版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年泉州轻工职业学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.参数方程(θ为参数)表示的曲线是()
A.直线
B.圆
C.椭圆
D.抛物线答案:C2.若图中的直线l1、l2、l3的斜率分别为k1、k2、k3,则()
A.k1<k2<k3
B.k2<k1<k3
C.k3<k2<k1
D.k1<k3<k2
答案:B3.如图,平面内有三个向量OA、OB、OC,其中与OA与OB的夹角为120°,OA与OC的夹角为30°,且|OA|=|OB|=1,|OC|=23,若OC=λOA+μOB(λ,μ∈R),则λ+μ的值为______.答案:过C作OA与OB的平行线与它们的延长线相交,可得平行四边形,由∠BOC=90°,∠AOC=30°,由|OA|=|OB|=1,|OC|=23得平行四边形的边长为2和4,λ+μ=2+4=6.故为6.4.方程组的解集是[
]A.{5,1}
B.{1,5}
C.{(5,1)}
D.{(1,5)}答案:C5.已知两直线a1x+b1y+1=0和a2x+b2y+1=0的交点为P(2,3),求过两点Q1(a1,b1)、Q2(a2,b2)(a1≠a2)的直线方程.答案:∵P(2,3)在已知直线上,2a1+3b1+1=0,2a2+3b2+1=0.∴2(a1-a2)+3(b1-b2)=0,即b1-b2a1-a2=-23.∴所求直线方程为y-b1=-23(x-a1).∴2x+3y-(2a1+3b1)=0,即2x+3y+1=0.6.设集合A={0,1,2,3},B={1,2,3,4},则集合A∩B的真子集的个数为()A.32个B.16个C.8个D.7个答案:∵A={0,1,2,3},B={1,2,3,4},∴集合A∩B={1,2,3}.集合的真子集为{1},{2},{3},{1,2},{1,3},{2,3},?.共有7个.故选D.7.设P点在x轴上,Q点在y轴上,PQ的中点是M(-1,2),则|PQ|等于______.答案:设P(a,0),Q(0,b),∵PQ的中点是M(-1,2),∴由中点坐标公式得a+02=-10+b2=2,解之得a=-2b=4,因此可得P(-2,0),Q(0,4),∴|PQ|=(-2-0)2+(0-4)2=25.故为:258.b1是[0,1]上的均匀随机数,b=3(b1-2),则b是区间______上的均匀随机数.答案:∵b1是[0,1]上的均匀随机数,b=3(b1-2)∵b1-2是[-2,-1]上的均匀随机数,∴b=3(b1-2)是[-6,-3]上的均匀随机数,故为:[-6,-3]9.中,是边上的中线(如图).
求证:.
答案:证明见解析解析:取线段所在的直线为轴,点为原点建立直角坐标系.设点的坐标为,点的坐标为,则点的坐标为.可得,,,.,..10.某程序图如图所示,该程序运行后输出的结果是______.答案:由图知运算规则是对S=2S,故第一次进入循环体后S=21,第二次进入循环体后S=22=4,第三次进入循环体后S=24=16,第四次进入循环体后S=216>2012,退出循环.故该程序运行后输出的结果是:k=4+1=5.故为:511.若事件与相互独立,且,则的值等于A.B.C.D.答案:B解析:事件“”表示的意义是事件与同时发生,因为二者相互独立,根据相互独立事件同时发生的概率公式得:.12.直线2x+y-3=0与直线3x+9y+1=0的夹角是()
A.
B.arctan2
C.
D.答案:C13.把一颗骰子掷两次,观察出现的点数,并记第一次出现的点数为a,第二次出现的点数为b,则点(a,b)在直线x+y=5左下方的概率为()A.16B.56C.112D.1112答案:由题意知本题是一个古典概型,试验发生包含的事件数是6×6=36种结果,满足条件的事件是点(a,b)在直线x+y=5左下方即a+b<5,可以列举出所有满足的情况(1,1)(1,2)(1,3),(2,1),(2,2)(3,1)共有6种结果,∴点在直线的下方的概率是636=16故选A.14.用反证法证明命题“三角形中最多只有一个内角是钝角”时,则假设的内容是()
A.三角形中有两个内角是钝角
B.三角形中有三个内角是钝角
C.三角形中至少有两个内角是钝角
D.三角形中没有一个内角是钝角答案:C15.如图,半径为R的球O中有一内接圆柱.当圆柱的侧面积最大时,球的表面积与该圆柱的侧面积之差是______.
答案:设圆柱的上底面半径为r,球的半径与上底面夹角为α,则r=Rcosα,圆柱的高为2Rsinα,圆柱的侧面积为:2πR2sin2α,当且仅当α=π4时,sin2α=1,圆柱的侧面积最大,圆柱的侧面积为:2πR2,球的表面积为:4πR2,球的表面积与该圆柱的侧面积之差是:2πR2.故为:2πR216.命题:“方程X2-2=0的解是X=±2”中使用逻辑联系词的情况是()A.没有使用逻辑连接词B.使用了逻辑连接词“且”C.使用了逻辑连接词“或”D.使用了逻辑连接词“非”答案:命题:“方程X2-2=0的解是X=±2”可以化为:“方程X2-2=0的解是X=2,或X=-2”故命题:“方程X2-2=0的解是X=±2”中使用逻辑联系词为:或故选C17.在平面直角坐标中,h为坐标原点,设向量OA=a,OB=b,其中a=(3,1),b=(1,3),若OC=λa+μb,且0≤λ≤μ≤1,C点所有可能的位置区域用阴影表示正确的是()A.
B.
C.
D.
答案:∵向量OA=a,OB=b,a=(3,1),b=(1,3),OC=λa+μb,∴OC=(3λ,λ)+(μ,3μ)=(3λ+μ,λ+3μ),∵0≤λ≤μ≤1,∴0≤3λ+μ≤4,0≤λ+3μ≤4,且3λ+μ≤λ+3μ.故选A.18.(文科做)
f(x)=1x
(x<0)(13)x(x≥0),则不等式f(x)≥13的解集是______.答案:x<0时,f(x)=1x≥13,解得x∈?;x≥0时,f(x)=(13)x≥13,解得x≤1,故0≤x≤1.综上所述,不等式f(x)≥13的解集为{x|0≤x≤1}.故为:{x|0≤x≤1}.19.参数方程中当t为参数时,化为普通方程为(
)。答案:x2-y2=120.已知P是以F1,F2为焦点的椭圆(a>b>0)上的一点,若PF1⊥PF2,tan∠PF1F2=,则此椭圆的离心率为()
A.
B.
C.
D.答案:D21.在平面直角坐标系xOy中,双曲线x24-y212=1上一点M,点M的横坐标是3,则M到双曲线右焦点的距离是______答案:MFd=e=2,d为点M到右准线x=1的距离,则d=2,∴MF=4.故为422.计算:x10÷x5=______.答案:根据有理数指数幂的运算性质:x10÷x5=x5故为:x523.集合A={1,2}的子集有几个()A.2B.4C.3D.1答案:集合A={1,2}的子集有:?,{2},{1},{2,1}共4个.故选B.24.在空间直角坐标系中,点P(2,-4,6)关于y轴对称点P′的坐标为P′(-2,-4,-6)P′(-2,-4,-6).答案:∵在空间直角坐标系中,点(2,-4,6)关于y轴对称,∴其对称点为:(-2,-4,-6),故为:(-2,-4,-6).25.在正方体ABCD-A1B1C1D1中,直线BC1与平面A1BD所成角的余弦值是______.答案:分别以DA、DC、DD1为x、y、z轴建立如图所示空间直角坐标系设正方体的棱长等于1,可得D(0,0,0),B(1,1,0),C1(0,1,1),A1(1,0,1),∴BC1=(-1,0,1),A1D=(-1,0,-1),BD=(-1,-1,0)设n=(x,y,z)是平面A1BD的一个法向量,则n•A1D=-x-z=0n•BD=-x-y=0,取x=1,得y=z=-1∴平面A1BD的一个法向量为n=(1,-1,-1)设直线BC1与平面A1BD所成角为θ,则sinθ=|cos<BC1,n>|=BC1•n|BC1|•n=63∴cosθ=1-sin2θ=33,即直线BC1与平面A1BD所成角的余弦值是33故为:3326.已知两条直线a1x+b1y+1=0和a2x+b2y+1=0都过点A(2,3),则过两点P1(a1,b1),P2(a2,b2)的直线方程为______.答案:∵A(2,3)是直线a1x+b1y+1=0和a2x+b2y+1=0的公共点,∴2a1+3b1+1=0,且2a2+3b2+1=0,即两点P1(a1,b1),P2(a2,b2)的坐标都适合方程2x+3y+1=0,∴两点(a1,b1)和(a2,b2)都在同一条直线2x+3y+1=0上,故点(a1,b1)和(a2,b2)所确定的直线方程是2x+3y+1=0,故为:2x+3y+1=0.27.已知直线的参数方程为x=1+ty=3+2t.(t为参数),圆的极坐标方程为ρ=2cosθ+4sinθ.
(I)求直线的普通方程和圆的直角坐标方程;
(II)求直线被圆截得的弦长.答案:(I)直线的普通方程为:2x-y+1=0;圆的直角坐标方程为:(x-1)2+(y-2)2=5(4分)(II)圆心到直线的距离d=55,直线被圆截得的弦长L=2r2-d2=4305(10分)28.已知三角形ABC的顶点坐标为A(0,3)、B(-2,-1)、C(4,3),M是BC边上的中点。
(1)求AB边所在的直线方程。
(2)求中线AM的长。
(3)求点C关于直线AB对称点的坐标。答案:解:(1)由两点式得AB边所在的直线方程为:=即2x-y+3=0(2)由中点坐标公式得M(1,1)∴|AM|==(3)设C点关于直线AB的对称点为C′(x′,y′)则CC′⊥AB且线段CC′的中点在直线AB上。即解之得x′=
y′=C′点坐标为(,)29.已知点P(t,t),t∈R,点M是圆x2+(y-1)2=上的动点,点N是圆(x-2)2+y2=上的动点,则|PN|-|PM|的最大值是(
)
A.-1
B.
C.2
D.1答案:C30.对于函数y=f(x),在给定区间上有两个数x1,x2,且x1<x2,使f(x1)<f(x2)成立,则y=f(x)()A.一定是增函数B.一定是减函数C.可能是常数函数D.单调性不能确定答案:解析:由单调性定义可知,不能用特殊值代替一般值.故选D.31.4名学生参加3项不同的竞赛,则不同参赛方法有()A.34B.A43C.3!D.43答案:由题意知本题是一个分步计数问题,首先第一名学生从三种不同的竞赛中选有三种不同的结果,第二名学生从三种不同的竞赛中选有3种结果,同理第三个和第四个同学从三种竞赛中选都有3种结果,∴根据分步计数原理得到共有3×3×3×3=34故选A.32.已知两个力F1,F2的夹角为90°,它们的合力大小为20N,合力与F1的夹角为30°,那么F1的大小为()A.103NB.10
NC.20
ND.102N答案:设向F1,F2的对应向量分别为OA、OB以OA、OB为邻边作平行四边形OACB如图,则OC=OA+OB,对应力F1,F2的合力∵F1,F2的夹角为90°,∴四边形OACB是矩形在Rt△OAC中,∠COA=30°,|OC|=20∴|OA|=|OC|cos30°=103故选:A33.阅读下面的程序框图,则输出的S=()A.14B.20C.30D.55答案:∵S1=0,i1=1;S2=1,i2=2;S3=5,i3=3;S4=14,i4=4;S5=30,i=5>4退出循环,故为C.34.一张纸上画有一个半径为R的圆O和圆内一个定点A,且OA=a,折叠纸片,使圆周上某一点A′刚好与点A重合.这样的每一种折法,都留下一条折痕.当A′取遍圆周上所有点时,求所有折痕所在直线上点的集合.答案:对于⊙O上任意一点A′,连AA′,作AA′的垂直平分线MN,连OA′,交MN于点P,则OP+PA=OA′=R.由于点A在⊙O内,故OA=a<R.从而当点A′取遍圆周上所有点时,点P的轨迹是以O、A为焦点,OA=a为焦距,R(R>a)为长轴的椭圆C.而MN上任一异于P的点Q,都有OQ+QA=OQ+QA′>OA′,故点Q在椭圆C外,即折痕上所有的点都在椭圆C上及C外.反之,对于椭圆C上或外的一点S,以S为圆心,SA为半径作圆,交⊙O于A′,则S在AA′的垂直平分线上,从而S在某条折痕上.最后证明所作⊙S与⊙O必相交.1°
当S在⊙O外时,由于A在⊙O内,故⊙S与⊙O必相交;2°
当S在⊙O内时(例如在⊙O内,但在椭圆C外或其上的点S′),取过S′的半径OD,则由点S′在椭圆C外,故OS′+S′A≥R(椭圆的长轴).即S′A≥S′D.于是D在⊙S′内或上,即⊙S′与⊙O必有交点.于是上述证明成立.综上可知,折痕上的点的集合为椭圆C上及C外的所有点的集合.35.已知曲线C的方程是x2+y2+6ax-8ay=0,那么下列各点中不在曲线C上的是()
A.(0,0)
B.(2a,4a)
C.(3a,3a)
D.(-3a,-a)答案:B36.如图所示,已知P是平行四边形ABCD所在平面外一点,连结PA、PB、PC、PD,点E、F、G、H分别为△PAB、△PBC、△PCD、△PDA的重心,求证:E、F、G、H四点共面答案:证明:分别延长P、PF、PG、PH交对边于M、N、Q、R.∵E、F、G、H分别是所在三角形的重心,∴M、N、Q、R为所在边的中点,顺次连结MNQR所得四边形为平行四边形,且有∵MNQR为平行四边形,∴由共面向量定理得E、F、G、H四点共面.37.某研究小组在一项实验中获得一组数据,将其整理得到如图所示的散点图,下列函数中,最能近似刻画y与t之间关系的是(
)
A.y=2t
B.y=2t2
C.y=t3
D.y=log2t
答案:D38.(坐标系与参数方程选做题)在极坐标系(ρ,θ)(ρ>0,0≤θ<π2)中,曲线ρ=2sinθ与ρ=2cosθ的交点的极坐标为______.答案:两式ρ=2sinθ与ρ=2cosθ相除得tanθ=1,∵0≤θ<π2,∴θ=π4,∴ρ=2sinπ4=2,故交点的极坐标为(2,π4).故为:(2,π4).39.有3名同学要争夺2个比赛项目的冠军,冠军获得者共有______种可能.答案:第一个项目的冠军有3种情况,第二个项目的冠军也有3种情况,根据分步计数原理,冠军获得者共有3×3=9种可能,故为9.40.一位母亲记录了她的儿子3~9岁的身高数据,并由此建立身高与年龄的回归模型为y=7.19x+73.93,用这个模型预测她的儿子10岁时的身高,则正确的叙述是()A.身高一定是145.83
cmB.身高在145.83
cm以上C.身高在145.83
cm左右D.身高在145.83
cm以下答案:∵身高与年龄的回归模型为y=7.19x+73.93.∴可以预报孩子10岁时的身高是y=7.19x+73.93.=7.19×10+73.93=145.83则她儿子10岁时的身高在145.83cm左右.故选C.41.求由曲线围成的图形的面积.答案:面积为解析:当,时,方程化成,即.上式表示圆心在,半径为的圆.所以,当,时,方程表示在第一象限的部分以及轴,轴负半轴上的点,.同理,当,时,方程表示在第四象限的部分以及轴负半轴上的点;当,时,方程表示圆在第二象限的部分以及轴负半轴上的点;当,时,方程表示圆在第三象限部分.以上合起来构成如图所示的图形,面积为.42.(a+b)6的展开式的二项式系数之和为______.答案:根据二项式系数的性质:二项式系数和为2n所以(a+b)6展开式的二项式系数之和等于26=64故为:64.43.已知空间向量a=(1,2,3),点A(0,1,0),若AB=-2a,则点B的坐标是()A.(-2,-4,-6)B.(2,4,6)C.(2,3,6)D.(-2,-3,-6)答案:设B=(x,y,z),因为AB=-2a,所以(x,y-1,z)=-2(1,2,3),所以:x=-2,y-1=-4,z=-6,即x=-2,y=-3,z=-6.B(-2,-3,-6).故选D.44.用三段论的形式写出下列演绎推理.
(1)若两角是对顶角,则该两角相等,所以若两角不相等,则该两角不是对顶角;
(2)矩形的对角线相等,正方形是矩形,所以,正方形的对角线相等.答案:(1)两个角是对顶角则两角相等,大前提∠1和∠2不相等,小前提∠1和∠2不是对顶角.结论(2)每一个矩形的对角线相等,大前提正方形是矩形,小前提正方形的对角线相等.结论45.如图,正六边形ABCDEF中,=()
A.
B.
C.
D.
答案:D46.化简5(2a-2b)+4(2b-2a)=______.答案:5(2a-2b)+4(2b-2a)=10a-10b+8b-8a=2a-2b故为:2a-2b47.直线y=1与直线y=3x+3的夹角为______答案:l1与l2表示的图象为(如下图所示)y=1与x轴平行,y=3x+3与x轴倾斜角为60°,所以y=1与y=3x+3的夹角为60°.故为60°48.下列命题错误的是(
)A.命题“若,则中至少有一个为零”的否定是:“若,则都不为零”。B.对于命题,使得;则是,均有。C.命题“若,则方程有实根”的逆否命题为:“若方程无实根,则”。D.“”是“”的充分不必要条件。答案:A解析:命题的否定是只否定结论,∴选A.49.(x+2y)4展开式中各项的系数和为______.答案:令x=y=1,可得(1+2)4=81故为:81.50.已知点P是以F1、F2为左、右焦点的双曲线(a>0,b>0)左支上一点,且满足PF1⊥PF2,且|PF1|:|PF2|=2:3,则此双曲线的离心率为()
A.
B.
C.
D.答案:D第2卷一.综合题(共50题)1.如图,在△ABC中,,,则实数λ的值为()
A.
B.
C.
D.
答案:D2.下列命题错误的是(
)A.命题“若,则中至少有一个为零”的否定是:“若,则都不为零”。B.对于命题,使得;则是,均有。C.命题“若,则方程有实根”的逆否命题为:“若方程无实根,则”。D.“”是“”的充分不必要条件。答案:A解析:命题的否定是只否定结论,∴选A.3.当a>0时,不等式组的解集为(
)。答案:当a>时为;当a=时为{};当0<a<时为[a,1-a]4.如图,PA切圆O于点A,割线PBC经过圆心O,OB=PB=1,OA绕点O逆时针旋转600到OD,则PD的长为()
A.3
B.
C.
D.
答案:D5.两不重合直线l1和l2的方向向量分别为答案:∵直线l1和l2的方向向量分别为6.用反证法证明命题:“三角形的内角至多有一个钝角”,正确的假设是()
A.三角形的内角至少有一个钝角
B.三角形的内角至少有两个钝角
C.三角形的内角没有一个钝角
D.三角形的内角没有一个钝角或至少有两个钝角答案:B7.已知圆柱的轴截面周长为6,体积为V,则下列关系式总成立的是()A.V≥πB.V≤πC.V≥18πD.V≤18π答案:设圆柱的底面半径为r,高为h,由题意得:4r+2h=6,即2r+h=3,∴体积为V=πr2h≤π[13(r+r+h)]2=π×(33)2=π当且仅当r=h时取等号,由此可得V≤π恒成立故选:B8.已知x与y之间的一组数据是()
x0123y2468则y与x的线性回归方程y=bx+a必过点()A.(2,2)B.(1,2)C.(1.5,0)D.(1.5,5)答案:根据所给的表格得到.x=0+1+2+34=1.5,.y=2+4+6+84=5,∴这组数据的样本中心点是(1.5,5)∵线性回归直线一定过样本中心点,∴y与x的线性回归方程y=bx+a必过点(1.5,5)故选D.9.点M,N分别是曲线ρsinθ=2和ρ=2cosθ上的动点,则|MN|的最小值是______.答案:∵曲线ρsinθ=2和ρ=2cosθ分别为:y=2和x2+y2=2x,即直线y=2和圆心在(1,0)半径为1的圆.显然|MN|的最小值为1.故为:1.10.某会议室第一排共有8个座位,现有3人就座,若要求每人左右均有空位,那么不同的坐法种数为()A.12B.16C.24D.32答案:将空位插到三个人中间,三个人有两个中间位置和两个两边位置就是将空位分为四部分,五个空位四分只有1,1,1,2空位五差别,只需要空位2分别占在四个位置就可以有四种方法,另外三个人排列A33=6根据分步计数可得共有4×6=24故选C.11.已知两直线的方程分别为l1:x+ay+b=0,l2:x+cy+d=0,它们在坐标系中的位置如图所示()
A.b>0,d<0,a<c
B.b>0,d<0,a>c
C.b<0,d>0,a<c
D.b<0,d>0,a>c
答案:D12.已知m,n为正整数.
(Ⅰ)用数学归纳法证明:当x>-1时,(1+x)m≥1+mx;
(Ⅱ)对于n≥6,已知(1-1n+3)n<12,求证(1-mn+3)n<(12)m,m=1,2…,n;
(Ⅲ)求出满足等式3n+4n+5n+…+(n+2)n=(n+3)n的所有正整数n.答案:解法1:(Ⅰ)证:用数学归纳法证明:当x=0时,(1+x)m≥1+mx;即1≥1成立,x≠0时,证:用数学归纳法证明:(ⅰ)当m=1时,原不等式成立;当m=2时,左边=1+2x+x2,右边=1+2x,因为x2≥0,所以左边≥右边,原不等式成立;(ⅱ)假设当m=k时,不等式成立,即(1+x)k≥1+kx,则当m=k+1时,∵x>-1,∴1+x>0,于是在不等式(1+x)k≥1+kx两边同乘以1+x得(1+x)k•(1+x)≥(1+kx)(1+x)=1+(k+1)x+kx2≥1+(k+1)x,所以(1+x)k+1≥1+(k+1)x.即当m=k+1时,不等式也成立.综合(ⅰ)(ⅱ)知,对一切正整数m,不等式都成立.(Ⅱ)证:当n≥6,m≤n时,由(Ⅰ)得(1-1n+3)m≥1-mn+3>0,于是(1-mn+3)n≤(1-1n+3)nm=[(1-1n+3)n]m<(12)m,m=1,2,n.(Ⅲ)由(Ⅱ)知,当n≥6时,(1-1n+3)n+(1-2n+3)n++(1-nn+3)n<12+(12)^++(12)n=1-12n<1,∴(n+2n+3)n+(n+1n+3)n++(3n+3)n<1.即3n+4n+…+(n+2)n<(n+3)n.即当n≥6时,不存在满足该等式的正整数n.故只需要讨论n=1,2,3,4,5的情形:当n=1时,3≠4,等式不成立;当n=2时,32+42=52,等式成立;当n=3时,33+43+53=63,等式成立;当n=4时,34+44+54+64为偶数,而74为奇数,故34+44+54+64≠74,等式不成立;当n=5时,同n=4的情形可分析出,等式不成立.综上,所求的n只有n=2,3.解法2:(Ⅰ)证:当x=0或m=1时,原不等式中等号显然成立,下用数学归纳法证明:当x>-1,且x≠0时,m≥2,(1+x)m>1+mx.①(ⅰ)当m=2时,左边=1+2x+x2,右边=1+2x,因为x≠0,所以x2>0,即左边>右边,不等式①成立;(ⅱ)假设当m=k(k≥2)时,不等式①成立,即(1+x)k>1+kx,则当m=k+1时,因为x>-1,所以1+x>0.又因为x≠0,k≥2,所以kx2>0.于是在不等式(1+x)k>1+kx两边同乘以1+x得(1+x)k•(1+x)>(1+kx)(1+x)=1+(k+1)x+kx2>1+(k+1)x,所以(1+x)k+1>1+(k+1)x.即当m=k+1时,不等式①也成立.综上所述,所证不等式成立.(Ⅱ)证:当n≥6,m≤n时,∵(1-1n+3)n<12,∴[(1-1n+3)m]n<(12)m,而由(Ⅰ),(1-1n+3)m≥1-mn+3>0,∴(1-mn+3)n≤[(1-1n+3)m]n<(12)m.(Ⅲ)假设存在正整数n0≥6使等式3n0+4n0++(n0+2)n0=(n0+3)n0成立,即有(3n0+3)n0+(4n0+3)n0++(n0+2n0+3)n0=1.②又由(Ⅱ)可得(3n0+3)n0+(4n0+3)n0++(n0+2n0+3)n0=(1-n0n0+3)n0+(1-n0-1n0+3)n0++(1-1n0+3)n0<(12)n0+(12)n0-1++12=1-12n0<1,与②式矛盾.故当n≥6时,不存在满足该等式的正整数n.下同解法1.13.用数学归纳法证明等式1+2+3+…+(n+3)=(n+3)(n+4)2(n∈N+)时,第一步验证n=1时,左边应取的项是______答案:在等式1+2+3+…+(n+3)=(n+3)(n+4)2(n∈N+)中,当n=1时,n+3=4,而等式左边起始为1的连续的正整数的和,故n=1时,等式左边的项为:1+2+3+4故为:1+2+3+414.如图,在正方体ABCD-A1B1C1D1中,E为AB的中点.
(1)求异面直线BD1与CE所成角的余弦值;
(2)求二面角A1-EC-A的余弦值.答案:以D为原点,DC为y轴,DA为x轴,DD1为Z轴建立空间直角坐标系,…(1分)则A1(1,0,1),B(1,1,0),C(0,1,0),D1(0,0,1),E(1,12,0),…(2分)(1)BD1=(-1,-1,1),CE=(1,-12,0)…(1分)cos<BD1,CE>=-1515,…(1分)所以所求角的余弦值为1515…(1分)(2)D1D⊥平面AEC,所以D1D为平面AEC的法向量,D1D=(0,0,1)…(1分)设平面A1EC法向量为n=(x,y,z),又A1E=(0,12,-1),A1C=(-1,1,-1),n•A1E=0n•A1C=0即12y-z=0-x+y-z=0,取n=(1,2,1),…(3分)所以cos<DD1,n>=66…(2分)15.将参数方程x=2sinθy=1+2cos2θ(θ为参数,θ∈R)化为普通方程,所得方程是______.答案:由x=2sinθ
①y=1+2cos2θ
②,因为θ∈R,所以-1≤sinθ≤1,则-2≤x≤2.由①两边平方得:x2=2sin2θ③由②得y-1=2cos2θ④③+④得:x2+y-1=2,即y=-x2+3(-2≤x≤2).故为y=-x2+3(-2≤x≤2).16.以下命题:
①二直线平行的充要条件是它们的斜率相等;
②过圆上的点(x0,y0)与圆x2+y2=r2相切的直线方程是x0x+y0y=r2;
③平面内到两定点的距离之和等于常数的点的轨迹是椭圆;
④抛物线上任意一点M到焦点的距离都等于点M到其准线的距离.
其中正确命题的标号是______.答案:①两条直线平行的充要条件是它们的斜率相等,且截距不等,故①不正确,②过点(x0,y0)与圆x2+y2=r2相切的直线方程是x0x+y0y=r2.②正确,③不正确,若平面内到两定点距离之和等于常数,如这个常数正好为两个点的距离,则动点的轨迹是两点的连线段,而不是椭圆;④根据抛物线的定义知:抛物线上任意一点M到焦点的距离都等于点M到其准线的距离.故④正确.故为:②④.17.求证:若圆内接五边形的每个角都相等,则它为正五边形.答案:证明:设圆内接五边形为ABCDE,圆心是O.连接OA,OB,OCOD,OE,可得五个三角形∵OA=OB=OC=OD=OE=半径,∴有五个等腰三角形在△OAB、△OBC、△OCD、△ODE、△OEA中则∠OAB=∠OBA,∠OBC=∠OCB,∠OCD=∠ODC,∠ODE=∠OED,∠OEA=∠OAE因为所有内角相等,所以∠OAE+∠OAB=∠OBA+∠OBC,所以∠OAE=∠OBC同理证明∠OBA=∠OCD,∠OCB=∠OED,∠ODC=∠OEA,∠OED=∠OAB则△OAB、△OBC、△OCD、△ODE、△OEA中,∠AOB=∠BOC=∠COD=∠DOE=∠EOA∴△OAB≌△OBC≌△OCD≌△ODE≌△OEA
(SAS边角边定律)∴AB=BC=CD=DE=EA∴五边形ABCDE为正五边形18.如图,F是定直线l外的一个定点,C是l上的动点,有下列结论:若以C为圆心,CF为半径的圆与l相交于A、B两点,过A、B分别作l的垂线与圆C过F的切线相交于点P和点Q,则必在以F为焦点,l为准线的同一条抛物线上.
(Ⅰ)建立适当的坐标系,求出该抛物线的方程;
(Ⅱ)对以上结论的反向思考可以得到另一个命题:“若过抛物线焦点F的直线与抛物线相交于P、Q两点,则以PQ为直径的圆一定与抛物线的准线l相切”请问:此命题是正确?试证明你的判断;
(Ⅲ)请选择椭圆或双曲线之一类比(Ⅱ)写出相应的命题并证明其真假.(只选择一种曲线解答即可,若两种都选,则以第一选择为平分依据)答案:(Ⅰ)过F作l的垂线交l于K,以KF的中点为原点,KF所在直线为x轴建立平面直角坐标系如图1,并设|KF|=p,则可得该抛物线的方程为
y2=2px(p>0);(Ⅱ)该命题为真命题,证明如下:如图2,设PQ中点为M,P、Q、M在抛物线准线l上的射影分别为A、B、D,∵PQ是抛物线过焦点F的弦,∴|PF|=|PA|,|QF|=|QB|,又|MD|是梯形APQB的中位线,∴|MD=12(|PA|+|QB|)=12(|PF|+|QF|)=|PQ|2.∵M是以PQ为直径的圆的圆心,∴圆M与l相切.(Ⅲ)选择椭圆类比(Ⅱ)所写出的命题为:“过椭圆一焦点F的直线与椭圆交于P、Q两点,则以PQ为直径的圆与椭圆相应的准线l相离”.此命题为真命题,证明如下:证明:设PQ中点为M,椭圆的离心率为e,则0<e<1,P、Q、M在相应准线l上的射影分别为A、B、D,∵|PF|PA=e,∴|PA|=|PF|e,同理得|QB|=|QF|e.∵MD是梯形APQB的中位线,∴|MD|=|PA|+|QB|2=12(|PF|e+|QF|e)=|PQ|2e>|PQ|2,∴圆M与准线l相离.选择双曲线类比(Ⅱ)所写出的命题为:“过双曲线一焦点F的直线与双曲线交于P、Q两点,则以PQ为直径的圆与双曲线相应的准线l相交”.此命题为真命题,证明如下:证明:设PQ中点为M,椭圆的离心率为e,则e>1,P、Q、M在相应准线l上的射影分别为A、B、D,∵|PF|PA=e,∴|PA|=|PF|e,同理得|QB|=|QF|e.∵MD是梯形APQB的中位线,∴|MD|=|PA|+|QB|2=12(|PF|e+|QF|e)=|PQ|2e<|PQ|2,∴圆M与准线l相交.19.下列特殊命题中假命题的个数是()
①有的实数是无限不循环小数;
②有些三角形不是等腰三角形;
③有的菱形是正方形.
A.0
B.1
C.2
D.3答案:B20.若(1+2)5=a+b2(a,b为有理数),则a+b=()A.45B.55C.70D.80答案:解析:由二项式定理得:(1+2)5=1+C512+C52(2)2+C53(2)3+C54(2)4+C55?(2)5=1+52+20+202+20+42=41+292,∴a=41,b=29,a+b=70.故选C21.若向量a=(-1,2),b=(-4,3),则a在b方向上的投影为()A.2B.22C.23D.10答案:设a与
b的夹角为θ,则cosθ=a•b|a|•|b|=4+65×5=25,∴则a在b方向上的投影为|a|•cosθ=5×25=2,故选A.22.某同学参加科普知识竞赛,需回答三个问题,竞赛规则规定:答对第一、二、三个问题分别得100分、100分、200分,答错得0分,假设这位同学答对第一、二、三个问题的概率分别为0.8、0.7、0.6,且各题答对与否相互之间没有影响,则这名同学得300分的概率为
;这名同学至少得300分的概率为
.答案:0.228;0.564解析:得300分可能是答对第一、三题或第二、三题,其概率为0.8×0.3×0.6+0.2×0.7×0.6=0.228;答对4道题可得400分,其概率为0.8×0.7×0.6=0.336,所以至少得300分的概率为0.228+0.336=0.564。23.圆x=1+cosθy=1+sinθ(θ为参数)的标准方程是
______,过这个圆外一点P(2,3)的该圆的切线方程是
______;答案:∵圆x=1+cosθy=1+sinθ(θ为参数)消去参数θ,得:(x-1)2+(y-1)2=1,即圆x=1+cosθy=1+sinθ(θ为参数)的标准方程是(x-1)2+(y-1)2=1;∵这个圆外一点P(2,3)的该圆的切线,当切线斜率不存在时,显然x=2符合题意;当切线斜率存在时,设切线方程为:y-3=k(x-2),由圆心到切线的距离等于半径,得|k-1+3-2k|k2+1=
1,解得:k=34,故切线方程为:3x-4y+6=0.故为:(x-1)2+(y-1)2=1;x=2或3x-4y+6=0.24.甲、乙两人对一批圆形零件毛坯进行成品加工.根据需求,成品的直径标准为100mm.现从他们两人的产品中各随机抽取5件,测得直径(单位:mm)如下:
甲:105
102
97
96
100
乙:100
101
102
97
100
(I)分别求甲、乙的样本平均数与方差,并由此估计谁加工的零件较好?
(Ⅱ)若从乙样本的5件产品中再次随机抽取2件,试求这2件产品中至少有一件产品直径为100mm的概率.答案:(Ⅰ).x甲=15(105+102+97+96+100)=100,.x乙=15(100+101+102+97+100)=100S甲=15(25+4+3+16+0)=545=10.8,S乙=15(0+1+4+9+0)=145=2.8.∵S甲>S乙,据此估计乙加工的零件好;(Ⅱ)从乙样本的5件产品中再次随机抽取2件的全部结果有如下10种:(100,101),(100,102),(100,97),(100,100),(101,102),(101,97),(101,100),(102,97),(102,100),(97,100).设事件A为“其中至少有一件产品直径为100”,则时间A有7种.故P(A)=710.25.构成多面体的面最少是()
A.三个
B.四个
C.五个
D.六个答案:B26.(1)把二进制数化为十进制数;(2)把化为二进制数.答案:(1)45,(2)解析:(1)先把二进制数写成不同位上数字与2的幂的乘积之和的形式,再按照十进制的运算规则计算出结果;(2)根据二进制数“满二进一”的原则,可以用连续去除或所得商,然后取余数.(1)(2),,,,.所以..这种算法叫做除2余法,还可以用下面的除法算式表示;把上式中各步所得的余数从下到上排列,得到【名师指引】直接插入排序和冒泡排序是两种常用的排序方法,通过该例,我们对比可以发现,直接插入排序比冒泡排序更有效一些,执行的操作步骤更少一些..27.与直线2x+y+1=0的距离为的直线的方程是()
A.2x+y=0
B.2x+y-2=0
C.2x+y=0或2x+y-2=0
D.2x+y=0或2x+y+2=0答案:D28.过点P(-3,0)且倾斜角为30°的直线和曲线x=t+1ty=t-1t(t为参数)相交于A,B两点.求线段AB的长.答案:直线的参数方程为
x
=
-3
+
32sy
=
12s
(s
为参数),曲线x=t+1ty=t-1t
可以化为
x2-y2=4.将直线的参数方程代入上式,得
s2-63s+
10
=
0.设A、B对应的参数分别为s1,s2,∴s1+
s2=
6
3,s1•s2=10.∴AB=|s1-s2|=(s1+s2)2-4s1s2=217.29.已知点M的极坐标为,下列所给四个坐标中能表示点M的坐标是()
A.
B.
C.
D.答案:D30.已知抛物线y2=4x的焦点为F,准线与x轴的交点为M,N为抛物线上的一点,且|NF|=32|MN|,则∠NMF=()A.π6B.π4C.π3D.5π12答案:设N到准线的距离等于d,由抛物线的定义可得d=|NF|,
由题意得cos∠NMF=d|MN|=|NF||MN|=32,∴∠NMF=π6,故选A.31.如图,已知某探照灯反光镜的纵切面是抛物线的一部分,光源安装在焦点F上,且灯的深度EG等于灯口直径AB,若灯的深度EG为64cm,则光源安装的位置F到灯的顶端G的距离为______cm.答案:以反射镜顶点为原点,以顶点和焦点所在直线为x轴,建立直角坐标系.设抛物线方程为y2=2px,依题意可点A(64,32)在抛物线上代入抛物线方程得322=128p解得p=8∴焦点坐标为(4,0),而光源到反射镜顶点的距离正是抛物线的焦距,即4cm.故为:4.32.如图,四边形ABCD内接于圆O,且AC、BD交于点E,则此图形中一定相似的三角形有()对.
A.0
B.3
C.2
D.1
答案:C33.已知a、b均为单位向量,它们的夹角为60°,那么|a+3b|=()
A.
B.
C.
D.4答案:C34.若函数f(2x+1)=x2-2x,则f(3)=______.答案:解法一:(换元法求解析式)令t=2x+1,则x=t-12则f(t)=(t-12)2-2t-12=14t2-32t+54∴f(x)=14x2-32x+54∴f(3)=-1解法二:(凑配法求解析式)∵f(2x+1)=x2-2x=14(2x+1)2-32(2x+1)+54∴f(x)=14x2-32x+54∴f(3)=-1解法三:(凑配法求解析式)∵f(2x+1)=x2-2x令2x+1=3则x=1此时x2-2x=-1∴f(3)=-1故为:-135.已知圆的极坐标方程为:ρ2-42ρcos(θ-π4)+6=0.
(1)将极坐标方程化为普通方程;
(2)若点P(x,y)在该圆上,求x+y的最大值和最小值.答案:(1)ρ2-42ρcos(θ-π4)+6=0
即
ρ2-42(22ρcosθ+22ρsinθ
),即x2+y2-4x-4y+6=0.(2)圆的参数方程为x=
2
+2cosαy=
2
+2sinα,∴x+y=4+2(sinα+cosα)=4+2sin(α+π4).由于-1≤sin(α+π4)≤1,∴2≤x+y≤6,故x+y的最大值为6,最小值等于2.36.若将推理“四边形的内角和为360°,所以平行四边形的内角和为360°”改为三段论的形式,则它的小前提是______.答案:将推理“四边形的内角和为360°,所以平行四边形的内角和为360°”改为三段论的形式,因为四边形的内角和为360°,平行四边形是四边形,所以平行四边形的内角和为360°大前提:四边形的内角和为360°;小前提:平行四边形是四边形;结论:平行四边形的内角和为360°.故为:平行四边形是四边形.37.命题“存在x0∈R,2x0≤0”的否定是()
A.不存在x0∈R,2x0>0
B.存在x0∈R,2x0≥0
C.对任意的x∈R,2x≤0
D.对任意的x∈R,2x>0答案:D38.在数学归纳法证明多边形内角和定理时,第一步应验证()
A.n=1成立
B.n=2成立
C.n=3成立
D.n=4成立答案:C39.设集合A={1,2},则满足A∪B={1,2,3}的集合B的个数是()A.1B.3C.4D.8答案:A={1,2},A∪B={1,2,3},则集合B中必含有元素3,即此题可转化为求集合A={1,2}的子集个数问题,所以满足题目条件的集合B共有22=4个.故选择C.40.若椭圆x2+4(y-a)2=4与抛物线x2=2y有公共点,则实数a的取值范围是______.答案:椭圆x2+4(y-a)2=4与抛物线x2=2y联立可得2y=4-4(y-a)2,∴2y2-(4a-1)y+2a2-2=0.∵椭圆x2+4(y-a)2=4与抛物线x2=2y有公共点,∴方程2y2-(4a-1)y+2a2-2=0至少有一个非负根.∴△=(4a-1)2-16(a2-1)=-8a+17≥0,∴a≤178.又∵两根皆负时,由韦达定理可得2a2>2,4a-1<0,∴-1<a<1且a<14,即a<-1.∴方程2y2-(4a-1)y+2a2-2=0至少有一个非负根时,-1≤a≤178故为:-1≤a≤17841.i是虚数单位,a,b∈R,若ia+bi=1+i,则a+b=______.答案:∵ia+bi=1+i,a,b∈R,∴i(a-bi)(a+bi)(a-bi)=1+i,∴b+aia2+b2=1+i,化为b+ai=(a2+b2)+(a2+b2)i,根据复数相等的定义可得b=a2+b2a=a2+b2,a2+b2≠0解得a=b=12.∴a+b=1.故为1.42.若点M是△ABC的重心,则下列向量中与AB共线的是______.(填写序号)
(1)AB+BC+AC
(2)AM+MB+BC
(3)AM+BM+CM
(4)3AM+AC.答案:对于(1)AB+BC+AC=2AC不与AB共线对于(2)AM+MB+BC=AB+BC=AC不与AB对于(3)AM+BM+CM=13(AB+AC)+13(BA+BC)+13(CA+CB)=0与AB对于(4)3AM+AC=AB+AC+AC不与AB故为:(3)43.已知A(0,1),B(3,7),C(x,15)三点共线,则x的值是()
A.5
B.6
C.7
D.8答案:C44.设x>0,y>0且x≠y,求证答案:证明略解析:由x>0,y>0且x≠y,要证明只需
即只需由条件,显然成立.∴原不等式成立45.若集合S={a,b,c}(a、b、c∈R)中三个元素为边可构成一个三角形,那么该三角形一定不可能是()
A.锐角三角形
B.直角三角形
C.钝角三角形
D.等腰三角形答案:D46.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了解该单位职工的健康情况,用分层抽样的方法从中抽取样本,若样本中的青年职工为7人,则样本容量为()
A.35
B.25
C.15
D.7答案:C47.过A(-2,3),B(2,1)两点的直线的斜率是()
A.
B.
C.-2
D.2答案:B48.复数z=sin1+icos2在复平面内对应的点位于第______象限.答案:z对应的点为(sin1,cos2)∵1是第一象限的角,2是第二象限的角∵sin1>0,cos2<0所以(sin1,cos2)在第四象限故为:四49.(几何证明选讲选做题)如图4,A,B是圆O上的两点,且OA⊥OB,OA=2,C为OA的中点,连接BC并延长交圆O于点D,则CD=______.答案:如图所示:作出直径AE,∵OA=2,C为OA的中点,∴OC=CA=1,CE=3.∵OB⊥OA,∴BC=22+12=5.由相交弦定理得BC?CD=EC?CA,∴CD=EC?CABC=3×15=355.故为355.50.在平行六面体ABCD-A′B′C′D′中,向量是()
A.有相同起点的向量
B.等长的向量
C.共面向量
D.不共面向量答案:C第3卷一.综合题(共50题)1.命题“所以奇数的立方是奇数”的否定是()
A.所有奇数的立方不是奇数
B.不存在一个奇数,它的立方不是奇数
C.存在一个奇数,它的立方不是奇数
D.不存在一个奇数,它的立方是奇数答案:C2.设
是不共线的向量,(k,m∈R),则A、B、C三点共线的充要条件是()
A.k+m=0
B.k=m
C.km+1=0
D.km-1=0答案:D3.已知、分别是与x轴、y轴方向相同的单位向量,且=-3+6,=-6+4,=--6,则一定共线的三点是()
A.A,B,C
B.A,B,D
C.A,C,D
D.B,C,D答案:C4.已知函数f
(x)=logx,则方程()|x|=|f(x)|的实根个数是()
A.1
B.2
C.3
D.2006答案:B5.直线l与抛物线y2=2x相交于A、B两点,O为抛物线的顶点,若OA⊥OB.证明:直线l过定点.答案:证明:设点A,B的坐标分别为(x1,y1),(x2,y2)(I)当直线l有存在斜率时,设直线方程为y=kx+b,显然k≠0且b≠0.(2分)联立方程得:y=kx+by2=2x消去y得k2x2+(2kb-2)x+b2=0由题意:x1x2=b2k2,&
y1y2=(kx1+b)(kx2+b)=2bk(5分)又由OA⊥OB得x1x2+y1y2=0,(7分)即b2k2+2bk=0,解得b=0(舍去)或b=-2k(9分)故直线l的方程为:y=kx-2k=k(x-2),故直线过定点(2,0)(11分)(II)当直线l不存在斜率时,设它的方程为x=m,显然m>0联立方程得:x=my2=2x解得y=±2m,即y1y2=-2m又由OA⊥OB得x1x2+y1y2=0,即m2-2m=0,解得m=0(舍去)或m=2可知直线l方程为:x=2,故直线过定点(2,0)综合(1)(2)可知,满足条件的直线过定点(2,0).6.将函数进行平移,使得到的图形与抛物线的两个交点关于原点对称,试求平移后的图形对应的函数解析式.答案:函数解析式是解析:将函数进行平移,使得到的图形与抛物线的两个交点关于原点对称,试求平移后的图形对应的函数解析式.7.过点A(-1,4)作圆C:(x-2)2+(y-3)2=1的切线l,求切线l的方程.答案:设方程为y-4=k(x+1),即kx-y+k+4=0∴d=|2k-3+k+4|k2+1=1∴4k2+3k=0∴k=0或k=-34∴切线l的方程为y=4或3x+4y-13=08.某次我市高三教学质量检测中,甲、乙、丙三科考试成绩的直方图如如图所示(由于人数众多,成绩分布的直方图可视为正态分布),则由如图曲线可得下列说法中正确的一项是()
A.甲科总体的标准差最小
B.丙科总体的平均数最小
C.乙科总体的标准差及平均数都居中
D.甲、乙、丙的总体的平均数不相同
答案:A9.一圆台上底半径为5cm,下底半径为10cm,母线AB长为20cm,其中A在上底面上,B在下底面上,从AB中点M,拉一条绳子,绕圆台的侧面一周转到B点,则这条绳子最短长为______cm.答案:画出圆台的侧面展开图,并还原成圆锥展开的扇形,且设扇形的圆心为O.有图得:所求的最短距离是MB',设OA=R,圆心角是α,则由题意知,10π=αR
①,20π=α(20+R)
②,由①②解得,α=π2,R=20,∴OM=30,OB'=40,则MB'=50cm.故为:50cm.10.在平面直角坐标系xOy中,点P的坐标为(-1,1),若取原点O为极点,x轴正半轴为极轴,建立极坐标系,则在下列选项中,不是点P极坐标的是()
A.()
B.()
C.()
D.()答案:D11.下列几何体各自的三视图中,有且仅有两个视图相同的是()
A.①②B.①③C.①④D.②④答案:正方体的三视图都相同,而三棱台的三视图各不相同,圆锥和正四棱锥的,正视图和侧视图相同,所以,正确为D.故选D12.对于各数互不相等的整数数组(i1,i2,i3,…in)
(n是不小于2的正整数),对于任意p,q∈1,2,3,…,n,当p<q时有ip>iq,则称ip,iq是该数组的一个“逆序”,一个数组中所有“逆序”的个数称为该数组的“逆序数”,则数组(2,4,3,1)中的逆序数等于______.答案:由题意知当p<q时有ip>iq,则称ip,iq是该数组的一个“逆序”,一个数组中所有“逆序”的个数称为该数组的“逆序数”,在数组(2,4,3,1)中逆序有2,1;4,3;4,1;3,1共有4对逆序数对,故为:4.13.已知椭圆C:x2a2+y2b2=1(a>b>0)的两个焦点分别为F1(-1,0),F2(1,0),且椭圆C经过点P(43,13).
(I)求椭圆C的离心率:
(II)设过点A(0,2)的直线l与椭圆C交于M,N两点,点Q是线段MN上的点,且2|AQ|2=1|AM|2+1|AN|2,求点Q的轨迹方程.答案:(I)∵椭圆C:x2a2+y2b2=1(a>b>0)的两个焦点分别为F1(-1,0),F2(1,0),且椭圆C经过点P(43,13).∴c=1,2a=PF1+PF2=(43+1)2+19+(43-1)2+19=22,即a=2∴椭圆的离心率e=ca=12=22…4分(II)由(I)知,椭圆C的方程为x22+y2=1,设点Q的坐标为(x,y)(1)当直线l与x轴垂直时,直线l与椭圆C交于(0,1)、(0,-1)两点,此时点Q的坐标为(0,2-355)(2)当直线l与x轴不垂直时,可设其方程为y=kx+2,因为M,N在直线l上,可设点M,N的坐标分别为(x1,kx1+2),(x2,kx2+2),则|AM|2=(1+k2)x1
2,|AN|2=(1+k2)x2
2,又|AQ|2=(1+k2)x2,2|AQ|2=1|AM|2+1|AN|2∴2(1+k2)x2=1(1+k2)x1
2+1(1+k2)x2
2,即2x2=1x1
2+1x2
2=(x1+x2)2-2x1x2x1
2x2
2…①将y=kx+2代入x22+y2=1中,得(2k2+1)x2+8kx+6=0…②由△=(8k)2-24(2k2+1)>0,得k2>32由②知x1+x2=-8k2k2+1,x1x2=62k2+1,代入①中化简得x2=1810k2-3…③因为点Q在直线y=kx+2上,所以k=y-2x,代入③中并化简得10(y-2)2-3x2=18由③及k2>32可知0<x2<32,即x∈(-62,0)∪(0,62)由题意,Q(x,y)在椭圆C内,所以-1≤y≤1,又由10(y-2)2-3x2=18得(y-2)2∈[95,94)且-1≤y≤1,则y∈(12,2-355)所以,点Q的轨迹方程为10(y-2)2-3x2=18,其中x∈(-62,62),y∈(12,2-355)…13分14.72的正约数(包括1和72)共有______个.答案:72=23×32.∴2m?3n(0≤m≤3,0≤n≤2,m,n∈N)都是72的正约数.m的取法有4种,n的取法有3种,由分步计数原理共3×4个.故为:12.15.一个多面体的三视图分别是正方形、等腰三角形和矩形,其尺寸如图,则该多面体的体积为()A.48cm3B.24cm3C.32cm3D.28cm3答案:由三视图可知该几何体是平放的直三棱柱,高为4,底面三角形一边长为6,此边上的高为4体积V=Sh=12×6×4×4=48cm3故选A16.化简:AB+CD+BC=______.答案:如图:AB+CD+BC=AB+BC+CD=AC+CD=AD.故为:AD.17.不等式>1–log2x的解是(
)
A.x≥2
B.x>1
C.1xx>2答案:B18.若圆锥的侧面展开图是弧长为2πcm,半径为2cm的扇形,则该圆锥的体积为______cm3.答案:∵圆锥的侧面展开图的弧长为2πcm,半径为2cm,故圆锥的底面周长为2πcm,母线长为2cm则圆锥的底面半径为1,高为1则圆锥的体积V=13?π?12?1=π3.故为:π3.19.给出下列结论:
(1)在回归分析中,可用指数系数R2的值判断模型的拟合效果,R2越大,模型的拟合效果越好;
(2)在回归分析中,可用残差平方和判断模型的拟合效果,残差平方和越大,模型的拟合效果越好;
(3)在回归分析中,可用相关系数r的值判断模型的拟合效果,r越大,模型的拟合效果越好;
(4)在回归分析中,可用残差图判断模型的拟合效果,残差点比较均匀地落在水平的带状区域中,说明这样的模型比较合适.带状区域的宽度越窄,说明模型的拟合精度越高.
以上结论中,正确的有()个.
A.1
B.2
C.3
D.4答案:B20.如图,在△ABC中,,,则实数λ的值为()
A.
B.
C.
D.
答案:D21.4位学生与2位教师并坐合影留念,针对下列各种坐法,试问:各有多少种不同的坐法?(用数字作答)
(1)教师必须坐在中间;
(2)教师不能坐在两端,但要坐在一起;
(3)教师不能坐在两端,且不能相邻.答案:(1)先排4位学生,有A44种坐法,2位教师坐在中间,可以交换位置,有A22种坐法,则共有A22A44=48种坐法;(2)先排4位学生,有A44种坐法,2位教师坐在一起,将其看成一个整体,可以交换位置,有2种坐法,将这个“整体”插在4个学生的空位中,又由教师不能坐在两端,则有3个空位可选,则共有2A44A31=144种坐法;(3)先排4位学生,有A44种坐法,教师不能相邻,将其依次插在4个学生的空位中,又由教师不能坐在两端,则有3个空位可选,有A32种坐法,则共有A44A32=144种坐法..22.若圆台的上下底面半径分别是1和3,它的侧面积是两底面面积和的2倍,则圆台的母线长是()A.2B.2.5C.5D.10答案:设母线长为l,则S侧=π(1+3)l=4πl.S上底+S下底=π?12+π?32=10π.据题意4πl=20π即l=5,故选C.23.为了了解1200名学生对学校某项教改试验的意见,打算从中抽取一个容量为40的样考虑用系统抽样,则分段的间隔k为______答案:由题意知本题是一个系统抽样,总体中个体数是1200,样本容量是40,根据系统抽样的步骤,得到分段的间隔K=120040=30,故为:30.24.抽样方法有()A.随机抽样、系统抽样和分层抽样B.随机数法、抽签法和分层抽样法C.简单随机抽样、分层抽样和系统抽样D.系统抽样、分层抽样和随机数法答案:我们常用的抽样方法有:简单随机抽样、分层抽样和系统抽样,而抽签法和随机数法,只是简单随机抽样的两种不同抽取方法故选C25.点P(1,2,2)到原点的距离是()
A.9
B.3
C.1
D.5答案:B26.已知O、A、M、B为平面上四点,且,则()
A.点M在线段AB上
B.点B在线段AM上
C.点A在线段BM上
D.O、A、M、B四点一定共线答案:B27.若一元二次方程x2+(a-1)x+1-a2=0有两个正实数根,则a的取值范围是(
)
A.(-1,1)
B.(-∞,)∪[1,+∞)
C.(-1,]
D.[,1)答案:C28.以直线x+3=0为准线的抛物线的标准方程是______.答案:由题意,抛物线的焦点在x轴上,焦点坐标为(3,0),∴抛物线的标准方程是y2=12x故为:y2=12x29.在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是()
A.若K2的观测值为k=6.635,而p(K2≥6.635)=0.010,故我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病
B.从独立性检验可知有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有99%的可能患有肺病
C.若从统计量中求出有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推判出现错误
D.以上三种说法都不正确答案:C30.将一枚骰子连续抛掷600次,请你估计掷出的点数大于2的大约是______次.答案:一颗骰子是均匀的,当抛这颗骰子时,出现的6个点数是等可能的,将一枚骰子连续抛掷600次,估计每一个嗲回溯出现的次数是100,∴掷出的点数大于2的大约有400次,故为:400.31.直线l1到l2的角为α,直线l2到l1的角为β,则cos=()
A.
B.
C.0
D.1答案:A32.若关于x的方程3x2-5x+a=0的一个根在(-2,0)内,另一个根在(1,3)内,求a的取值范围。答案:解:设f(x)=3x2-5x+a,则f(x)为开口向上的抛物线,如右图所示,∵f(x)=0的两根分别在区间(-2,0),(1,3)内,∴,即,解得-12<a<0,故所求a的取值范围是{a|-12<a<0}。33.等于()
A.a16
B.a8
C.a4
D.a2答案:C34.已知x,y之间的一组数据:x1.081.121.191.28y2.252.372.402.55y与x之间的线性性回归方y=bx+a必过定点______.答案:回归直线方程一定过样本的中心点(.x,.y),.x=1.08+1.12+1.19+1.284=1.1675,
.y=2.25+2.37+2.40+2.554=2.3925,∴样本中心点是(1.1675,2.3925),故为(1.1675,2.3925).35.设是定义在正整数集上的函数,且满足:“当成立时,总可推出成立”.那么,下列命题总成立的是A.若成立,则当时,均有成立B.若成立,则当时,均有成立C.若成立,则当时,均有成立D.若成立,则当时,均有成立答案:D解析:若成立,依题意则应有当时,均有成立,故A不成立,若成立,依题意则应有当时,均有成立,故B不成立,因命题“当成立时,总可推出成立”.“当成立时,总可推出成立”.因而若成立,则当时,均有成立,故C也不成立。对于D,事实上,依题意知当时,均有成立,故D成立。36.若a=(1,1),则|a|=______.答案:由题意知,a=(1,1),则|a|=1+1=2,故为:2.37.“所有9的倍数(M)都是3的倍数(P),某奇数(S)是9的倍数(M),故此奇数(S)是3的倍数(P)”,上述推理是()
A.小前提错
B.结论错
C.正确的
D.大前提错答案:C38.已知两条直线l1:y=x,l2:ax-y=0,其中a为实数,当这两条直线的夹角在(0,)内变动时,a的取值范围是(
)
A.(0,1)
B.
C.
D.答案:C39.若过点A(4,0)的直线l与曲线(x-2)2+y2=1有公共点,则直线l的斜率的取值范围为______.答案:设直线l的方程为y=k(x-4),即kx-y-4k=0∵直线l与曲线(x-2)2+y2=1有公共点,∴圆心到直线l的距离小于等于半径即|2k-4k|k2+1≤1,解得-33≤
k≤33∴直线l的斜率的取值范围为[-33,33]故为[-33,33]40.已知点G是△ABC的重心,点P是△GBC内一点,若,则λ
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 上海科创职业技术学院《老年社会工作实务》2023-2024学年第一学期期末试卷
- 上海健康医学院《中兽医学》2023-2024学年第一学期期末试卷
- 校园防范学生欺凌教育
- 幼儿园诺如病毒安全教育
- 上海海事职业技术学院《可持续环境设计》2023-2024学年第一学期期末试卷
- 上海海关学院《液压与气动A》2023-2024学年第一学期期末试卷
- 2024年中国洗衣机电热管市场调查研究报告
- 企业员工管理制度品读汇编
- 上海工会管理职业学院《有机化学Ⅰ》2023-2024学年第一学期期末试卷
- 上海工会管理职业学院《半导体元件》2023-2024学年第一学期期末试卷
- 临建施工方案1
- 训练及产说改鑫瑞发布会流程
- 产业园EPC总承包工程项目施工组织设计
- 大学生安全教育智慧树知到答案章节测试2023年中国海洋大学
- 学校安全教育珍爱生命-拒绝打架斗殴课件
- YY/T 0698.7-2009最终灭菌医疗器械包装材料第7部分:环氧乙烷或辐射灭菌无菌屏障系统生产用可密封涂胶纸要求和试验方法
- GB/T 40276-2021柔巾
- GB/T 3750-2008卡套式铰接管接头
- GB/T 20944.3-2008纺织品抗菌性能的评价第3部分:振荡法
- 自然辩证法概论(新)
- 《政府会计》课后习题答案(第4-18章)
评论
0/150
提交评论