版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年江西泰豪动漫职业学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.如果如图所示的程序中运行后输出的结果为132,那么在程序While后面的“条件”应为______.答案:第一次循环之后s=12,i=11;第二次循环之后结果是s=132,i=10,已满足题意跳出循环.由于此循环体是当型循环i=12、11都满足条件,i=10不满足条件.故为:i≥112.在用样本频率估计总体分布的过程中,下列说法正确的是()A.总体容量越大,估计越精确B.总体容量越小,估计越精确C.样本容量越大,估计越精确D.样本容量越小,估计越精确答案:∵用样本频率估计总体分布的过程中,估计的是否准确与总体的数量无关,只与样本容量在总体中所占的比例有关,∴样本容量越大,估计的月准确,故选C.3.双曲线的中心在坐标原点,离心率等于2,一个焦点的坐标为(2,0),则此双曲线的渐近线方程是______.答案:∵离心率等于2,一个焦点的坐标为(2,0),∴ca=2,
c=2且焦点在x轴上,∴a=1∵c2=a2+b2∴b2=3∴b=3.所以双曲线的渐进方程为y=±3x.故为y=±3x4.在如图所示的茎叶图中,甲、乙两组数据的中位数分别是______.答案:由茎叶图可得甲组共有9个数据中位数为45乙组共9个数据中位数为46故为45、465.在空间四边形OABC中,OA+AB-CB等于()A.OAB.ABC.OCD.AC答案:根据向量的加法、减法法则,得OA+AB-CB=OB-CB=OB+BC=OC.故选C.6.(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)
A.(不等式选做题)不等式|x-5|+|x+3|≥10的解集是______.
B.(坐标系与参数方程选做题)在极坐标系中,圆ρ=-2sinθ的圆心的极坐标是______.
C.(几何证明选做题)如图,已知圆中两条弦AB与CD相交于点F,E是AB延长线上一点,且DF=CF=22,BE=1,BF=2,若CE与圆相切,则线段CE的长为______.答案:A:当x<-3时不等式|x-5|+|x+3|≥10可化为:-(x-5)-(x+3)≥10解得:x≤-4当-3≤x≤5时不等式|x-5|+|x+3|≥10可化为:-(x-5)+(x+3)=8≥10恒不成立当x>5时不等式|x-5|+|x+3|≥10可化为:(x-5)+(x+3)≥10解得:x≥6故不等式|x-5|+|x+3|≥10解集为:(-∞,-4]∪[6,+∞).B:圆ρ=-2sinθ即ρ2=-2ρsinθ,即x2+y2+2y=0,即x2+(y+1)2=1.表示以(0,-1)为圆心,半径等于1的圆,故圆心的极坐标为(1,3π2).C:由题意,DF=CF=22,BE=1,BF=2,由DF•FC=AF•BF,得22•22=AF•2,∴AF=4,又BF=2,BE=1,∴AE=7;由切割线定理得CE2=BE•EA=1×7=7.∴CE=7.故为:(-∞,-4]∪[6,+∞);(1,3π2)(不唯一);7.7.已知:集合A={x,y},B={2,2y},若A=B,则x+y=______.答案:∵集合A={x,y},B={2,2y},而A=B∴x=2y=0或x=2yy=2即x=4y=2∴x+y=2或6故为:2或68.在语句PRINT
3,3+2的结果是()
A.3,3+2
B.3,5
C.3,5
D.3,2+3答案:B9.圆x2+y2=1上的点到直线x=2的距离的最大值是
______.答案:根据题意,圆上点到直线距离最大值为:半径+圆心到直线的距离.而根据圆x2+y2=1圆心为(0,0),半径为1∴dmax=1+2=3故为:310.到两定点A(0,0),B(3,4)距离之和为5的点的轨迹是()
A.椭圆
B.AB所在直线
C.线段AB
D.无轨迹答案:C11.某产品的广告费用x与销售额y的统计数据如下表:
广告费用x(万元)
2
3
4
5
销售额y(万元)
27
39
48
54
根据上表可得回归方程y=bx+a中的b为9.4,据此模型预报广告费用为6万元时销售额为()
A.65.5万元
B.66.2万元
C.67.7万元
D.72.0万元答案:A12.圆(x+2)2+y2=4与圆(x-2)2+(y-1)2=9的位置关系为()
A.内切
B.相交
C.外切
D.相离答案:B13.已知点A(5,0)和⊙B:(x+5)2+y2=36,P是⊙B上的动点,直线BP与线段AP的垂直平分线交于点Q.
(1)证明点Q的轨迹是双曲线,并求出轨迹方程.
(2)若(BQ+BA)•QA=0,求点Q的坐标.答案:(1)∵点Q在线段AP的垂直平分线上,∴|QP|=|QA|,∴||BQ|-|PQ||=||BQ|-|AQ||=6.∴点Q的轨迹是以A、B为焦点的双曲线.(4′)其轨迹方程是x29-y216=1.(7′)(2)以A、B、Q为三个顶点作平行四边形ABQC,则BQ+BA=BC∵(BQ+BA)•QA=0,∴BC•QC=0,∴平行四边形ABQC是菱形,∴|BA|=|BQ|.(8′)∴点Q在圆(x+5)2+y2=100上.解方程组(x+5)2+y2=100x29-y216=1.(10′)得Q(-395,±485)或Q(215,±865).(12′)14.若数据x1,x2,x3…xn的平均数.x=5,方差σ2=2,则数据3x1+1,3x2+1,3x3+1…,3xn+1的方差为______.答案:∵x1,x2,x3,…,xn的方差为2,∴3x1+1,3x2+1,3x3+1,…,3xn+1的方差是32×2=18.故为:18.15.已知二项分布ξ~B(4,12),则该分布列的方差Dξ值为______.答案:∵二项分布ξ~B(4,12),∴该分布列的方差Dξ=npq=4×12×(1-12)=1故为:116.在平面直角坐标系xOy中,点P(x,y)是椭圆x23+y2=1上的一个动点,求S=x+y的最大值.答案:因椭圆x23+y2=1的参数方程为x=3cos?y=sin?(?为参数)故可设动点P的坐标为(3cos?,sin?),其中0≤?<2π.因此S=x+y=3cos?+sin?=2(32cos?+12sin?)=2sin(?+π3)所以,当?=π6时,S取最大值2.17.已知A(1,0).B(7,8),若点A和点B到直线l的距离都为5,且满足上述条件的直线l共有n条,则n的值是()A.1B.2C.3D.4答案:与直线AB平行且到直线l的距离都为5的直线共有两条,分别位于直线AB的两侧,由线段AB的长度等于10,还有一条直线是线段AB的中垂线,故满足上述条件的直线l共有3条,故选C.18.如图,一个空间几何体的正视图、侧视图、俯视图为全等的等腰直角三角形,如果直角三角形的直角边长为2,那么
这个几何体的体积为()A.13B.23C.43D.2答案:根据三视图,可知该几何体是三棱锥,右图为该三棱锥的直观图,三棱锥的底面是一个腰长是2的等腰直角三角形,∴底面的面积是12×2×2=2垂直于底面的侧棱长是2,即高为2,∴三棱锥的体积是13×2×2=43故选C.19.如图给出的是计算1+13+15+…+12013的值的一个程序框图,图中空白执行框内应填入i=______.答案:∵该程序的功能是计算1+13+15+…+12013的值,最后一次进入循环的终值为2013,即小于等于2013的数满足循环条件,大于2013的数不满足循环条件,由循环变量的初值为1,步长为2,故执行框中应该填的语句是:i=i+2.故为:i+2.20.两条直线x-y+6=0与x+y+6=0的夹角为()
A.
B.
C.0
D.答案:D21.设A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0},其中x∈R,如果A∩B=B,求实数a的取值范围。答案:解A={0,-4}∵A∩B=B
∴BA由x2+2(a+1)x+a2-1=0
得△=4(a+1)2-4(a2-1)=8(a+1)(1)当a<-1时△<0
B=φA(2)当a=-1时△=0
B={0}A(3)当a>-1时△>0
要使BA,则A=B∵0,-4是方程x2+2(a+1)x+a2-1=0的两根∴解之得a=1综上可得a≤-1或a=122.设F1,F2分别是椭圆E:x2+y2b2=1(0<b<1)的左、右焦点,过F1的直线l与E相交于A,B两点,且|AF2|,|AB|,|BF2|成等差数列,则|AB|的长为______.答案:∵|AF2|,|AB|,|BF2|成等差数列∴|AF2|+|BF2|=2|AB|,又椭圆E:x2+y2b2=1(0<b<1)中a=1∴|AF2|+|AB|+|BF2|=4,∴3|AB|=4,∴|AB|=43故为:4323.命题:“如果ab=0,那么a、b中至少有一个等于0.”的逆否命题为______
______.答案:∵ab=0的否命题是ab≠0,a、b中至少有一个为零的否命题是a≠0,且b≠0,∴命题“若ab=0,则a、b中至少有一个为零”的逆否命题是“若a≠0,且b≠0,则ab≠0.”故:如果a、b都不为等于0.那么ab≠024.设i为虚数单位,若(x+i)(1-i)=y,则实数x,y满足()
A.x=-1,y=1
B.x=-1,y=2
C.x=1,y=2
D.x=1,y=1答案:C25.平面α外一点P到平面α内的四边形的四条边的距离都相等,且P在α内的射影在四边形内部,则四边形是()
A.梯形
B.圆外切四边形
C.圆内接四边
D.任意四边形答案:B26.实数变量m,n满足m2+n2=1,则坐标(m+n,mn)表示的点的轨迹是()
A.抛物线
B.椭圆
C.双曲线的一支
D.抛物线的一部分答案:A27.直线y=2的倾斜角和斜率分别是()A.90°,斜率不存在B.90°,斜率为0C.180°,斜率为0D.0°,斜率为0答案:由题意,直线y=2的倾斜角是0°,斜率为0故选D.28.下列说法中正确的是()
A.若∥,则与向相同
B.若||<||,则<
C.起点不同,但方向相同且模相等的两个向量相等
D.所有的单位向量都相等答案:C29.某公司的管理机构设置是:设总经理一个,副总经理两个,直接对总经理负责,下设有6个部门,其中副总经理A管理生产部、安全部和质量部,副总经理B管理销售部、财务部和保卫部.请根据以上信息补充该公司的人事结构图,其中①、②处应分别填()
A.保卫部,安全部
B.安全部,保卫部
C.质检中心,保卫部
D.安全部,质检中心
答案:B30.参数方程x=sin2θy=cosθ+sinθ(θ为参数)的普通方程为______.答案:把参数方程x=sin2θy=cosθ+sinθ(θ为参数)利用同角三角函数的基本关系消去参数化为普通方程为y2=1+x,故为y2=1+x.31.抛掷3颗质地均匀的骰子,求点数和为8的概率______.答案:由题意总的基本事件数为6×6×6=216种点数和为8的事件包含了向上的点的情况有(1,1,6),(1,2,5),(2,2,4),(2,3,3)有四种情况向上点数分别为(1,1,6)的事件包含的基本事件数有3向上点数分别为(1,2,5)的事件包含的基本事件数有6向上点数分别为(2,2,4)的事件包含的基本事件数有3向上点数分别为(2,3,3)的事件包含的基本事件数有3所以点数和为8的事件包含基本事件数是3+6+3+3=15种点数和为8的事件的概率是15216=572故为:572.32.已知双曲线x2-y22=1,经过点M(1,1)能否作一条直线l,使直线l与双曲线交于A、B,且M是线段AB的中点,若存在这样的直线l,求出它的方程;若不存在,说明理由.答案:设过点M(1,1)的直线方程为y=k(x-1)+1或x=1(1)当k存在时有y=k(x-1)+1x2
-y22=1得(2-k2)x2+(2k2-2k)x-k2+2k-3=0
(1)当直线与双曲线相交于两个不同点,则必有△=(2k2-2k)2-4(2-k2)(-k2+2k-3)>0,k<32
又方程(1)的两个不同的根是两交点A、B的横坐标∴x1+x2=2(k-k2)2-k2
又M(1,1)为线段AB的中点∴x1+x22=1
即k-k22-k2=1
k=2
∴k=2,使2-k2≠0但使△<0因此当k=2时,方程(1)无实数解故过点m(1,1)与双曲线交于两点A、B且M为线段AB中点的直线不存在.(2)当x=1时,直线经过点M但不满足条件,综上,符合条件的直线l不存在33.若与垂直,则k的值是()
A.2
B.1
C.0
D.答案:D34.在极坐标系中,极点到直线ρcosθ=2的距离为______.答案:直线ρcosθ=2即x=2,极点的直角坐标为(0,0),故极点到直线ρcosθ=2的距离为2,故为2.35.“cosα=12”是“α=π3”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案:∵“coa=12”?“a=π3+2kπ,k∈Z,或a=53π+2kπ,k∈Z”,“a=π3”?“coa=12”.故选D.36.如图是《集合》的知识结构图,如果要加入“子集”,那么应该放在()
A.“集合”的下位
B.“含义与表示”的下位
C.“基本关系”的下位
D.“基本运算”的下位
答案:C37.在下列各图中,每个图的两个变量具有线性相关关系的图是()
A.(1)(2)
B.(1)(3)
C.(2)(4)
D.(2)(3)答案:D38.圆柱的底面积为S,侧面展开图为正方形,那么这个圆柱的侧面积为()A.πSB.2πSC.3πSD.4πS答案:设圆柱的底面半径是R,母线长是l,∵圆柱的底面积为S,侧面展开图为正方形,∴πR2=S,且l=2πR,∴圆柱的侧面积为2πRl=4πS.故选D.39.已知函数y=f(x)是R上的奇函数,其零点为x1,x2,…,x2011,则x1+x2+…+x2011=______.答案:∵f(x)是R上的奇函数,∴0是函数y=f(x)的零点.其他非0的零点关于原点对称.∴x1+x2+…+x2011=0.故为:0.40.三棱锥P-ABC中,M为BC的中点,以为基底,则可表示为()
A.
B.
C.
D.答案:D41.(不等式选讲选做题)已知x+2y+3z=1,求x2+y2+z2的最小值______.答案:解法一:由柯西不等式可知:(x+2y+3z)2≤(x2+y2+z2)(12+22+33),∴x2+y2+z2≥114,当且仅当x1=y2=z3,x+2y+3z=1,即x=114,y=17,z=314时取等号.即x2+y2+z2的最小值为114.解法二:设向量a=(1,2,3),b=(x,y,z),∵|a?b|≤|a|
|b|,∴1=x+2y+3z≤12+22+32x2+y2+z2,∴x2+y2+z2≥114,当且仅当a与b共线时取等号,即x1=y2=z3,x+2y+3z=1,解得x=114,y=17,z=314时取等号.故为114.42.用黄金分割法寻找最佳点,试验区间为[1000,2000],若第一个二个试点为好点,则第三个试点应选在(
)。答案:123643.若方程Ax2+By2=1表示焦点在y轴上的双曲线,则A、B满足的条件是()
A.A>0,且B>0
B.A>0,且B<0
C.A<0,且B>0
D.A<0,且B<0答案:C44.直线x+y-1=0到直线xsinα+ycosα-1=0(<α<)的角是()
A.α-
B.-α
C.α-
D.-α答案:D45.参数方程为t为参数)表示的曲线是()
A.一条直线
B.两条直线
C.一条射线
D.两条射线答案:D46.直三棱柱ABC-A1B1C1中,若CA=a,CB=b,CC1=c,则A1B=()A.a+b-cB.a-b+cC.-a+b+cD.-a+b-c答案:A1B=A1A+AB=-CC1+CB-CA=-c+b-a故选D.47.已知(2x+1)3的展开式中,二项式系数和为a,各项系数和为b,则a+b=______.(用数字表示)答案:由题意可得(2x+1)3的展开式中,二项式系数和为a=23=8令x=1可得各项系数和为b=(2+1)3=27∴a+b=35故为:3548.设a=(-1,1),b=(x,3),c=(5,y),d=(8,6),且b∥d,(4a+d)⊥c.
(1)求b和c;
(2)求c在a方向上的射影;
(3)求λ1和λ2,使c=λ1a+λ2b.答案:(1)∵b∥d,∴6x-24=0.∴x=4.∴b=(4,3).∵4a+d=(4,10),(4a+d
)⊥c,∴5×4+10y=0.∴y=-2.∴c=(5,-2).(2)cos<a,c>=a•c|a|
|c|=-5-22•29=-75858,∴c在a方向上的投影为|c|cos<a,c>=-722.(3)∵c=λ1a+λ2b,∴5=-λ1+4λ2-2=λ1+3λ2,解得λ1=-237,λ2=37.49.H:x-y+z=2为坐标空间中一平面,L为平面H上的一直线.已知点P(2,1,1)为L上距离原点O最近的点,则______为L的方向向量.答案:∵x-y+z=2为坐标空间中一平面∴平面的一个法向量是n=(1,-1,1)设直线L的方向向量为d=(2,b,c)∵L在H上,∴d与平面H的法向量n=(1,-1,1)垂直故d•n=0⇒2-b+c=0∵P(2,1,1)为直线L上距离原点O最近的点,∴.OP⊥L故OP•d=0⇒(2,1,1)•(2,b,c)=0⇒4+b+c=0解得b=-1,c=-3故为:(2,-1,-3)50.一个盒子中装有4张卡片,上面分别写着四个函数:f1(x)=x3,f2(x)=x4,f3(x)=2|x|,f4(x)=x+1x,现从盒子中任取2张卡片,将卡片上的函数相乘得到一个新函数,所得函数为奇函数的概率是______.答案:要使所得函数为奇函数,取出的两个函数必须是一个奇函数、一个偶函数.而所给的4个函数中,有2个奇函数、2个偶函数.所有的取法种数为C24=6,满足条件的取法有2×2=4种,故所得函数为奇函数的概率是46=23,故为23.第2卷一.综合题(共50题)1.使方程
mx+ny+r=0与方程
2mx+2ny+r+1=0表示两条直线平行(不重合)的等价条件是()A.m=n=r=2B.m2+n2≠0,且r≠1C.mn>0,且r≠1D.mn<0,且r≠1答案:mx+ny+r=0与方程
2mx+2ny+r+1=0表示两条直线平行(不重合)的等价条件是m2+n2≠0,且m2m=n2n≠rr+1,即m2+n2≠0,且r≠1,故选B.2.现有10个保送上大学的名额,分配给7所学校,每校至少有1个名额,名额分配的方法共有______种(用数字作答).答案:根据题意,将10个名额,分配给7所学校,每校至少有1个名额,可以转化为10个元素之间有9个间隔,要求分成7份,每份不空;相当于用6块档板插在9个间隔中,共有C96=84种不同方法.所以名额分配的方法共有84种.3.(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)
A.(不等式选做题)不等式|x-5|+|x+3|≥10的解集是______.
B.(坐标系与参数方程选做题)在极坐标系中,圆ρ=-2sinθ的圆心的极坐标是______.
C.(几何证明选做题)如图,已知圆中两条弦AB与CD相交于点F,E是AB延长线上一点,且DF=CF=22,BE=1,BF=2,若CE与圆相切,则线段CE的长为______.答案:A.∵|x-5|+|x+3|≥10,∴当x≥5时,x-5+x+3≥10,∴x≥6;当x≤-3时,有5-x+(-x-3)≥10,∴x≤-4;当-4<x<5时,有5-x+x+3≥8,不成立;故不等式|x-5|+|x+3|≥10的解集是{x|x≤-4或x≥6};B.由ρ=-2sinθ得:ρ2=-2ρsinθ,即x2+y2=-2y,∴x2+(y+1)2=1,∴该圆的圆心的直角坐标为(-1,0),∴其极坐标是(1,3π2);C.∵DF=CF=22,BE=1,BF=2,依题意,由相交线定理得:AF•FB=DF•FC,∴AF×2=22×22,∴AF=4;又∵CE与圆相切,∴|CE|2=|EB|•|EA|=1×(1+2+4)=7,∴|CE|=7.故为:A.{x|x≤-4或x≥6};B.(1,3π2);C.7.4.对于空间中的三个向量,
,
,它们一定是()
A.共面向量
B.共线向量
C.不共面向量
D.以上均不对答案:A5.极坐标系中,若A(3,π3),B(-3,π6),则s△AOB=______(其中O是极点).答案:∵极坐标系中,A(3,π3),B(-3,π6),3cosπ3=32,3sinπ3=332;-3cosπ6=-332,-3sinπ6=-32.∴在平面直角坐标系中,A(32,332),B(-332,-32),∴OA=(32,332),OB=(-332,-32),∴|OA|
=
3,|OB|=3,∴cos<OA,OB>=-934-93494+274=-32,∴sin<OA,OB>=1-34=12,∴S△AOB=12×3×3×12=94.故为:94.6.在平面几何中,四边形的分类关系可用以下框图描述:
则在①中应填入______;在②中应填入______.答案:由题意知①对应的四边形是一个有一组邻边相等的平行四边形,∴这里是一个菱形,②处的图形是一个有一条腰和底边垂直的梯形,∴②处是一个直角梯形,故为:菱形;直角梯形.7.(几何证明选做题)如图,已知:△ABC内接于圆O,点D在OC的延长线上,AD是圆O的切线,若∠B=30°,AC=2,则OD的长为______.答案:∵AD是圆O的切线,∠B=30°∴∠DAC=30°,∴∠OAC=60°,∴△AOC是一个等边三角形,∴OA=OC=2,在直角三角形AOD中,OD=2AO=4,故为:4.8.某校对文明班的评选设计了a,b,c,d,e五个方面的多元评价指标,并通过经验公式样S=ab+cd+1e来计算各班的综合得分,S的值越高则评价效果越好,若某班在自测过程中各项指标显示出0<c<d<e<b<a,则下阶段要把其中一个指标的值增加1个单位,而使得S的值增加最多,那么该指标应为()A.aB.bC.cD.d答案:因a,b,cde都为正数,故分子越大或分母越小时,S的值越大,而在分子都增加1的前提下,分母越小时,S的值增长越多,由于0<c<d<e<b<a,分母中d最小,所以c增大1个单位会使得S的值增加最多.故选C.9.某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个).经过3个小时,这种细菌由1个可繁殖成()
A.511个
B.512个
C.1023个
D.1024个答案:B10.已知圆的极坐标方程ρ=2cosθ,直线的极坐标方程为ρcosθ-2ρsinθ+7=0,则圆心到直线距离为
______.答案:由ρ=2cosθ⇒ρ2=2ρcosθ⇒x2+y2-2x=0⇒(x-1)2+y2=1,ρcosθ-2ρsinθ+7=0⇒x-2y+7=0,∴圆心到直线距离为:d=1-2×0+712+22=855.故为:855.11.在平面直角坐标系中,双曲线Γ的中心在原点,它的一个焦点坐标为(5,0),e1=(2,1)、e2=(2,-1)分别是两条渐近线的方向向量.任取双曲线Γ上的点P,若OP=ae1+be2(a、b∈R),则a、b满足的一个等式是______.答案:因为e1=(2,1)、e2=(2,-1)是渐进线方向向量,所以双曲线渐近线方程为y=±12x,又c=5,∴a=2,b=1双曲线方程为x24-y2=1,OP=ae1+be2=(2a+2b,a-b),∴(2a+2b)24-(a-b)2=1,化简得4ab=1.故为4ab=1.12.中心在坐标原点,离心率为的双曲线的焦点在y轴上,则它的渐近线方程为()
A.
B.
C.
D.答案:D13.某科目考试有30道题每小题有三个选项,每题2分,另有20道题,每题有四个选项每题3分,每题只有一个答案,某人随机去选答案,则平均能得______分.答案:由题意,30道题每小题有三个选项,每题2分,每题只有一个,某人随机去选,则可得2×30×13=20分;20道题,每题有四个选项每题3分,每题只有一个,某人随机去选,则可得3×20×14=15分故平均能得35分故为:35分.14.下列在曲线上的点是(
)
A.
B.
C.
D.答案:B15.若E,F,G,H分别为空间四边形ABCD四边AB,BC,CD,DA的中点,证明:四边形EFGH是平行四边形.答案:证明:∵E,F,G,H分别为空间四边形ABCD四边AB,BC,CD,DA的中点,∴EF是△ABC的中位线,∴EF∥AC,且EF=12AC.同理可证,GH∥AC,且GH=12AC,故有
EF∥GH,且EF=GH,∴四边形EFGH是平行四边形.16.P是直线3x+y+1=0上一点,P到点Q(0,2)距离的最小值是______.答案:过点Q作直线的垂线段,当P是垂足时,线段PQ最短,故最小距离是点Q(0,2)到直线3x+y+1=0的距离d,d=|0+2+1|3+1=32=1.5.∴P到点Q(0,2)距离的最小值是1.5;故为1.5.17.设x,y,z∈R,且满足:x2+y2+z2=1,x+2y+3z=14,则x+y+z=______.答案:根据柯西不等式,得(x+2y+3z)2≤(12+22+32)(x2+y2+z2)=14(x2+y2+z2)当且仅当x1=y2=z3时,上式的等号成立∵x2+y2+z2=1,∴(x+2y+3z)2≤14,结合x+2y+3z=14,可得x+2y+3z恰好取到最大值14∴x1=y2=z3=1414,可得x=1414,y=147,z=31414因此,x+y+z=1414+147+31414=3147故为:314718.如图,已知双曲线以长方形ABCD的顶点A,B为左、右焦点,且过C,D两顶点.若AB=4,BC=3,则此双曲线的标准方程为______.答案:由题意可得点OA=OB=2,AC=5设双曲线的标准方程是x2a2-y2b2=1.则2a=AC-BC=5-3=2,所以a=1.所以b2=c2-a2=4-1=3.所以双曲线的标准方程是x2-y23=1.故为:x2-y23=119.设O是正方形ABCD的中心,向量,,,是(
)
A.平行向量
B.有相同终点的向量
C.相等向量
D.模相等的向量答案:D20.直角三角形两直角边边长分别为3和4,将此三角形绕其斜边旋转一周,求得到的旋转体的表面积和体积.答案:根据题意,所求旋转体由两个同底的圆锥拼接而成它的底面半径等于直角三角形斜边上的高,高分别等于两条直角边在斜边的射影长∵两直角边边长分别为3和4,∴斜边长为32+42=5,由面积公式可得斜边上的高为h=3×45=125可得所求旋转体的底面半径r=125因此,两个圆锥的侧面积分别为S上侧面=π×125×4=48π5;S下侧面=π×125×3=36π5∴旋转体的表面积S=48π5+36π5=84π5由锥体的体积公式,可得旋转体的体积为V=13π×(125)2×5=48π521.如果圆x2+y2+Gx+Ey+F=0与x轴相切于原点,那么()A.F=0,G≠0,E≠0B.E=0,F=0,G≠0C.G=0,F=0,E≠0D.G=0,E=0,F≠0答案:圆与x轴相切于原点,则圆心在y轴上,G=0,圆心的纵坐标的绝对值等于半径,F=0,E≠0.故选C.22.已知点P是长方体ABCD-A1B1C1D1底面ABCD内一动点,其中AA1=AB=1,AD=2,若A1P与A1C所成的角为30°,那么点P在底面的轨迹为()A.圆弧B.椭圆的一部分C.双曲线的一部分D.抛物线的一部分答案:如图,∵A1P与A1C所成的角为30°,∴P点在以A1C为轴,母线与轴的夹角为30度的圆锥面上,在直角三角形A1CC1中,A1C1=3,CC1=1,∴∠C1AC1=30°当截面ABCD与圆锥的母线A1C1平行时,截得的图形是抛物线,故点P在底面的轨迹为抛物线的一部分.故选D.23.已知直线l的方程为x=2-4
ty=1+3
t,则直线l的斜率为______.答案:直线x=2-4
ty=1+3
t,所以直线的普通方程为:(y-1)=-34(x-2);所以直线的斜率为:-34;故为:-34.24.平面内有n条直线,其中无任何两条平行,也无任何三条共点,求证:这n条直线把平面分割成12(n2+n+2)块.答案:证明:(1)当n=1时,1条直线把平面分成2块,又12(12+1+2)=2,命题成立.(2)假设n=k时,k≥1命题成立,即k条满足题设的直线把平面分成12(k2+k+2)块,那么当n=k+1时,第k+1条直线被k条直线分成k+1段,每段把它们所在的平面块又分成了2块,因此,增加了k+1个平面块.所以k+1条直线把平面分成了12(k2+k+2)+k+1=12[(k+1)2+(k+1)+2]块,这说明当n=k+1时,命题也成立.由(1)(2)知,对一切n∈N*,命题都成立.25.一只蚂蚁在三边边长分别为3,4,5的三角形的边上爬行,某时刻该蚂蚁距离三角形的三个顶点的距离均超过1的概率为______.答案:如下图所示,当蚂蚁位于图中红色线段上时,距离三角形的三个顶点的距离均超过1,由已知易得:红色线段的长度和为:6三角形的周长为:12故P=612=12故为:1226.已知△ABC的三个顶点为A(1,-2,5),B(-1,0,1),C(3,-4,5),则边BC上的中线长为______.答案:∵A(1,-2,5),B(-1,0,1),C(3,-4,5),∴BC的中点为D(1,-2,3),∴|AD|=(1-1)2+(-2+2)2+(5-3)2=2.故为:2.27.某地位于甲、乙两条河流的交汇处,根据统计资料预测,今年汛期甲河流发生洪水的概率为0.25,乙河流发生洪水的概率为0.18(假设两河流发生洪水与否互不影响).现有一台大型设备正在该地工作,为了保护设备,施工部门提出以下三种方案:
方案1:运走设备,此时需花费4000元;
方案2:建一保护围墙,需花费1000元,但围墙只能抵御一个河流发生的洪水,当两河流同时发生洪水时,设备仍将受损,损失约56
000元;
方案3:不采取措施,此时,当两河流都发生洪水时损失达60000元,只有一条河流发生洪水时,损失为10000元.
(1)试求方案3中损失费ξ(随机变量)的分布列;
(2)试比较哪一种方案好.答案:(1)在方案3中,记“甲河流发生洪水”为事件A,“乙河流发生洪水”为事件B,则P(A)=0.25,P(B)=0.18,所以,有且只有一条河流发生洪水的概率为P(A?.B+.A?B)=P(A)?P(.B)+P(.A)?P(B)=0.34,两河流同时发生洪水的概率为P(A?B)=0.045,都不发生洪水的概率为P(.A?.B)=0.75×0.82=0.615,设损失费为随机变量ξ,则ξ的分布列为:(2)对方案1来说,花费4000元;对方案2来说,建围墙需花费1000元,它只能抵御一条河流的洪水,但当两河流都发生洪水时,损失约56000元,而两河流同时发生洪水的概率为P=0.25×0.18=0.045.所以,该方案中可能的花费为:1000+56000×0.045=3520(元).对于方案来说,损失费的数学期望为:Eξ=10000×0.34+60000×0.045=6100(元),比较可知,方案2最好,方案1次之,方案3最差.28.在同一平面直角坐标系中,直线变成直线的伸缩变换是()A.B.C.D.答案:A解析:解:设直线上任意一点(x′,y′),变换前的坐标为(x,y),则根据直线变成直线则伸缩变换是,选A29.平面α的一个法向量为v1=(1,2,1),平面β的一个法向量为为v2=(-2,-4,10),则平面α与平面β()A.平行B.垂直C.相交D.不确定答案:∵平面α的一个法向量为v1=(1,2,1),平面β的一个法向量为v2=(-2,-4,10),∵v1•v2=1×(-2)+2×(-4)+1×10=0∴v1⊥v2,∴平面α⊥平面β故选B30.椭圆x2+my2=1的焦点在y轴上,长轴长是短轴长的两倍,则m的值为______.答案:方程x2+my2=1变为x2+y21m=1∵焦点在y轴上,长轴长是短轴长的两倍,∴1m=2,解得m=14故应填1431.袋中装着标有数字1,2,3,4,5的小球各2个,现从袋中任意取出3个小球,假设每个小球被取出的可能性都相等.
(Ⅰ)求取出的3个小球上的数字分别为1,2,3的概率;
(Ⅱ)求取出的3个小球上的数字恰有2个相同的概率;
(Ⅲ)用X表示取出的3个小球上的最大数字,求P(X≥4)的值.答案:(I)记“取出的3个小球上的数字分别为1,2,3”的事件记为A,则P(A)=C12C12C12C310=8120=115;(Ⅱ)记“取出的3个小球上的数字恰有2个相同”的事件记为A,则P(B)=C15C18C310=40120=13;(Ⅲ)用X表示取出的3个小球上的最大数字,则X≥4包含取出的3个小球上的最大数字为4或5两种情况,当取出的3个小球上的最大数字为4时,P(X=4)=C12C26+C22C16C310=36120=310;当取出的3个小球上的最大数字为5时,P(X=5)=C12C28+C22C18C310=64120=815故P(X≥4)=56.32.直线被圆x2+y2=9截得的弦长为(
)
A.
B.
C.
D.答案:B33.在方程(θ为参数且θ∈R)表示的曲线上的一个点的坐标是()
A.(,)
B.(,)
C.(2,-7)
D.(1,0)答案:B34.给定椭圆C:x2a2+y2b2=1(a>b>0),称圆心在原点O、半径是a2+b2的圆为椭圆C的“准圆”.已知椭圆C的一个焦点为F(2,0),其短轴的一个端点到点F的距离为3.
(1)求椭圆C和其“准圆”的方程;
(2)过椭圆C的“准圆”与y轴正半轴的交点P作直线l1,l2,使得l1,l2与椭圆C都只有一个交点,求l1,l2的方程;
(3)若点A是椭圆C的“准圆”与x轴正半轴的交点,B,D是椭圆C上的两相异点,且BD⊥x轴,求AB•AD的取值范围.答案:(1)由题意可得:a=3,c=2,b=1,∴r=(3)2+12=2.∴椭圆C的方程为x23+y2=1,其“准圆”的方程为x2+y2=4;(2)由“准圆”的方程为x2+y2=4,令y=0,解得x=±2,取P(2,0),设过点P且与椭圆相切的直线l的方程为my=x-2,联立my=x-2x23+y2=1,消去x得到关于y的一元二次方程(3+m2)x2+4m+1=0,∴△=16m2-4(3+m2)=0,解得m=±1,故直线l1、l2的方程分别为:y=x-2,y=-x+2.(3)由“准圆”的方程为x2+y2=4,令y=0,解得x=±2,取点A(2,0).设点B(x0,y0),则D(x0,-y0).∴AB•AD=(x0-2,y0)•(x0-2,-y0)=(x0-2)2-y02,∵点B在椭圆x23+y2=1上,∴x023+y02=1,∴y02=1-x023,∴AD•AB=(x0-2)2-1+x023=43(x0-32)2,∵-3<x0<3,∴0≤43(x0-32)2<7+43,∴0≤AD•AB<7+43,即AD•AB的取值范围为[0,7+43)35.已知OA=a,OB=b,,且|a|=|b|=2,∠AOB=60°,则|a+b|=______;a+b与b的夹角为______.答案:∵|a+b|2=(a+b)2=a2+b2+2a?b
由|a|=|b|=2,∠AOB=60°,得:a2=b2=
4,a?b
=2∴|a+b|2=12,∴|a+b|=23令a+b与b的夹角为θ则0≤θ≤π,且cosθ=a?(a+b)|a|?|a+b|=32∴θ=π6故为:23,π636.(几何证明选讲选选做题)如图,AC是⊙O的直径,B是⊙O上一点,∠ABC的平分线与⊙O相交于.D已知BC=1,AB=3,则AD=______;过B、D分别作⊙O的切线,则这两条切线的夹角θ=______.答案:∵AC是⊙O的直径,B是⊙O上一点∴∠ABC=90°∵∠ABC的平分线与⊙O相交于D,BC=1,AB=3∴∠C=60°,∠BAC=30°,∠ABD=∠CBD=45°由圆周角定理可知∠C=∠ADB=60°△ABD中,由正弦定理可得ABsin60°=ADsin45°即AD=3sin60°×sin45°=2∵∠BAD=30°+45°=75°∴∠BOD=2∠BAD=150°设所作的两切线交于点P,连接OB,OD,则可得OB⊥PB,OD⊥PD即∠OBP=∠ODP=90°∴点ODPB共圆∴∠P+∠BOD=180°∴∠P=30°故为:2,30°37.在正方体ABCD-A1B1C1D1中,若E为A1C1中点,则直线CE垂直于()A.ACB.BDC.A1DD.A1A答案:以A为原点,AB、AD、AA1所在直线分别为x,y,z轴建空间直角坐标系,设正方体棱长为1,则A(0,0,0),C(1,1,0),B(1,0,0),D(0,1,0),A1(0,0,1),E(12,12,1),∴CE=(-12,-12,1),AC=(1,1,0),BD=(-1,1,0),A1D=(0,1,-1),A1A=(0,0,-1),显然CE•BD=12-12+0=0,∴CE⊥BD,即CE⊥BD.
故选B.38.集合{0,1}的子集有()个.A.1个B.2个C.3个D.4个答案:根据题意,集合{0,1}的子集有{0}、{1}、{0,1}、?,共4个,故选D.39.设两个正态分布N(μ1,σ12)(σ1>0)和N(μ2,σ22)(σ2>0)曲线如图所示,则有()
A.μ1<μ2,σ1>σ2
B.μ1<μ2,σ1<σ2
C.μ1>μ2,σ1>σ2
D.μ1>μ2,σ1<σ2
答案:A40.如图,在半径为7的⊙O中,弦AB,CD相交于点P,PA=PB=2,PD=1,则圆心O到弦CD的距离为______.答案:由相交弦定理得,AP×PB=CP×PD,∴2×2=CP•1,解得:CP=4,又PD=1,∴CD=5,又⊙O的半径为7,则圆心O到弦CD的距离为d=r2-(CD2)2=7-(52)2=32.故为:32.41.用反证法证明:“a>b”,应假设为()
A.a>b
B.a<b
C.a=b
D.a≤b答案:D42.如图,从圆O外一点A引切线AD和割线ABC,AB=3,BC=2,则切线AD的长为______.答案:由切割线定理可得AD2=AB?AC=3×5,∴AD=15.故为15.43.一组数据12,15,24,25,31,31,36,36,37,39,44,49,50的中位数是()
A.31
B.36
C.35
D.34答案:B44.用辗转相除法或者更相减损术求三个数的最大公约数.答案:同解析解析:解:324=243×1+81
243=81×3+0
则324与243的最大公约数为81又135=81×1+54
81=54×1+27
54=27×2+0则81与135的最大公约数为27所以,三个数324、243、135的最大公约数为27.另法为所求。45.用数学归纳法证明不等式:1n+1n+1+1n+2+…+1n2>1(n∈N*且n.1).答案:证明:(1)当n=2时,左边=12+13+14=1312>1,∴n=2时成立(2分)(2)假设当n=k(k≥2)时成立,即1k+1k+1+1k+2+…+1k2>1那么当n=k+1时,左边=1k+1+1k+2+1k+3+…+1(k+1)2=1k+1k+1+1k+2+1k+3+…+1k2+2k+1(k+1)2-1k>1+1k2+1+1k2+2+…+1(k+1)2-1k>1+(2k+1)•1(k+1)2-1k>1+k2-k-1k2+2k+1>1∴n=k+1时也成立(7分)根据(1)(2)可得不等式对所有的n>1都成立(8分)46.方程x(x2+y2-1)=0和x2-(x2+y2-1)2=0表示的图形是()
A.都是两个点
B.一条直线和一个圆
C.前者为两个点,后者是一条直线和一个圆
D.前者是一条直线和一个圆,后者是两个圆答案:D47.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“是乙或丙获奖.”乙说:“甲、丙都未获奖.”丙说:“我获奖了.”丁说:“是乙获奖.”四位歌手的话只有两句是对的,则获奖的歌手是()A.甲B.乙C.丙D.丁答案:若甲是获奖的歌手,则都说假话,不合题意.若乙是获奖的歌手,则甲、乙、丁都说真话,丙说假话,不符合题意.若丁是获奖的歌手,则甲、丁、丙都说假话,乙说真话,不符合题意.故获奖的歌手是丙故先C48.甲乙两人在罚球线投球命中的概率为,甲乙两人在罚球线上各投球一次,则恰好两人都中的概率为()
A.
B.
C.
D.答案:A49.袋中有4只红球3只黑球,从袋中任取4只球,取到1只红球得1分,取到1只黑球得3分,设得分为随机变量ξ,则P(ξ≤6)=______.答案:取出的4只球中红球个数可能为4,3,2,1个,黑球相应个数为0,1,2,3个.其分值为ξ=4,6,8.P(ξ≤6)=P(ξ=4)+P(ξ=6)=C44C03C47+C34C13C47=1335.故为:1335.50.以数集A={a,b,c,d}中的四个元素为边长的四边形只能是()A.平行四边形B.矩形C.菱形D.梯形答案:∵数集A={a,b,c,d}中的四个元素互不相同,∴以数集A={a,b,c,d}中的四个元素为边长的四边形,四条边不相等∴四边形只可能是梯形故选D.第3卷一.综合题(共50题)1.现有含盐7%的食盐水为200g,需将它制成工业生产上需要的含盐5%以上且在6%以下(不含5%和6%)的食盐水,设需要加入4%的食盐水xg,则x的取值范围是(
)。答案:(100,400)2.一段双行道隧道的横截面边界由椭圆的上半部分和矩形的三边组成,如图所示.一辆卡车运载一个长方形的集装箱,此箱平放在车上与车同宽,车与箱的高度共计4.2米,箱宽3米,若要求通过隧道时,车体不得超过中线.试问这辆卡车是否能通过此隧道,请说明理由.答案:建立如图所示的坐标系,则此隧道横截面的椭圆上半部分方程为:x225+y24=1,y≥0.令x=3,则代入椭圆方程,解得y=1.6,因为1.6+3=4.6>4.2,所以,卡车能够通过此隧道.3.设a、b、c均为正数.求证:≥.答案:证明略解析:证明
方法一
∵+3=="(a+b+c)"=[(a+b)+(a+c)+(b+c)]≥
(·+·+·)2=.∴+≥.方法二
令,则∴左边=≥=.∴原不等式成立.4.在极坐标系中,曲线p=4cos(θ-π3)上任意两点间的距离的最大值为______.答案:将原极坐标方程p=4cos(θ-π3),化为:ρ=2cosθ+23sinθ,∴ρ2=2ρcosθ+23ρsinθ,化成直角坐标方程为:x2+y2-2x-23y=0,是一个半径为2圆.圆上两点间的距离的最大值即为圆的直径,故填:4.5.______称为向量;常用
______表示,记为
______,又可用小写字线表示为
______.答案:既有大小,又有方向的量叫做向量;表示方法:①常用有带箭头的线段来表示,记为有向线段AB,②又可用小写字线表示为:a,b,c…,故为:既有大小,又有方向的量;有带箭头的线段,有向线段AB,a,b,c….6.已知函数①f(x)=3lnx;②f(x)=3ecosx;③f(x)=3ex;④f(x)=3cosx.其中对于f(x)定义域内的任意一个自变量x1都存在唯一个个自变量x2,使f(x1)f(x2)=3成立的函数序号是______.答案:根据题意可知:①f(x)=3lnx,x=1时,lnx没有倒数,不成立;②f(x)=3ecosx,任一自变量f(x)有倒数,但所取x】的值不唯一,不成立;③f(x)=3ex,任意一个自变量,函数都有倒数,成立;④f(x)=3cosx,当x=2kπ+π2时,函数没有倒数,不成立.所以成立的函数序号为③故为③7.i是虚数单位,a,b∈R,若ia+bi=1+i,则a+b=______.答案:∵ia+bi=1+i,a,b∈R,∴i(a-bi)(a+bi)(a-bi)=1+i,∴b+aia2+b2=1+i,化为b+ai=(a2+b2)+(a2+b2)i,根据复数相等的定义可得b=a2+b2a=a2+b2,a2+b2≠0解得a=b=12.∴a+b=1.故为1.8.(选做题)某制药企业为了对某种药用液体进行生物测定,需要优选培养温度,实验范围定为29℃~63℃,精确度要求±1℃,用分数法进行优选时,能保证找到最佳培养温度需要最少实验次数为(
)。答案:79.在同一个坐标系中画出函数y=ax,y=sinax的部分图象,其中a>0且a≠1,则下列所给图象中可能正确的是()
A.
B.
C.
D.
答案:D10.下列对一组数据的分析,不正确的说法是()
A.数据极差越小,样本数据分布越集中、稳定
B.数据平均数越小,样本数据分布越集中、稳定
C.数据标准差越小,样本数据分布越集中、稳定
D.数据方差越小,样本数据分布越集中、稳定答案:B11.已知P为抛物线y2=4x上一个动点,Q为圆x2+(y-4)2=1上一个动点,那么点P到点Q的距离与点P到抛物线的准线距离之和的最小值是()
A.2-1
B.2-2
C.-1
D.-2答案:C12.已知一直线斜率为3,且过A(3,4),B(x,7)两点,则x的值为()
A.4
B.12
C.-6
D.3答案:A13.(几何证明选讲)如图,点A、B、C都在⊙O上,过点C的切线交AB的延长线于点D,若AB=5,BC=3,CD=6,则线段AC的长为______.答案:∵过点C的切线交AB的延长线于点D,∴DC是圆的切线,DBA是圆的割线,根据切割线定理得到DC2=DB?DA,∵AB=5,CD=6,∴36=DB(DB+5)∴DB=4,由题意知∠D=∠D,∠BCD=∠A∴△DBC∽△DCA,∴DCDA=BCCA∴AC=3×96=4.5,故为:4.514.“cosα=12”是“α=π3”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案:∵“coa=12”?“a=π3+2kπ,k∈Z,或a=53π+2kπ,k∈Z”,“a=π3”?“coa=12”.故选D.15.已知||=3,A、B分别在x轴和y轴上运动,O为原点,则动点P的轨迹方程是()
A.
B.
C.
D.答案:B16.直线y=1与直线y=3x+3的夹角为______答案:l1与l2表示的图象为(如下图所示)y=1与x轴平行,y=3x+3与x轴倾斜角为60°,所以y=1与y=3x+3的夹角为60°.故为60°17.按ABO血型系统学说,每个人的血型为A、B、O、AB型四种之一,依血型遗传学,当且仅当父母中至少有一人的血型是AB型时,子女的血型一定不是O型,若某人的血型为O型,则其父母血型的所有可能情况有()
A.12种
B.6种
C.10种
D.9种答案:D18.若点A分有向线段所成的比是2,则点C分有向线段所成的比是()
A.
B.3
C.-2
D.-3答案:D19.直角三角形两直角边边长分别为3和4,将此三角形绕其斜边旋转一周,求得到的旋转体的表面积和体积.答案:根据题意,所求旋转体由两个同底的圆锥拼接而成它的底面半径等于直角三角形斜边上的高,高分别等于两条直角边在斜边的射影长∵两直角边边长分别为3和4,∴斜边长为32+42=5,由面积公式可得斜边上的高为h=3×45=125可得所求旋转体的底面半径r=125因此,两个圆锥的侧面积分别为S上侧面=π×125×4=48π5;S下侧面=π×125×3=36π5∴旋转体的表面积S=48π5+36π5=84π5由锥体的体积公式,可得旋转体的体积为V=13π×(125)2×5=48π520.下列说法中正确的是()
A.以直角三角形的一边为轴旋转所得的旋转体是圆锥
B.以直角梯形的一腰为轴旋转所得的旋转体是圆台
C.圆柱、圆锥、圆台的底面都是圆
D.圆锥侧面展开图为扇形,这个扇形所在圆的半径等于圆锥的底面圆的半径答案:C21.用反证法证明:已知x,y∈R,且x+y>2,则x,y中至少有一个大于1.答案:证明:用反证法,假设x,y均不大于1,即x≤1且y≤1,则x+y≤2,这与已知条件x+y>2矛盾,∴x,y中至少有一个大于1,即原命题得证.22.已知圆台的上下底面半径分别是2cm、5cm,高为3cm,求圆台的体积.答案:∵圆台的上下底面半径分别是2cm、5cm,高为3cm,∴圆台的体积V=13×3×(4π+4π?25π+25π)=39πcm3.23.若a=()x,b=x3,c=logx,则当x>1时,a,b,c的大小关系式()
A.a<b<c
B.c<b<a
C.c<a<b
D.a<c<b答案:C24.已知向量a=(3,5,1),b=(2,2,3),c=(4,-1,-3),则向量2a-3b+4c的坐标为______.答案:∵a=(3,5,1),b=(2,2,3),c=(4,-1,-3),∴向量2a-3b+4c=2(3,5,1)-3(2,2,3)+4(4,-1,-3)=(16,0,-19)故为:(16,0,-19).25.已知|a|<1,|b|<1,求证:<1.答案:证明略解析:∵<1<1a2+b2+2ab<1+2ab+a2b2a2b2-a2-b2+1>0
(a2-1)(b2-1)>0又|a|<1,|b|<1,∴(a2-1)(b2-1)>0.∴原不等式成立.26.已知a=(2,-1,1),b=(-1,4,-2),c=(λ,5,1),若向量a,b,c共面,则λ=______.答案:∵a、b、c三向量共面,∴c=xa+yb,x,y∈R,∴(λ,5,1)=(2x,-x,x)+(-y,4y,-2y)=(2x-y,-x+4y,x-2y),∴2x-y=λ,-x+4y=5,x-2y=1,解得x=7,y=3,λ=11;故为;
11.27.
若向量
=(3,2),=(0,-1),=(-1,2),则向量2-的坐标坐标是(
)
A.(3,-4)
B.(-3,4)
C.(3,4)
D.(-3,-4)答案:D28.若f(x)=ax(a>0且a≠1)的反函数g(x)满足:g()<0,则函数f(x)的图象向左平移一个单位后的图象大致是下图中的()
A.
B.
C.
D.
答案:B29.命题“p:任意x∈R,都有x≥2”的否定是______.答案:命题“任意x∈R,都有x≥2”是全称命题,否定时将量词对任意的x∈R变为存在实数x,再将不等号≥变为<即可.故为:存在实数x,使得x<2.30.已知三个向量a,b,c不共面,并且p=a+b-c,q=2a-3b-5c,r=-7a+18b+22c,向量p,q,r是否共面?答案:解:实数λ,μ,使p=λq+μr,则a+b-c=(2λ-7μ)a+(-3λ+18μ)b+(-5λ+22μ)c∵a,b,c不共面,∴∴即存在实数,,使p=λq+μr,故向量p、q、r共面.31.设α和β为不重合的两个平面,给出下列命题:
(1)若α内的两条相交直线分别平行于β内的两条直线,则α平行于β;
(2)若α外一条直线l与α内的一条直线平行,则l和α平行;
(3)设α和β相交于直线l,若α内有一条直线垂直于l,则α和β垂直;
(4)直线l与α垂直的充分必要条件是l与α内的两条直线垂直.
上面命题,真命题的序号是______(写出所有真命题的序号)答案:由面面平行的判定定理可知,(1)正确.由线面平行的判定定理可知,(2)正确.对于(3)来说,α内直线只垂直于α和β的交线l,得不到其是β的垂线,故也得不出α⊥β.对于(4)来说,l只有和α内的两条相交直线垂直,才能得到l⊥α.也就是说当l垂直于α内的两条平行直线的话,l不一定垂直于α.32.把两条直线的位置关系填入结构图中的M、N、E、F中,顺序较为恰当的是()
①平行
②垂直
③相交
④斜交.
A.①②③④
B.①④②③
C.①③②④
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广东理工学院《中西跨文化交际》2023-2024学年第一学期期末试卷
- 广东警官学院《材料化学实验B》2023-2024学年第一学期期末试卷
- 广东机电职业技术学院《中学化学教学综合技能训练》2023-2024学年第一学期期末试卷
- 广东工程职业技术学院《数字化图像处理Photoshop》2023-2024学年第一学期期末试卷
- 广东第二师范学院《建筑施工CAD》2023-2024学年第一学期期末试卷
- 广东财贸职业学院《建筑设计4》2023-2024学年第一学期期末试卷
- 《泌尿系统疾病诊治》课件
- 《落落的微笑》课件
- 广东碧桂园职业学院《电视节目播音主持》2023-2024学年第一学期期末试卷
- 广安职业技术学院《设计基础理论》2023-2024学年第一学期期末试卷
- 2024年自然资源部北海局所属事业单位招聘67人历年高频500题难、易错点模拟试题附带答案详解
- 消防改造期间消防应急预案
- 酒精依赖综合征的护理
- GB/T 44456-2024电子竞技场馆运营服务规范
- 系统工程教案
- DL-T 380-2010接地降阻材料技术条件
- 限期交货保证书模板
- 安防设备更新改造项目可行性研究报告-超长期国债
- 2024过敏性休克抢救指南(2024)课件干货分享
- 2024年纪委监委招聘笔试必背试题库500题(含答案)
- 【发动机曲轴数控加工工艺过程卡片的设计7800字(论文)】
评论
0/150
提交评论