θ<2π)中,曲线ρ=2sinθ与ρcosθ=-1的交点的极坐标为

______.答案:两条曲线的普通方程分别为x2+y2=2y,x=-1.解得x=-1y=1.由x=ρcosθy=ρsinθ得点(-1,1),极坐标为(2,3π4).故填:(2,3π4).14.(几何证明选做题)如图,已知:△ABC内接于圆O,点D在OC的延长线上,AD是圆O的切线,若∠B=30°,AC=2,则OD的长为______.答案:∵AD是圆O的切线,∠B=30°∴∠DAC=30°,∴∠OAC=60°,∴△AOC是一个等边三角形,∴OA=OC=2,在直角三角形AOD中,OD=2AO=4,故为:4.15.若关于x的一元二次实系数方程x2+px+q=0有一个根为1+i(i是虚数单位),则p+q的值是()

A.-1

B.0

C.2

D.-2答案:B16.设A1,A2,A3,A4是平面直角坐标系中两两不同的四点,若A1A3=λA1A2(λ∈R),A1A4=μA1A2(μ∈R),且1λ+1μ=2,则称A3,A4调和分割A1,A2,已知点C(c,0),D(d,O)(c,d∈R)调和分割点A(0,0),B(1,0),则下面说法正确的是()A.C可能是线段AB的中点B.D可能是线段AB的中点C.C,D可能同时在线段AB上D.C,D不可能同时在线段AB的延长线上答案:由已知可得(c,0)=λ(1,0),(d,0)=μ(1,0),所以λ=c,μ=d,代入1λ+1μ=2得1c+1d=2(1)若C是线段AB的中点,则c=12,代入(1)d不存在,故C不可能是线段AB的中,A错误;同理B错误;若C,D同时在线段AB上,则0≤c≤1,0≤d≤1,代入(1)得c=d=1,此时C和D点重合,与条件矛盾,故C错误.故选D17.已知sint+cost=1,设s=cost+isint,求f(s)=1+s+s2+…sn.答案:sint+cost=1∴(sint+cost)2=1+2sint?cost=1∴2sint?cost=sin2t=0则cost=0,sint=1或cost=1,sint=0,当cost=0,sint=1时,s=cost+isint=i则f(s)=1+s+s2+…sn=1+i,n=4k+1i,n=4k+20,n=4k+31,n=4(k+1)(k∈N+)当cost=1,sint=0时,s=cost+isint=1则f(s)=1+s+s2+…sn=n+118.一个算法的流程图如图所示,则输出的S值为______.答案:根据程序框图,题意为求:s=2+4+6+8,计算得:s=20,故为:20.19.已知,,且与垂直,则实数λ的值为()

A.±

B.1

C.-

D.答案:D20.点M(4,)化成直角坐标为()

A.(2,)

B.(-2,-)

C.(,2)

D.(-,-2)答案:B21.将两个数a=8,b=17交换,使a=17,b=8,下面语句正确一组是()

A.a=bb=a

B.c=b

b=a

a=c

C.b=aa=b

D.a=cc=bb=a答案:B22.盒中有10只螺丝钉,其中有3只是坏的,现从盒中随机地抽取4只,那么310为()A.恰有1只坏的概率B.恰有2只好的概率C.4只全是好的概率D.至多2只坏的概率答案:∵盒中有10只螺丝钉∴盒中随机地抽取4只的总数为:C104=210,∵其中有3只是坏的,∴所可能出现的事件有:恰有1只坏的,恰有2只坏的,恰有3只坏的,4只全是好的,至多2只坏的取法数分别为:C31×C73=105,C32C72=63,C74=35,C74+C31×C73+C32×C72=203∴恰有1只坏的概率分别为:105210=12,,恰有2只好的概率为63210=310,,4只全是好的概率为35210=16,至多2只坏的概率为203210=2930;故A,C,D不正确,B正确故选B23.某单位共有老、中、青职工430人,其中青年职工160人,中年职工人数是老年职工人数的2倍.为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为()

A.9

B.18

C.27

D.36答案:B24.若一次函数y=mx+b在(-∞,+∞)上是增函数,则有()A.b>0B.b<0C.m>0D.m<0答案:∵一次函数y=mx+b在(-∞,+∞)上是增函数,∴一次项系数m>0,故选C.25.如图是2010年青年歌手大奖赛中,七位评委为甲、乙两名选手打出的分数的茎叶图(其中m为数字0~9中的

一个),去掉一个最高分和一个最低分后,甲、乙两名选手得分的平均数分别为a1,a2,则一定有()A.a1>a2B.a2>a1C.a1=a2D.a1,a2的大小与m的值有关答案:由题意知去掉一个最高分和一个最低分以后,两组数据都有五个数据,代入数据可以求得甲和乙的平均分a1=1+4+5×35+80=84,a2=4×3+6+75+80=85,∴a2>a1故选B26.(理)在极坐标系中,半径为1,且圆心在(1,0)的圆的方程为()

A.ρ=sinθ

B.ρ=cosθ

C.ρ=2sinθ

D.ρ=2cosθ答案:D27.若|a|=3、|b|=4,且a⊥b,则|a+b|=______.答案:∵|a|=3,|b|=4,且a⊥b,∴|a+b|=a2+2a?b+b2=9+0+16=5.故为:5.28.如图为某平面图形用斜二测画法画出的直观图,则其原来平面图形的面积是(

A.4

B.

C.

D.8

答案:A29.已知=(3,4),=(5,12),与则夹角的余弦为()

A.

B.

C.

D.答案:A30.设a、b为单位向量,它们的夹角为90°,那么|a+3b|等于()A.7B.10C.13D.4答案:∵a,b它们的夹角为90°∴a?b=0∴(a+3b)2=a2+6a?b+9b2=10,|a+3b|=10.故选B.31.命题“方程|x|=1的解是x=±1”中,使用逻辑词的情况是()A.没有使用逻辑连接词B.使用了逻辑连接词“或”C.使用了逻辑连接词“且”D.使用了逻辑连接词“或”与“且”答案:∵命题“方程|x|=1的解是x=±1”等价于命题“方程|x|=1的解是x=1或x=-1.”∴该命题使用了逻辑连接词“或”.故选B.32.已知点P是抛物线y2=2x上的动点,点P在y轴上的射影是M,点A(72,4),则|PA|+|PM|的最小值是()A.5B.92C.4D.AD答案:依题意可知焦点F(12,0),准线x=-12,延长PM交准线于H点.则|PF|=|PH||PM|=|PH|-12=|PA|-12|PM|+|PA|=|PF|+|PA|-12,我们只有求出|PF|+|PA|最小值即可.由三角形两边长大于第三边可知,|PF|+|PA|≥|FA|,①设直线FA与抛物线交于P0点,可计算得P0(3,94),另一交点(-13,118)舍去.当P重合于P0时,|PF|+|PA|可取得最小值,可得|FA|=194.则所求为|PM|+|PA|=194-14=92.故选B.33.函数y=f(x)对任意实数x,y都有f(x+y)=f(x)+f(y)+2xy.

(1)求f(0)的值;

(2)若f(1)=1,求f(2),f(3),f(4)的值,猜想f(n)的表达式并用数学归纳法证明你的结论;

(3)若f(1)≥1,求证:f(12n)>0(n∈N*).答案:(1)令x=y=0得f(0+0)=f(0)+f(0)+2×0×0?f(0)=0(2)f(1)=1,f(2)=f(1+1)=1+1+2=4f(3)=f(2+1)=4+1+2×2×1=9f(4)=f(3+1)=9+1+2×3×1=16猜想f(n)=n2,下用数学归纳法证明之.①当n=1时猜想成立.②假设n=k时猜想成立,即:f(k)=k2,那么f(k+1)=f(k)+f(1)+2k=k2+2k+1=(k+1)2.这就是说n=k+1时猜想也成立.对于一切n≥1,n∈N+猜想都成立.(3)f(1)≥1,则f(1)=2f(12)+2×12×12≥1?f(12)≥14>0假设n=k(k∈N*)时命题成立,即f(12k)≥122k>0,则f(12k)=2f(12k+1)+2×12k+1×12k+1≥122k?f(12k+1)≥122(k+1),由上知,则f(12n)>0(n∈N*).34.如图,已知双曲线以长方形ABCD的顶点A,B为左、右焦点,且过C,D两顶点.若AB=4,BC=3,则此双曲线的标准方程为______.答案:由题意可得点OA=OB=2,AC=5设双曲线的标准方程是x2a2-y2b2=1.则2a=AC-BC=5-3=2,所以a=1.所以b2=c2-a2=4-1=3.所以双曲线的标准方程是x2-y23=1.故为:x2-y23=135.点A(-,1)关于y轴的对称点A′的坐标为(

A.(-,-1)

B.(,-1)

C.(-,1)

D.(,1)答案:D36.设a=log

132,b=log123,c=(12)0.3,则()A.a<b<cB.a<c<bC.b<c<aD.b<a<c答案:c=(12)0.3>0,a=log

132<0,b=log123

<0并且log

132>log133,log

133>log123所以c>a>b故选D.37.根据下面的要求,求满足1+2+3+…+n>500的最小的自然数n.

(1)画出执行该问题的程序框图;

(2)以下是解决该问题的一个程序,但有几处错误,请找出错误并予以更正.

i=1S=1n=0DO

S<=500

S=S+i

i=i+1

n=n+1WENDPRINT

n+1END.答案:(1)程序框图如左图所示.或者,如右图所示:(2)①DO应改为WHILE;

②PRINT

n+1

应改为PRINT

n;

③S=1应改为S=0.38.(几何证明选讲选选做题)如图,圆的两条弦AC、BD相交于P,弧AB、BC、CD、DA的度数分别为60°、105°、90°、105°,则PAPC=______.答案:连接AB,CD∵弧AB、CD、的度数分别为60°、90°,∴弦AB的长度等于半径,弦CD的长度等于半径的2倍,即ABCD=12,∵∠A=∠D,∠C=∠B,∴△ABP∽△CDP∴ABCD=PAPC∴PAPC=12=22,故为:2239.已知单位正方体ABCD-A1B1C1D1,E分别是棱C1D1的中点,试求:

(1)AE与平面BB1C1C所成的角的正弦值;

(2)二面角C1-DB-A的余弦值.答案:以D为坐标原点建立空间直角坐标系,如图所示:(1)设正方体棱长为2.则E(0,1,2),A(2,0,0).AE=(-2,1,2),平面BCC1B1的法向量为n=(0,1,0).设AE与平面BCC1B1所成的角为θ.sinθ=|cos<AE,n>|=|AE•n||AE|

|n|=19=13.∴sinθ=13.(2)A(1,0,0),B(1,1,0),C1(0,1,1),∴DA=(1,0,0),DB=(1,1,0),DC1=(0,1,1).设平面DBC1的法向量为n1=(x,y,z),则n1•DB=x+y=0n1•DC1=y+z=0,令y=-1,则x=1,z=1.∴n1=(1,-1,1).取平面ADB的法向量为n2=(0,0,1).设二面角C1-DB-A的大小为α,从图中可知:α为钝角.∵cos<n1,n2>=n1•n2|n1|

|n2|=13=33,∴cosα=-33.40.若f(x)在定义域[a,b]上有定义,则在该区间上()A.一定连续B.一定不连续C.可能连续也可能不连续D.以上均不正确答案:f(x)有定义是f(x)在区间上连续的必要而不充分条件.有定义不一定连续.还需加上极限存在才能推出连续.故选C.41.如图,已知Rt△ABC的两条直角边AC,BC的长分别为3cm,4cm,以AC为直径的圆与AB交于点D,则BD=______cm.答案:∵易知AB=32+42=5,又由切割线定理得BC2=BD?AB,∴42=BD?5∴BD=165.故为:16542.设α和β为不重合的两个平面,给出下列命题:

(1)若α内的两条相交直线分别平行于β内的两条直线,则α平行于β;

(2)若α外一条直线l与α内的一条直线平行,则l和α平行;

(3)设α和β相交于直线l,若α内有一条直线垂直于l,则α和β垂直;

(4)直线l与α垂直的充分必要条件是l与α内的两条直线垂直.

上面命题,真命题的序号是______(写出所有真命题的序号)答案:由面面平行的判定定理可知,(1)正确.由线面平行的判定定理可知,(2)正确.对于(3)来说,α内直线只垂直于α和β的交线l,得不到其是β的垂线,故也得不出α⊥β.对于(4)来说,l只有和α内的两条相交直线垂直,才能得到l⊥α.也就是说当l垂直于α内的两条平行直线的话,l不一定垂直于α.43.下列物理量中,不能称为向量的是()A.质量B.速度C.位移D.力答案:既有大小,又有方向的量叫做向量;质量只有大小没有方向,因此质量不是向量.而速度、位移、力既有大小,又有方向,因此它们都是向量.故选A.44.下表表示y是x的函数,则函数的值域是

______.

答案:有图表可知,所有的函数值构成的集合为{2,3,4,5},故函数的值域为{2,3,4,5}.45.已知球的表面积等于16π,圆台上、下底面圆周都在球面上,且下底面过球心,圆台的轴截面的底角为π3,则圆台的轴截面的面积是()A.9πB.332C.33D.6答案:设球的半径为R,由题意4πR2=16,R=2,圆台的轴截面的底角为π3,可得圆台母线长为2,上底面半径为1,圆台的高为3,所以圆台的轴截面的面积S=12(2+4)×3=33故选C46.求圆心在直线y=-4x上,并且与直线l:x+y-1=0相切于点P(3,-2)的圆的方程.答案:设圆的方程为(x-a)2+(y-b)2=r2(r>0)由题意有:b=-4a|a+b+1|2=rb+2a-3•(-1)=-1解之得a=1b=-4r=22∴所求圆的方程为(x-1)2+(y+4)2=847.从单词“equation”选取5个不同的字母排成一排,含有“qu”(其中“qu”相连且顺序不变)的不同排列共有()A.120个B.480个C.720个D.840个答案:要选取5个字母时首先从其它6个字母中选3个有C63种结果,再与“qu“组成的一个元素进行全排列共有C63A44=480,故选B.48.已知x,y的取值如下表所示:

x3711y102024从散点图分析,y与x线性相关,且y=74x+a,则a=______.答案:∵线性回归方程为y=74x+a,,又∵线性回归方程过样本中心点,.x=3+7+113=7,.y=10+20+243=18,∴回归方程过点(7,18)∴18=74×7+a,∴a=234.故为:234.49.已知l∥α,且l的方向向量为(2,-8,1),平面α的法向量为(1,y,2),则y=______.答案:∵l∥α,∴l的方向向量(2,-8,1)与平面α的法向量(1,y,2)垂直,∴2×1-8×y+2=0,解得y=12.故为12.50.某市为抽查控制汽车尾气排放的执行情况,选择了抽取汽车车牌号的末位数字是6的汽车进行检查,这样的抽样方式是(

A.抽签法

B.简单随机抽样

C.分层抽样

D.系统抽样答案:D第2卷一.综合题(共50题)1.圆的极坐标方程是ρ=2cosθ+2sinθ,则其圆心的极坐标是()

A.(2,)

B.(2,)

C.(1,)

D.(1,)答案:A2.为了了解学校学生的身体发育情况,抽查了该校100名高中男生的体重情况,根据所得数据画出样本的频率分布直方图如图所示,根据此图,估计该校2000名高中男生中体重大于70.5公斤的人数为()

A.300B.350C.420D.450答案:∵由图得,∴70.5公斤以上的人数的频率为:(0.04+0.035+0.016)×2=0.181,∴70.5公斤以上的人数为2000×0.181=362,故选B3.满足条件|z|=|3+4i|的复数z在复平面上对应点的轨迹是()

A.一条直线

B.两条直线

C.圆

D.椭圆答案:C4.已知椭圆的焦点是F1、F2,P是椭圆上的一个动点,如果延长F1P到Q,使得|PQ|=|PF2|,那么动点Q的轨迹是()

A.圆

B.椭圆

C.双曲线的一支

D.抛物线答案:A5.若直线x+y=m与圆x=mcosφy=msinφ(φ为参数,m>0)相切,则m为

______.答案:圆x=mcosφy=msinφ的圆心为(0,0),半径为m∵直线x+y=m与圆相切,∴d=r即|m|2=m,解得m=2故为:26.用长为4、宽为2的矩形做侧面围成一个高为2的圆柱,此圆柱的轴截面面积为()A.8B.8πC.4πD.2π答案:∵用长为4、宽为2的矩形做侧面围成一个圆柱,且圆柱高为h=2∴底面圆周由长为4的线段围成,可得底面圆直径2r=4π∴此圆柱的轴截面矩形的面积为S=2r×h=8π故选:B7.过点(-3,-1),且与直线x-2y=0平行的直线方程为______.答案:直线l经过点(-3,-1),且与直线x-2y=0平行,直线的斜率为12所以直线l的方程为:y+1=12(x+3)即x-2y+1=0.故为:x-2y+1=0.8.判断下列结出的输入语句、输出语句和赋值语句是否正确?为什么?

(1)输出语句INPUT

a;b;c

(2)输入语句INPUT

x=3

(3)输出语句PRINT

A=4

(4)输出语句PRINT

20.3*2

(5)赋值语句3=B

(6)赋值语句

x+y=0

(7)赋值语句A=B=2

(8)赋值语句

T=T*T.答案:(1)输入语句

INPUT

a;b;c中,变量名之间应该用“,”分隔,而不能用“;”分隔,故(1)错误;(2)输入语句INPUT

x=3中,命令动词INPUT后面应写成“x=“,3,故(2)错误;(3)输出语句PRINT

A=4中,命令动词PRINT后面应写成“A=“,4,故(3)错误;(4)输出语句PRINT

20.3*2符合规则,正确;(5)赋值语句

3=B中,赋值号左边必须为变量名,故(5)错误;(6)赋值语句

x+y=0中,赋值号左边不能是表达式,故(6)错误;(7)赋值语句

A=B=2中.赋值语句不能连续赋值,故(7)错误;(8)赋值语句

T=T*T是,符合规则,正确;故正确的有(4)、(8)错误的是(1)、(2)、(3)、(5)、(6)、(7).9.直线x=2-12ty=-1+12t(t为参数)被圆x2+y2=4截得的弦长为______.答案:∵直线x=2-12ty=-1+12t(t为参数)∴直线的普通方程为x+y-1=0圆心到直线的距离为d=12=22,l=24-(22)2=14,故为:14.10.直线3x+4y-7=0与直线6x+8y+3=0之间的距离是()

A.

B.2

C.

D.答案:C11.已知函数f(x)=|x+2|-1,g(x)=|3-x|+2,若不等式f(x)-g(x)≤K的解集为R.则实数K的取值范围为______.答案:因为函数f(x)=|x+2|-1,g(x)=|3-x|+2,所以f(x)-g(x)=|x+2|-|x-3|-3,它的几何意义是数轴上的点到-2与到3距离的差再减去3,它的最大值为2,不等式f(x)-g(x)≤K的解集为R.所以K≥2.故为:[2,+∞).12.已知圆C:x2+y2-4x-6y+12=0的圆心在点C,点A(3,5),求:

(1)过点A的圆的切线方程;

(2)O点是坐标原点,连接OA,OC,求△AOC的面积S.答案:(1)⊙C:(x-2)2+(y-3)2=1.当切线的斜率不存在时,对直线x=3,C(2,3)到直线的距离为1,满足条件;当k存在时,设直线y-5=k(x-3),即y=kx+5-3k,∴|-k+2|k2+1=1,得k=34.∴得直线方程x=3或y=34x+114.(2)|AO|=9+25=34,l:5x-3y=0,d=134,S=12d|AO|=12.13.(理)下列以t为参数的参数方程中表示焦点在y轴上的椭圆的是()

A.

B.(a>b>0)

C.

D.

答案:C14.某校有学生1

200人,为了调查某种情况打算抽取一个样本容量为50的样本,问此样本若采用简单随便机抽样将如何获得?答案:本题可以采用抽签法来抽取样本,首先把该校学生都编上号0001,0002,0003…用抽签法做1200个形状、大小相同的号签,然后将这些号签放到同一个箱子里,进行均匀搅拌,抽签时,每次从中抽一个号签,连续抽取50次,就得到一个容量为50的样本.15.mx+ny=1(mn≠0)与两坐标轴围成的三角形面积为______.答案:由mx+ny=1(mn≠0),得x1m+y1n=1,所以mx+ny=1(mn≠0)在两坐标轴上的截距分别为1m,1n.则mx+ny=1(mn≠0)与两坐标轴围成的三角形面积为12|mn|.故为12|mn|.16.若f(x)=ax(a>0且a≠1)的反函数g(x)满足:g()<0,则函数f(x)的图象向左平移一个单位后的图象大致是下图中的()

A.

B.

C.

D.

答案:B17.(坐标系与参数方程选做题)点P(-3,0)到曲线x=t2y=2t(其中参数t∈R)上的点的最短距离为______.答案:设点Q(t2,2t)为曲线上的任意一点,则|PQ|=(t2+3)2+(2t)2=(t2+5)2-16≥52-16=3,当且仅当t=0取等号,此时Q(0,0).故点P(-3,0)到曲线x=t2y=2t(其中参数t∈R)上的点的最短距离为3.故为3.18.语句“若a>b,则a+c>b+c”是()

A.不是命题

B.真命题

C.假命题

D.不能判断真假答案:B19.有一批数量很大的产品,其中次品率是20%,对这批产品进行抽查,每次抽出一件,如果抽出次品则抽查终止,否则继续抽查,直到抽出次品,但抽查次数最多不超过9次,那么抽查次数为9次的概率为(

A.0.89

B.0.88×0.2

C.0.88

D.0.28×0.8答案:C20.

(理)

在长方体ABCD-A1B1C1D1中,以为基底表示,其结果是()

A.

B.

C.

D.答案:C21.设曲线C的参数方程为(θ为参数),直线l的方程为x-3y+2=0,则曲线C上到直线l距离为的点的个数为()

A.1

B.2

C.3

D.4答案:B22.若函数,则下列结论正确的是(

)A.,在上是增函数B.,在上是减函数C.,是偶函数D.,是奇函数答案:C解析:对于时有是一个偶函数23.已知向量,满足:||=3,||=5,且=λ,则实数λ=()

A.

B.

C.±

D.±答案:C24.已知=(1,2),=(-3,2),k+与-3垂直时,k的值为(

A.17

B.18

C.19

D.20答案:C25.圆x2+y2=1和圆x2+y2-6y+5=0的位置关系是()

A.外切

B.内切

C.外离

D.内含答案:A26.从装有5只红球和5只白球的袋中任意取出3只球,有如下几对事件:

①“取出两只红球和一只白球”与“取出一只红球和两只白球”;

②“取出两只红球和一只白球”与“取出3只红球”;

③“取出3只红球”与“取出的3只球中至少有一只白球”;

④“取出3只红球”与“取出3只白球”.

其中是对立事件的有______(只填序号).答案:对于①“取出两只红球和一只白球”与“取出一只红球和两只白球”,由于它们不能同时发生,故是互斥事件.但由于它们的并事件不是必然事件,故它们不是对立事件.对于②“取出两只红球和一只白球”与“取出3只红球”,由于它们不能同时发生,故是互斥事件.但由于它们的并事件不是必然事件,故它们不是对立事件.对于③“取出3只红球”与“取出的3只球中至少有一只白球”,它们不可能同时发生,而且它们的并事件是必然事件,故它们是对立事件.④“取出3只红球”与“取出3只白球”.由于它们不能同时发生,故是互斥事件.但由于它们的并事件不是必然事件,故它们不是对立事件.故为③.27.设U={x|x<7,x∈N+}A={1,2,5},B={2,3,4,5},求A∩B,CUA,A∪(CUB).答案:∵U={1,2,3,4,5,6}A∩B={2,5}CUA={3,4,6}A∪CUB={1}28.”m>n>0”是”方程mx2+ny2=1表示焦点在y轴上的椭圆”的()

A.充分而不必要条件

B.必要而不充分条件

C.充要条件

D.既不充分也不必要条件答案:C29.若log

23(x-2)≥0,则x的范围是______.答案:由log

23(x-2)≥0=log231,可得0<x-2≤1,解得2<x≤3,故为(2,3].30.与椭圆+y2=1共焦点且过点P(2,1)的双曲线方程是()

A.-y2=1

B.-y2=1

C.-=1

D.x2-=1答案:B31.极坐标方程ρcos2θ=0表示的曲线为()

A.极点

B.极轴

C.一条直线

D.两条相交直线答案:D32.若三角形的内切圆半径为r,三边的长分别为a,b,c,则三角形的面积S=12r(a+b+c),根据类比思想,若四面体的内切球半径为R,四个面的面积分别为S1、S2、S3、S4,则此四面体的体积V=______.答案:设四面体的内切球的球心为O,则球心O到四个面的距离都是R,所以四面体的体积等于以O为顶点,分别以四个面为底面的4个三棱锥体积的和.故为:13R(S1+S2+S3+S4).33.在△ABC中,已知向量=(cos18°,cos72°),=(2cos63°,2cos27°),则△ABC的面积等于()

A.

B.

C.

D.

答案:A34.______称为向量的长度(或称为模),记作

______,______称为零向量,记作

______,______称为单位向量.答案:向量AB所在线段AB的长度,即向量AB的大小,称为向量AB的长度(或成为模),记作|AB|;长度为零的向量称为零向量,记作0;长度等于1个单位的向量称为单位向量.故为:向量AB所在线段AB的长度,即向量AB的大小,|AB|;长度为零的向量,0;长度等于1个单位的向量.35.某校对文明班的评选设计了a,b,c,d,e五个方面的多元评价指标,并通过经验公式样S=ab+cd+1e来计算各班的综合得分,S的值越高则评价效果越好,若某班在自测过程中各项指标显示出0<c<d<e<b<a,则下阶段要把其中一个指标的值增加1个单位,而使得S的值增加最多,那么该指标应为()A.aB.bC.cD.d答案:因a,b,cde都为正数,故分子越大或分母越小时,S的值越大,而在分子都增加1的前提下,分母越小时,S的值增长越多,由于0<c<d<e<b<a,分母中d最小,所以c增大1个单位会使得S的值增加最多.故选C.36.正十边形的一个内角是多少度?答案:由多边形内角和公式180°(n-2),∴每一个内角的度数是180°(n-2)n当n=10时.得到一个内角为180°(10-2)10=144°37.已知f(10x)=x,则f(5)=______.答案:令10x=5可得x=lg5所以f(5)=f(10lg5)=lg5故为:lg538.已知a=(3,3,2),b=(4,-3,7),c=(0,5,1),则(a+b)•c=______.答案:由于a=(3,3,2),b=(4,-3,7),则a+b=(7,0,9)又由c=(0,5,1),则(a+b)•c=(7,0,9)•(0,5,1)=9故为939.已知两个力F1,F2的夹角为90°,它们的合力大小为10N,合力与F1的夹角为60°,那么F2的大小为()A.53NB.5NC.10ND.52N答案:由题意可知:对应向量如图由于α=60°,∴F2的大小为|F合|?sin60°=10×32=53.故选A.40.如图所示的多面体,它的正视图为直角三角形,侧视图为矩形,俯视图为直角梯形(尺寸如图所示)

(1)求证:AE∥平面DCF;

(2)若M是AE的中点,AB=3,∠CEF=90°,求证:平面AEF⊥平面BMC.答案:(1)证法1:过点E作EG⊥CF交CF于G,连结DG,可得四边形BCGE为矩形,又四边形ABCD为矩形,所以AD=EG,从而四边形ADGE为平行四边形故AE∥DG

因为AE?平面DCF,DG?平面DCF,所以AE∥平面DCF

证法2:(面面平行的性质法)因为四边形BEFC为梯形,所以BE∥CF.又因为BE?平面DCF,CF?平面DCF,所以BE∥平面DCF.因为四边形ABCD为矩形,所以AB∥DC.同理可证AB∥平面DCF.又因为BE和AB是平面ABE内的两相交直线,所以平面ABE∥平面DCF.又因为AE?平面ABE,所以AE∥平面DCF.(2)在Rt△EFG中,∠CEF=90°,EG=3,EF=2.∴∠GEF=30°,GF=12EF=1.在RT△CEG中,∠CEG=60°,∴CG=EGtan60°=3,BE=3.∵AB=3,M是AE中点,∴BM⊥AE,由侧视图是矩形,俯视图是直角梯形,得BC⊥AB,BC⊥BE,∵AB∩BM=B,∴AE⊥平面BCM又∵AE?平面ACE,∴平面ACE⊥平面BCM.41.“因为指数函数y=ax是增函数(大前提),而y=()x是指数函数(小前提),所以y=()x是增函数(结论)”,上面推理的错误是()

A.大前提错导致结论错

B.小前提错导致结论错

C.推理形式错导致结论错

D.大前提和小前提错都导致结论错答案:A42.从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是()

A.至少有1个白球;都是白球

B.至少有1个白球;至少有1个红球

C.恰有1个白球;恰有2个白球

D.至少有一个白球;都是红球答案:C43.教材中“坐标平面上的直线”与“圆锥曲线”两章内容体现出解析几何的本质是______.答案:这两章的内容都是通过建立直角坐标系,用代数中的函数思想来解决图形中的几何性质.故为用代数的方法研究图形的几何性质解析:教材中“坐标平面上的直线”与“圆锥曲线”两章内容体现出解析几何的本质是______.44.在同一个坐标系中画出函数y=ax,y=sinax的部分图象,其中a>0且a≠1,则下列所给图象中可能正确的是()

A.

B.

C.

D.

答案:D45.如图,AB为⊙O的直径,弦AC、BD交于点P,若AP=5,PC=3,DP=5,则AB=______.

答案:∵AP=5,PC=3,DP=5由相交弦定理可得:BP=35又∵AB为直径,∴∠ACB=90°∴BC=PB2-PC2=6∴AB=AC2-BC2=10故为:1046.已知|a=2,|b|=1,a与b的夹角为60°,求向量.a+2b与2a+b的夹角.答案:由题意得,a?b=2×1×12=1,∴(a+2b)?(2a+b)=2a2+5a?b+2b2=15,|a+2b|=a2+4a?b+4b2=23,|2a+b|=4a2+4a?b+b2=21,设a+2b与2a+b夹角为θ,则cosθ=(a+2b)?(2a+b)|a+2b||2a+b|=1523×21=5714,则θ=arccos571447.已知随机变量X满足D(X)=2,则D(3X+2)=()

A.2

B.8

C.18

D.20答案:C48.如图在长方形ABCD中,AB=,BC=1,E为线段DC上一动点,现将△AED沿AE折起,使点D在面ABC上的射影K在直线AE上,当E从D运动到C,则K所形成轨迹的长度为()

A.

B.

C.

D.答案:B49.(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)

A.(不等式选做题)不等式|x-5|+|x+3|≥10的解集是______.

B.(坐标系与参数方程选做题)在极坐标系中,圆ρ=-2sinθ的圆心的极坐标是______.

C.(几何证明选做题)如图,已知圆中两条弦AB与CD相交于点F,E是AB延长线上一点,且DF=CF=22,BE=1,BF=2,若CE与圆相切,则线段CE的长为______.答案:A:当x<-3时不等式|x-5|+|x+3|≥10可化为:-(x-5)-(x+3)≥10解得:x≤-4当-3≤x≤5时不等式|x-5|+|x+3|≥10可化为:-(x-5)+(x+3)=8≥10恒不成立当x>5时不等式|x-5|+|x+3|≥10可化为:(x-5)+(x+3)≥10解得:x≥6故不等式|x-5|+|x+3|≥10解集为:(-∞,-4]∪[6,+∞).B:圆ρ=-2sinθ即ρ2=-2ρsinθ,即x2+y2+2y=0,即x2+(y+1)2=1.表示以(0,-1)为圆心,半径等于1的圆,故圆心的极坐标为(1,3π2).C:由题意,DF=CF=22,BE=1,BF=2,由DF•FC=AF•BF,得22•22=AF•2,∴AF=4,又BF=2,BE=1,∴AE=7;由切割线定理得CE2=BE•EA=1×7=7.∴CE=7.故为:(-∞,-4]∪[6,+∞);(1,3π2)(不唯一);7.50.下面的结构图,总经理的直接下属是()

A.总工程师和专家办公室

B.开发部

C.总工程师、专家办公室和开发部

D.总工程师、专家办公室和所有七个部答案:C第3卷一.综合题(共50题)1.当圆x=4cosθy=4sinθ上一点P的旋转角为θ=23π时,点P的坐标为______.答案:根据圆的参数方程的意义,当圆x=4cosθy=4sinθ上一点P的旋转角为θ=23π时,点P的坐标为(4cos2π3,4sin2π3),即(-2,23).故为:(-2,23).2.设求证:答案:证明见解析解析:证明:∵

∴∴,∴本题利用,对中每项都进行了放缩,从而得到可以求和的数列,达到化简的目的。3.已知矩形ABCD,R、P分别在边CD、BC上,E、F分别为AP、PR的中点,当P在BC上由B向C运动时,点R在CD上固定不变,设BP=x,EF=y,那么下列结论中正确的是()A.y是x的增函数B.y是x的减函数C.y随x先增大后减小D.无论x怎样变化,y是常数答案:连接AR,如图所示:由于点R在CD上固定不变,故AR的长为定值又∵E、F分别为AP、PR的中点,∴EF为△APR的中位线,则EF=12AR为定值故无论x怎样变化,y是常数故选D4.(几何证明选讲选做题)

如图,已知AB是⊙O的一条弦,点P为AB上一点,PC⊥OP,PC交⊙O于C,若AP=4,PB=2,则PC的长是______.答案:∵AB是⊙O的一条弦,点P为AB上一点,PC⊥OP,PC交⊙O于C,∴AP×PB=PC2,∵AP=4,PB=2,∴PC2=8,解得PC=22.故为:22.5.不等式3≤|5-2x|<9的解集为()

A.[-2,1)∪[4,7)

B.(-2,1]∪(4,7]

C.(-2,-1]∪[4,7)

D.(-2,1]∪[4,7)答案:D6.(几何证明选讲选选做题)如图,AC是⊙O的直径,B是⊙O上一点,∠ABC的平分线与⊙O相交于.D已知BC=1,AB=3,则AD=______;过B、D分别作⊙O的切线,则这两条切线的夹角θ=______.答案:∵AC是⊙O的直径,B是⊙O上一点∴∠ABC=90°∵∠ABC的平分线与⊙O相交于D,BC=1,AB=3∴∠C=60°,∠BAC=30°,∠ABD=∠CBD=45°由圆周角定理可知∠C=∠ADB=60°△ABD中,由正弦定理可得ABsin60°=ADsin45°即AD=3sin60°×sin45°=2∵∠BAD=30°+45°=75°∴∠BOD=2∠BAD=150°设所作的两切线交于点P,连接OB,OD,则可得OB⊥PB,OD⊥PD即∠OBP=∠ODP=90°∴点ODPB共圆∴∠P+∠BOD=180°∴∠P=30°故为:2,30°7.已知两个函数f(x)和g(x)的定义域和值域都是集合1,2,3,其定义如下表:

表1:

x123f(x)231表2:

x123g(x)321则方程g[f(x)]=x的解集为______.答案:由题意得,当x=1时,g[f(1)]=g[2]=2不满足方程;当x=2时,g[f(2)]=g[3]=1不满足方程;x=3,g[f(3)]=g[1]=3满足方程,是方程的解.故为:{3}8.圆心既在直线x-y=0上,又在直线x+y-4=0上,且经过原点的圆的方程是______.答案:∵圆心既在直线x-y=0上,又在直线x+y-4=0上,∴由x-y=0x+y-4=0,得x=2y=2.∴圆心坐标为(2,2),∵圆经过原点,∴半径r=22,故所求圆的方程为(x-2)2+(y-2)2=8.9.如果抛物线y2=a(x+1)的准线方程是x=-3,那么这条抛物线的焦点坐标是()A.(3,0)B.(2,0)C.(1,0)D.(-1,0)答案:抛物线y2=a(x+1)可由抛物线y2=ax向左平移一个单位长度得到,因为抛物线y2=a(x+1)的准线方程是x=-3,所以抛物线y2=ax的准线方程是x=-2,且焦点坐标为(2,0),那么抛物线y2=a(x+1)的焦点坐标为(1,0).故选C.10.若一辆汽车每天行驶的路程比原来多19km,则该汽车在8天内行驶的路程s(km)就超过2200km;若它每天行驶的路程比原来少12km,则它行驶同样的路程s(km)就得花9天多的时间。这辆汽车原来每天行驶的路程(km)的范围是(

A.(259,260)

B.(258,260)

C.(257,260)

D.(256,260)答案:D11.若方程x2-3x+mx+m=0的两根均在(0,+∞)内,则m的取值范围是(

)

A.m≤1

B.0<m≤1

C.m>1

D.0<m<1答案:B12.(几何证明选讲选选做题)如图,圆的两条弦AC、BD相交于P,弧AB、BC、CD、DA的度数分别为60°、105°、90°、105°,则PAPC=______.答案:连接AB,CD∵弧AB、CD、的度数分别为60°、90°,∴弦AB的长度等于半径,弦CD的长度等于半径的2倍,即ABCD=12,∵∠A=∠D,∠C=∠B,∴△ABP∽△CDP∴ABCD=PAPC∴PAPC=12=22,故为:2213.4位学生与2位教师并坐合影留念,针对下列各种坐法,试问:各有多少种不同的坐法?(用数字作答)

(1)教师必须坐在中间;

(2)教师不能坐在两端,但要坐在一起;

(3)教师不能坐在两端,且不能相邻.答案:(1)先排4位学生,有A44种坐法,2位教师坐在中间,可以交换位置,有A22种坐法,则共有A22A44=48种坐法;(2)先排4位学生,有A44种坐法,2位教师坐在一起,将其看成一个整体,可以交换位置,有2种坐法,将这个“整体”插在4个学生的空位中,又由教师不能坐在两端,则有3个空位可选,则共有2A44A31=144种坐法;(3)先排4位学生,有A44种坐法,教师不能相邻,将其依次插在4个学生的空位中,又由教师不能坐在两端,则有3个空位可选,有A32种坐法,则共有A44A32=144种坐法..14.一牧场有10头牛,因误食含有病毒的饲料而被感染,已知该病的发病率为0.02.设发病的牛的头数为ξ,则Dξ=______;.答案:∵由题意知该病的发病率为0.02,且每次实验结果都是相互独立的,∴ξ~B(10,0.02),∴由二项分布的方差公式得到Dξ=10×0.02×0.98=0.196.故为:0.19615.已知a≠0,证明关于x的方程ax=b有且只有一个根.答案:证明:一方面,∵ax=b,且a≠0,方程两边同除以a得:x=ba,∴方程ax=b有一个根x=ba,另一方面,假设方程ax=b还有一个根x0且x0≠ba,则由此不等式两边同乘以a得ax0≠b,这与假设矛盾,故方程ax=b只有一个根.综上所述,方程ax=b有且只有一个根.16.向量在基底{,,}下的坐标为(1,2,3),则向量在基底{}下的坐标为()

A.(3,4,5)

B.(0,1,2)

C.(1,0,2)

D.(0,2,1)答案:D17.下列各组向量中,可以作为基底的是()A.e1=(0,0),e2=(-2,1)B.e1=(4,6),e2=(6,9)C.e1=(2,-5),e2=(-6,4)D.e1=(2,-3),e2=(12,-34)答案:A、中的2个向量的坐标对应成比例,0-2=01,所以,这2个向量是共线向量,故不能作为基底.B、中的2个向量的坐标对应成比例,46=69,所以,这2个向量是共线向量,故不能作为基底.C中的2个向量的坐标对应不成比例,2-6≠-54,所以,这2个向量不是共线向量,故可以作为基底.D、中的2个向量的坐标对应成比例,212=-3-34,这2个向量是共线向量,故不能作为基底.故选C.18.按ABO血型系统学说,每个人的血型为A、B、O、AB型四种之一,依血型遗传学,当且仅当父母中至少有一人的血型是AB型时,子女的血型一定不是O型,若某人的血型为O型,则其父母血型的所有可能情况有()

A.12种

B.6种

C.10种

D.9种答案:D19.设a,b,c都是正数,求证:

(1)(a+b+c)≥9;

(2)(a+b+c)≥.答案:证明略解析:证明

(1)∵a,b,c都是正数,∴a+b+c≥3,++≥3.∴(a+b+c)≥9,当且仅当a=b=c时,等号成立.(2)∵(a+b)+(b+c)+(c+a)≥3,又≥,∴(a+b+c)≥,当且仅当a=b=c时,等号成立.20.在空间四边形OABC中,OA+AB-CB等于()A.OAB.ABC.OCD.AC答案:根据向量的加法、减法法则,得OA+AB-CB=OB-CB=OB+BC=OC.故选C.21.一段双行道隧道的横截面边界由椭圆的上半部分和矩形的三边组成,如图所示.一辆卡车运载一个长方形的集装箱,此箱平放在车上与车同宽,车与箱的高度共计4.2米,箱宽3米,若要求通过隧道时,车体不得超过中线.试问这辆卡车是否能通过此隧道,请说明理由.答案:建立如图所示的坐标系,则此隧道横截面的椭圆上半部分方程为:x225+y24=1,y≥0.令x=3,则代入椭圆方程,解得y=1.6,因为1.6+3=4.6>4.2,所以,卡车能够通过此隧道.22.已知a=(3,3,2),b=(4,-3,7),c=(0,5,1),则(a+b)•c=______.答案:由于a=(3,3,2),b=(4,-3,7),则a+b=(7,0,9)又由c=(0,5,1),则(a+b)•c=(7,0,9)•(0,5,1)=9故为923.设随机变量ξ的概率分布如表所示:

求:(l)P(ξ<1),P(ξ≤1),P(ξ<2),P(ξ≤2);

(2)P(x)=P(ξ≤x),x∈R.答案:(1)根据所给的分布列可知14+13+m+112=1,∴m=13,∴P(ξ<1)=0P(ξ≤1)=P(ξ=1)=14P(ξ<2)=P(ξ≤1)=P(ξ=1)=14P(ξ≤2)=P(ξ=1)+P(ξ=2)=14+13=712(2)根据所给的分布列和第一问做出的结果,得到P(X)=14,(x≤1)P(X)=712,(1<X≤2)P(X)=1112,(2<x≤3)p(X)=1,(X≥3)24.以下命题:

①两个共线向量是指在同一直线上的两个向量;

②共线的两个向量互相平行;

③共面的三个向量是指在同一平面内的三个向量;

④共面的三个向量是指平行于同一平面的三个向量.

其中正确命题的序号是______.答案:解①根据共面与共线向量的定义可知①错误.②根据共线向量的定义可知②正确.③根据共面向量的定义可知③错误.④根据共面向量的定义可知④正确.故为:②④.25.在极坐标系中,极点到直线ρcosθ=2的距离为______.答案:直线ρcosθ=2即x=2,极点的直角坐标为(0,0),故极点到直线ρcosθ=2的距离为2,故为2.26.如图,AC是⊙O的直径,∠ACB=60°,连接AB,过A、B两点分别作⊙O的切线,两切线交于点P.若已知⊙O的半径为1,则△PAB的周长为______.答案:∵AC是⊙O的直径,∴∠ABC=90°,∠BAC=30°,CB=1,AB=3,∵AP为切线,∴∠CAP=90°,∠PAB=60°,又∵AP=BP,∴△PAB为正三角形,∴周长=33.故填:33.27.已知集合A={1,3,5,7,9},B={0,3,6,9,12},则A∩B=()A.{3,5}B.{3,6}C.{3,7}D.{3,9}答案:因为A∩B={1,3,5,7,9}∩{0,3,6,9,12}={3,9}故选D28.棱长为2的正方体ABCD-A1B1C1D1中,BC1•B1D1=()A.22B.4C.-22D.-4答案:棱长为2的正方体ABCD-A1B1C1D1中,BC1与

B1D1的夹角等于BC1与BD的夹角,等于60°.∴BC1•B1D1=22×22cos60°=4,故选B.29.设a=0.7,b=0.8,c=log30.7,则()

A.c<b<a

B.c<a<b

C.a<b<c

D.b<a<c答案:B30.求由曲线围成的图形的面积.答案:面积为解析:当,时,方程化成,即.上式表示圆心在,半径为的圆.所以,当,时,方程表示在第一象限的部分以及轴,轴负半轴上的点,.同理,当,时,方程表示在第四象限的部分以及轴负半轴上的点;当,时,方程表示圆在第二象限的部分以及轴负半轴上的点;当,时,方程表示圆在第三象限部分.以上合起来构成如图所示的图形,面积为.31.设x,y,z∈R,且满足:x2+y2+z2=1,x+2y+3z=14,则x+y+z=______.答案:根据柯西不等式,得(x+2y+3z)2≤(12+22+32)(x2+y2+z2)=14(x2+y2+z2)当且仅当x1=y2=z3时,上式的等号成立∵x2+y2+z2=1,∴(x+2y+3z)2≤14,结合x+2y+3z=14,可得x+2y+3z恰好取到最大值14∴x1=y2=z3=1414,可得x=1414,y=147,z=31414因此,x+y+z=1414+147+31414=3147故为:314732.直线x+ky=0,2x+3y+8=0和x-y-1=0交于一点,则k的值是()

A.

B.-

C.2

D.-2答案:B33.给出下列四个命题,其中正确的一个是()

A.在线性回归模型中,相关指数R2=0.80,说明预报变量对解释变量的贡献率是80%

B.在独立性检验时,两个变量的2×2列联表中对角线上数据的乘积相差越大,说明这两个变量没有关系成立的可能性就越大

C.相关指数R2用来刻画回归效果,R2越小,则残差平方和越大,模型的拟合效果越好

D.线性相关系数r的绝对值越接近于1,表明两个随机变量线性相关性越强答案:D34.设a1,a2,…,an为正数,求证:a21a2+a22a3+…+a2n-1an+a2na1≥a1+a2+…+an.答案:证明:不妨设a1>a2>…>an>0,则a12>a22>…>an2,1a1<1a2<…1an由排序原理:乱序和≥反序和,可得:a21a2+a22a3+…

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论