2023年电大弹性力学课程行考作业_第1页
2023年电大弹性力学课程行考作业_第2页
2023年电大弹性力学课程行考作业_第3页
2023年电大弹性力学课程行考作业_第4页
2023年电大弹性力学课程行考作业_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

姓名:姓名:学号:得分:教师署名:电大《弹性力学》课程(选修)形考作业2第二章平面问题的基本理论单项选择题(每题2分,共36分)1.平面问题一般可分为两类,一类是平面应力问题,另一类是平面(C)。A压力问题B内力问题C应变问题D形变问题2.平面(A)问题弹性体的特性:弹性体是等厚薄板,长和宽的尺寸远大于厚度。A应力B应变C压力D形变3.平面应力问题的特性:应力分量QUOTE、QUOTE、QUOTE(B),QUOTE不为零。A不为零B全为零C不全为零D无法拟定4.平面应变问题的特性:体力、面力和约束平行于(D)并且不沿长度变化。A纵截面B表面C对称面D横截面5.平面应变问题的特性:应力分量QUOTE一般(B)零、QUOTE、QUOTE全为零,QUOTE为零。A不等于B全为C小于D大于6.通过P点的某一斜面上的切应力等于零,则该斜面上的正应力称为P点的一个(B),而该斜面称为在P点的一个应力主面,该斜面的法线方向称为在P点的一个应力主向。A主力B主应力C主矢D主矩7.平面问题中应力分量与体力分量之间的关系式,即平面问题中的(D)A几何方程B物理方程C边界条件D平衡微分方程8.平衡微分方程不含弹性常数QUOTE、QUOTE,对于不同材料建立的平衡微分方程是(A)A相同的B不同的C不精确的D不平衡的9.平面问题的平衡微分方程具有三个应力分量未知数,求应力分量的的问题是(B)A静定问题B超静定问题C几何问题D物理问题10.两个主应力也就是最大与最小的(D)。A主矢B主矩C正应力D切应力11.在一个应力主面上,由于切应力等于零,全应力就等于该面上的()A正应力B切应力C应力主向D应力分量12.两个主应力QUOTE和QUOTE与QUOTE和QUOTE之间存在的关系(D)AQUOTE-QUOTE-QUOTEBQUOTE-QUOTE+QUOTECQUOTE+QUOTE-QUOTEDQUOTE+QUOTE+QUOTE13.主应力和应力主向取决于弹性体的外力和约束条件,与坐标系的选取(B)。A有关B无关C相同D相反14.变形协调方程又称为(),表达物体三个形变分量之间满足的关系式。A相容方程B几何方程C物理方程D平衡方程15.物理方程又称为本构关系方程,表达应力分量与(B)分量之间的关系式。A外力B应变C位移D荷载16.弹性常数QUOTE、QUOTE、QUOTE之间的关系式(A)AQUOTEBQUOTECQUOTEDQUOTE17.位移分量完全拟定期,形变分量(D即完全拟定)。当形变分量完全拟定期,位移分量(不能拟定)。A不能拟定、完全拟定B不能拟定、不能拟定C完全拟定、完全拟定D完全拟定、不能拟定18.结构中开设孔口或不开设孔口,两者的应力在孔口附近区域(B)差别。A有微小B有显著C没有D不能拟定填空题(每空1分,共12分)1.平面应力问题的特性:弹性体只在(板边上)受有面力或约束,体力和面力均(平行)于板面并且沿厚度均布,厚度方向上无体力无面力作用,即QUOTE。2.平面应变问题的特性:弹性体是很长的等截面(柱形体),即沿长度方向的尺寸远大于横截面尺寸,并且横截面形状和尺寸沿长度方向(不变)。3.几何方程即微分线段上的(形变)分量与(位移)分量之间的关系式。4.边界条件表达在边界上位移与约束,或应力与面力之间的关系式。它可以分为(应力边界条件)、(位移边界条件)和(混合边界条件)。5.单连体即只有一个连续边界的物体;(多连体)即具有两个或两个以上的连续边界的物体,如有孔的物体。6.平面问题的几何学方面,指微分线段上的(形变)分量与(位移)分量之间的关系式,即平面问题中的几何方程。简答题(每题7分,共35分)1.请分别写出平面问题的平衡微分方程、几何方程以及物理方程。答几何方程描述的是应变与位移的关系物理方程描述的是应力分量和应变分量之间的关系平衡方程描述的是应力与体力之间的关系。(1)平衡方程几何方程物理方程未知量数:在适当的边界条件下,上述8个方程可解2.请写出平面问题的应力边界条件。给定已知的面力分量为边界上应力分量为L、m为边界外法线关于x、y轴的方向余弦。a、在边界上取出一个微分体,考虑其平衡条件,便可得出应力边界条件或其简化式;b、在同一边界面上,应力分量应等于相应的面力分量(数值相同,方向一致)。例如:由于面力的数值和方向是给定的,因此,在同一边界面上,应力的数值应等于相应的面力的数值,而面力的方向就是应力的方向在斜面上3.请写出平面问题的形变协调方程(相容方程)。4.请回答什么是平面问题中的平衡微分方程,通过平衡微分方程是否可以求解5.简要说明什么是圣维南原理以及圣维南原理的推广?圣维南原理假如把物体的一小部分边界上的面力,变化为分布不同但静力等效的面力(主矢量相同,对于同一点的主矩也相同)那么近处的应力分布将有显著的改变,但是远处所受的影响可以不计特别注意圣维南原理只能应用于一小部分边界上(又称局部边界、小边界和次要边界)圣维南原理推广假如物体一小部分边界上的面力是一个平衡力系(主矢量及主矩都等于零),那么这个面力就只会使近处产生显著的应力而远处的应力可以不计应用题(每题8.5分,共17分)1.列出下图所示问题的所有边界条件。在其端部边界上应用圣维南原理列出三个积分的应力边界条件。【分析】有约束的边界上可考虑采用位移边界条件,若为小边界也可写成圣维南原理的三个积分形式,大边界上应精确满足公式(2-15)。【解答】图2-17:上(y=0)左(x=0)右(x=b)0-11-100000代入公式(2-15)得①在重要边界上x=0,x=b上精确满足应力边界条件:②在小边界上,能精确满足下列应力边界条件:③在小边界上,能精确满足下列位移边界条件:这两个位移边界条件可以应用圣维南原理,改用三个积分的应力边界条件来代替,当板厚时,可求得固定端约束反力分别为:由于为正面,故应力分量与面力分量同号,则有:2.列出下图所示问题的所有边界条件。在其端部边界上应用圣维南原理列出三个积分的应力边界条件。①上下重要边界y=-h/2,y=h/2上,应精确满足公式(2-15)(s)(s)0-1001-0,,,②

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论