版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年民办四川天一学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.已知函数f(x)=(12)x,a,b∈R*,A=f(a+b2),B=f(ab),C=f(2aba+b),则A、B、C的大小关系为______.答案:∵a+b2≥ab,2aba+b=21a+1b≤221ab=ab,∴a+b2≥ab≥2aba+b>0又
f(x)=(12)x在R上是减函数,∴f(a+b2)≤f(ab)
≤f(2aba+b)即A≤B≤C故为:A≤B≤C.2.若=(2,-3,1),=(2,0,3),=(0,2,2),则•(+)=()
A.4
B.15
C.7
D.3答案:D3.直线kx-y=k-1与直线ky=x+2k的交点在第二象限内,则k的取值范围是
______.答案:联立两直线方程得kx-y=k-1①ky=x+2k②,由②得y=x+2kk③,把③代入①得:kx-x+2kk=k-1,当k+1≠0即k≠-1时,解得x=kk-1,把x=kk-1代入③得到y=2k-1k-1,所以交点坐标为(kk-1,2k-1k-1)因为直线kx-y=k-1与直线ky=x+2k的交点在第二象限内,得kk-1<02k-1k-1>
0解得0<k<1,k>1或k<12,所以不等式组的解集为0<k<12则k的取值范围是0<k<12故为:0<k<124.某游泳馆出售冬季游泳卡,每张240元,其使用规定:不记名,每卡每次只限一人,每天只限一次.某班有48名同学,老师打算组织同学们集体去游泳,除需购买若干张游泳卡外,每次游泳还需包一辆汽车,无论乘坐多少名同学,每次的包车费均为40元.
若使每个同学游8次,每人最少应交多少元钱?答案:设买x张游泳卡,总开支为y元,则每批去x名同学,共需去48×8x=384x批,总开支又分为:①买卡所需费用240x;②包车所需费用384x×40.∴y=240x+384x×40(0<x≤48,x∈Z).因此,y=240(x+64x)≥240×2x?64x=3840当且仅当x=64x时,即x=8时取等号.∴当x=8时,总开支y的最大值为3840元,此时每人最少应交384048=80(元).答:若使每个同学游8次,每人最少应交80元钱.5.设有三个命题:“①0<12<1.②函数f(x)=log
12x是减函数.③当0<a<1时,函数f(x)=logax是减函数”.当它们构成三段论时,其“小前提”是______(填序号).答案:三段话写成三段论是:大前提:当0<a<1时,函数f(x)=logax是减函数,小前提:0<12<1,结论:函数f(x)=log
12x是减函数.其“小前提”是①.故为:①.6.某产品的广告费用x与销售额y的统计数据如下表
广告费用x(万元)4235销售额y(万元)49263954根据上表可得回归方程
y=
bx+
a中的
b为9.4,则
a=______.答案:由图表中的数据可知.x=14(4+2+3+5)=144=3.5,.y=14(49+26+39+54)=42,即样本中心为(3.5,42),将点代入回归方程y=bx+a,得42=9.4×3.5+a,解得a=9.1.故为:9.1.7.已知a,b,c是空间的一个基底,且实数x,y,z使xa+yb+zc=0,则x2+y2+z2=______.答案:∵a,b,c是空间的一个基底∴a,b,c两两不共线∵xa+yb+zc=0∴x=y=z=0∴x2+y2+z2=0故为:08.设a=(2,2m-3,n+2),b=(4,2m+1,3n-2),且a∥b,则实数m,n的值分别为______.答案:因为a=(2,2m-3,n+2),b=(4,2m+1,3n-2),且a∥b,根据空间向量平行的坐标表示公式,
所以24=2m-32m+124=n+23n-2,解得:m=12,n=6.故为:m=12,n=6.9.在面积为S的△ABC的边AB上任取一点P,则△PBC的面积大于S4的概率是()A.13B.12C.34D.14答案:记事件A={△PBC的面积大于S4},基本事件空间是线段AB的长度,(如图)因为S△PBC>S4,则有12BC?PE>14×12BC?AD;化简记得到:PEAD>14,因为PE平行AD则由三角形的相似性PEAD>14;所以,事件A的几何度量为线段AP的长度,因为AP=34AB,所以△PBC的面积大于S4的概率=APAB=34.故选C.10.设抛物线y2=2px(p>0)上一点A(1,2)到点B(x0,0)的距离等于到直线x=-1的距离,则实数x0的值是______.答案:∵点A(1,2)在抛物线y2=2px(p>0)上,∴4=2p,p=2,故抛物线方程为y2=4x,准线方程为x=1.由点A(1,2)到点B(x0,0)的距离等于到直线x=-1的距离,故点B(x0,0)为抛物线y2=4x的焦点,故x0=1.故为1.11.已知向量,满足:||=3,||=5,且=λ,则实数λ=()
A.
B.
C.±
D.±答案:C12.设O为坐标原点,F为抛物线的焦点,A是抛物线上一点,若·=,则点A的坐标是
(
)A.B.C.D.答案:B解析:略13.若数据x1,x2,x3…xn的平均数.x=5,方差σ2=2,则数据3x1+1,3x2+1,3x3+1…,3xn+1的方差为______.答案:∵x1,x2,x3,…,xn的方差为2,∴3x1+1,3x2+1,3x3+1,…,3xn+1的方差是32×2=18.故为:18.14.直线y=3x+1的斜率是()A.1B.2C.3D.4答案:因为直线y=3x+1是直线的斜截式方程,所以直线的斜率是3.故选C.15.下图是由A、B、C、D中的哪个平面图旋转而得到的(
)答案:A16.一条直线的倾斜角的余弦值为32,则此直线的斜率为()A.3B.±3C.33D.±33答案:设直线的倾斜角为α,∵α∈[0,π),cosα=32∴α=π6因此,直线的斜率k=tanα=33故选:C17.用数学归纳法证明:(n+1)+(n+2)+…+(n+n)=n(3n+1)2(n∈N*)答案:证明:①n=1时,左边=2,右边=2,等式成立;②假设n=k时,结论成立,即:(k+1)+(k+2)+…+(k+k)=k(3k+1)2则n=k+1时,等式左边=(k+2)+(k+3)+…+(k+k+1)+(k+1+k+1)=k(3k+1)2+3k+2=(k+1)(3k+4)2故n=k+1时,等式成立由①②可知:(n+1)+(n+2)+…+(n+n)=n(3n+1)2(n∈N*)成立18.利用计算机随机模拟方法计算y=x2与y=4所围成的区域Ω的面积时,可以先运行以下算法步骤:
第一步:利用计算机产生两个在[0,1]区间内的均匀随机数a,b;
第二步:对随机数a,b实施变换:答案:根据题意可得,点落在y=x2与y=4所围成的区域Ω的点的概率是100-34100=66100,矩形的面积为4×4=16,阴影部分的面积为S,则有S16=66100,∴S=10.56.故为:10.56.19.已知圆C:x2+y2-4x-6y+12=0的圆心在点C,点A(3,5),求:
(1)过点A的圆的切线方程;
(2)O点是坐标原点,连接OA,OC,求△AOC的面积S.答案:(1)⊙C:(x-2)2+(y-3)2=1.当切线的斜率不存在时,对直线x=3,C(2,3)到直线的距离为1,满足条件;当k存在时,设直线y-5=k(x-3),即y=kx+5-3k,∴|-k+2|k2+1=1,得k=34.∴得直线方程x=3或y=34x+114.(2)|AO|=9+25=34,l:5x-3y=0,d=134,S=12d|AO|=12.20.下列函数中,与函数y=x相等的是()A.y=(x)4B.y=5x5C.y=x2D.y=x2x答案:函数y=x的定义域为R,选项中A,D定义域不是R,是A、D不正确.选项C的对应法则不同,C不正确.故选B.21.平行投影与中心投影之间的区别是
______.答案:平行投影与中心投影之间的区别是平行投影的投影线互相平行,而中心投影的投影线交于一点,故为:平行投影的投影线互相平行,而中心投影的投影线交于一点22.如图所示,有两个独立的转盘(A)、(B),其中三个扇形区域的圆心角分别为60°、120°、180°.用这两个转盘玩游戏,规则是:依次随机转动两个转盘再随机停下(指针固定不动,当指针恰好落在分界线时,则这次转动无效,重新开始)为一次游戏,记转盘(A)指针所对的数为X转盘(B)指针对的数为Y设X+Yξ,每次游戏得到的奖励分为ξ分.
(1)求X<2且Y>1时的概率
(2)某人玩12次游戏,求他平均可以得到多少奖励分?答案:(1)由几何概型知P(x=1)=16,P(x=2)=13,P(x=3)=12;
P(y=1)=13,P(y=2)=12,P(y=3)=16.则P(x<2)=P(x=1)=16,P(y>1)=p(y=2)+P(y=3)=23,P(x<2且y>1)=P(x<2)?P(y>1)=19.(2)ξ的取值范围为2,3,4,6.P(ξ=2)=P(x=1)?P(y=1)=16×13=118;P(ξ=3)=P(x=1)?P(y=2)+P(x=2)?P(y=1)=16×12+13×13=736;P(ξ=4)=P(x=1)?P(y=3)+P(x=2)?P(y=2)+P(x=3)?P(y=1)=16×16+13×12+12×13=1336;P(ξ=5)=P(x=2)P(y=3)+P(x=3)P(y=2)=13×16+12×12=1136;P(ξ=6)=P(x=3)?P(y=3)=12×16=112.其分布为:ξ23456P11873613361136112他平均每次可得到的奖励分为Eξ=2×118+3×736+4×1336+5×1136+6×112=256,所以,他玩12次平均可以得到的奖励分为12×Eξ=50.23.在repeat语句的一般形式中有“until
A”,其中A是
(
)A.循环变量B.循环体C.终止条件D.终止条件为真答案:D解析:此题考查程序语句解:Until标志着直到型循环,直到终止条件为止,因此until后跟的是终止条件为真的语句.答案:D.24.将包含甲、乙两人的4位同学平均分成2个小组参加某项公益活动,则甲、乙两名同学分在同一小组的概率为()
A.
B.
C.
D.答案:C25.甲盒子中装有3个编号分别为1,2,3的小球,乙盒子中装有5个编号分别为1,2,3,4,5的小球,从甲、乙两个盒子中各随机取一个小球,则取出两小球编号之积为奇数的概率为______.答案:由题意知本题是一个等可能事件的概率,试验发生包含的事件是从两个盒子中分别取一个小球,共有3×5=15种结果,满足条件的事件是取出的两个小球编号之积是奇数,可以列举出有(1,1),(1,3),(1,5),(3,1),(3,3),(3,5)共有6种结果,∴要求的概率是615=25.故为25.26.当圆x=4cosθy=4sinθ上一点P的旋转角为θ=23π时,点P的坐标为______.答案:根据圆的参数方程的意义,当圆x=4cosθy=4sinθ上一点P的旋转角为θ=23π时,点P的坐标为(4cos2π3,4sin2π3),即(-2,23).故为:(-2,23).27.把一颗骰子掷两次,观察出现的点数,并记第一次出现的点数为a,第二次出现的点数为b,则点(a,b)在直线x+y=5左下方的概率为()A.16B.56C.112D.1112答案:由题意知本题是一个古典概型,试验发生包含的事件数是6×6=36种结果,满足条件的事件是点(a,b)在直线x+y=5左下方即a+b<5,可以列举出所有满足的情况(1,1)(1,2)(1,3),(2,1),(2,2)(3,1)共有6种结果,∴点在直线的下方的概率是636=16故选A.28.已知平面向量=(3,1),=(x,3),且⊥,则实数x的值为()
A.9
B.1
C.-1
D.-9答案:C29.已知点P是抛物线y2=2x上的一个动点,则点P到点(0,2)的距离与P到该抛物线准线的距离之和的最小值为()
A.
B.3
C.
D.答案:A30.从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是()
A.至少有1个白球;都是白球
B.至少有1个白球;至少有1个红球
C.恰有1个白球;恰有2个白球
D.至少有一个白球;都是红球答案:C31.某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了再走余下的路程.
在如图中纵轴表示离学校的距离,横轴表示出发后的时间,则如图中的四个图形中较符合该学生走法的是()A.
B.
C.
D.
答案:由题意可知:由于怕迟到,所以一开始就跑步,所以刚开始离学校的距离随时间的推移应该相对较快.而等跑累了再走余下的路程,则说明离学校的距离随时间的推移在后半段时间应该相对较慢.所以适合的图象为:故选B.32.已知||=3,A、B分别在x轴和y轴上运动,O为原点,则动点P的轨迹方程是()
A.
B.
C.
D.答案:B33.直线y=x-1的倾斜角是()
A.30°
B.120°
C.60°
D.150°答案:A34.从集合M={1,2,3,…,10}选出5个数组成的子集,使得这5个数的任两个数之和都不等于11,则这样的子集有______个.答案:集合{1,2,…,10}中和是11的有:1+10,2+9,3+8,4+7,5+6,选出5个不同的数组成子集,就是从这5组中分别取一个数,而每组的取法有2种,所以这样的子集有:2×2×2×2×2=32故这样的子集有32个故为:3235.设a>2,给定数列{xn},其中x1=a,xn+1=x2n2(xn-1)(n=1,2…)求证:
(1)xn>2,且xn+1xn<1(n=1,2…);
(2)如果a≤3,那么xn≤2+12n-1(n=1,2…).答案:证明:(1)①当n=1时,∵x2=x122(x1-1)=x1+(2-x1)x12(x1-1),x2=x122(x1-1)=4(x1-1)+x12
-4x1+42(x1-1)=2+(x1-2)22(x1-1),x1=a>2,∴2<x2<x1.结论成立.②假设n=k时,结论成立,即2<xk+1<xk(k∈N+),则xk+2=xk+122(xk+1-1)=xk+1+(2-xk+1)xk+12(xk+1-1)>xk+1,xk+2=xk+122(xk+1-1)=2+(xk+1-2)22(xk+1-1)>2.∴2<xk+2<xk+1,综上所述,由①②知2<xn+1<xn.∴xn>2且xn+1xn<1.(2)由条件x1=a≤3知不等式当n=1时成立假设不等式当n=k(k≥1)时成立当n=k+1时,由条件及xk>2知xk+1≤1+12k⇔x2k≤2(xk-1)(2+12k)⇔x2k-2(2+12k)xk+2(2+12k)≤0⇔(xk-2)[xk-(2+12k-1)]≤0,再由xk>2及归纳假设知,上面最后一个不等式一定成立,所以不等式xk+1≤2+12k也成立,从而不等式xn≤2+12n-1对所有的正整数n成立36.以下命题:
①二直线平行的充要条件是它们的斜率相等;
②过圆上的点(x0,y0)与圆x2+y2=r2相切的直线方程是x0x+y0y=r2;
③平面内到两定点的距离之和等于常数的点的轨迹是椭圆;
④抛物线上任意一点M到焦点的距离都等于点M到其准线的距离.
其中正确命题的标号是______.答案:①两条直线平行的充要条件是它们的斜率相等,且截距不等,故①不正确,②过点(x0,y0)与圆x2+y2=r2相切的直线方程是x0x+y0y=r2.②正确,③不正确,若平面内到两定点距离之和等于常数,如这个常数正好为两个点的距离,则动点的轨迹是两点的连线段,而不是椭圆;④根据抛物线的定义知:抛物线上任意一点M到焦点的距离都等于点M到其准线的距离.故④正确.故为:②④.37.若曲线C的极坐标方程为
ρcos2θ=2sinθ,则曲线C的普通方程为______.答案:曲线C的极坐标方程为ρcos2θ=2sinθ,即ρ2?cos2θ=2ρsinθ,化为直角坐标方程为x2=2y,故为x2=2y38.已知集合M={2,a,b},N={2a,2,b2}且M=N.求a、b的值.答案:由M=N及集合中元素的互异性,得a=2ab=b2
①或a=b2b=2a
②解①得:a=0b=1或a=0b=0,解②得:a=14b=12,当a=0b=0时,违背了集合中元素的互异性,所以舍去,故a、b的值为a=0b=1或a=14b=12.39.方程cos2x=x的实根的个数为
______个.答案:cos2x=x的实根即函数y=cos2x与y=x的图象交点的横坐标,故可以将求根个数的问题转化为求两个函数图象的交点个数.如图在同一坐标系中作出y=cos2x与y=x的图象,由图象可以看出两图象只有一个交点,故方程的实根只有一个.故应该填
1.40.已知正方体ABCD-A1B1C1D1中,M、N分别为BB1、C1D1的中点,建立适当的坐标系,求平面AMN的法向量.答案:(-3,2,-4)为平面AMN的一个法向量.解析:以D为原点,DA、DC、DD1所在直线为坐标轴建立空间直角坐标系.(如图所示).设棱长为1,则A(1,0,0),M(1,1,),N(0,,1).∴=(0,1,),=(-1,,1).设平面AMN的法向量n=(x,y,z)∴令y=2,∴x=-3,z=-4.∴n=(-3,2,-4).∴(-3,2,-4)为平面AMN的一个法向量.41.若直线过点(1,2),(),则此直线的倾斜角是()
A.60°
B.45°
C.30°
D.90°答案:C42.过抛物线y2=4x的焦点作直线l交抛物线于A、B两点,若线段AB中点的横坐标为3,则|AB|等于()A.2B.4C.6D.8答案:由题设知知线段AB的中点到准线的距离为4,设A,B两点到准线的距离分别为d1,d2,由抛物线的定义知:|AB|=|AF|+|BF|=d1+d2=2×4=8.故选D.43.抛掷两个骰子,若至少有一个1点或一个6点出现,就说这次试验失败.那么,在3次试验中成功2次的概率为()
A.
B.
C.
D.答案:D44.已知f(x)=,则不等式xf(x)+x≤2的解集是(
)。答案:{x|x≤1}45.
若平面向量,,两两所成的角相等,||=||=1,||=3,则|++|=()
A.2
B.4
C.2或5
D.4或5答案:C46.已知a>0,b>0且a+b>2,求证:1+ba,1+ab中至少有一个小于2.答案:证明:假设1+ba,1+ab都不小于2,则1+ba≥2,1+ab≥2(6分)因为a>0,b>0,所以1+b≥2a,1+a≥2b,1+1+a+b≥2(a+b)即2≥a+b,这与已知a+b>2相矛盾,故假设不成立(12分)综上1+ba,1+ab中至少有一个小于2.(14分)47.从1,2,3,4,5中不放回地依次取2个数,事件A=“第一次取到的是奇数”,B=“第二次取到的是奇数”,则P(B|A)=()
A.
B.
C.
D.答案:D48.如图,设P、Q为△ABC内的两点,且AP=25AB+15AC,AQ=23AB+14AC,则△ABP的面积与△ABQ的面积之比为()A.15B.45C.14D.13答案:设AM=25AB,AN=15AC则AP=AM+AN由平行四边形法则知NP∥AB
所以△ABP的面积△ABC的面积=|AN||AC|=15同理△ABQ的面积△ABC的面积=14故△ABP的面积△ABQ的面积=45为:45故选B.49.如图,在△ABC中,,,则实数λ的值为()
A.
B.
C.
D.
答案:D50.命题“存在x∈Z使x2+2x+m≤0”的否定是()
A.存在x∈Z使x2+2x+m>0
B.不存在x∈Z使x2+2x+m>0
C.对任意x∈Z使x2+2x+m≤0
D.对任意x∈Z使x2+2x+m>0答案:D第2卷一.综合题(共50题)1.已知a=(2,-1,3),b=(-1,4,-2),c=(7,5,λ),若a、b、c三个向量共面,则实数λ等于
A.
B.
C.
D.答案:D2.在极坐标系中,极点到直线ρcosθ=2的距离为______.答案:直线ρcosθ=2即x=2,极点的直角坐标为(0,0),故极点到直线ρcosθ=2的距离为2,故为2.3.一只袋中装有2个白球、3个红球,这些球除颜色外都相同.
(Ⅰ)从袋中任意摸出1个球,求摸到的球是白球的概率;
(Ⅱ)从袋中任意摸出2个球,求摸出的两个球都是白球的概率;
(Ⅲ)从袋中任意摸出2个球,求摸出的两个球颜色不同的概率.答案:(Ⅰ)从5个球中摸出1个球,共有5种结果,其中是白球的有2种,所以从袋中任意摸出1个球,摸到白球的概率为25.
…(4分)(Ⅱ)从袋中任意摸出2个球,共有C25=10种情况,其中全是白球的有1种,故从袋中任意摸出2个球,摸出的两个球都是白球的概率为110.…(9分)(Ⅲ)由(Ⅱ)可知,摸出的两个球颜色不同的情况共有2×3=6种,故从袋中任意摸出2个球,摸出的2个球颜色不同的概率为610=35.
…(14分)4.不等式lgxx<0的解集是______.答案:∵lgx的定义域为(0,+∞)∴x>0∵lgxx<0∴lgx<0=lg1即0<x<1∴不等式lgxx<0的解集是{x|0<x<1}故为:{x|0<x<1}5.(1+2x)7的展开式中第4项的系数是______
(用数字作答)答案:(1+2x)7的展开式的通项为Tr+1=Cr7?(2x)r∴(1+2x)7的展开式中第4项的系数是C37?23=280,故为:280.6.已知e1
,
e2是夹角为60°的两个单位向量,且向量a=e1+2e2,则|a|=______.答案:由题意可得e21=1,e22=1,e1?e2=12,所以a2=(e1+2e2)2=1+2+4=7,所以|a|=7,故为:77.将函数的图象F按向量平移后所得到的图象的解析式是,求向量.答案:向量解析:将函数的图象F按向量平移后所得到的图象的解析式是,求向量.8.若直线x=1的倾斜角为α,则α等于
______.答案:因为直线x=1与y轴平行,所以直线x=1的倾斜角为90°.故为:90°9.如图所示,O点在△ABC内部,D、E分别是AC,BC边的中点,且有OA+2OB+3OC=O,则△AEC的面积与△AOC的面积的比为()
A.2
B.
C.3
D.
答案:B10.拟定从甲地到乙地通话m分钟的电话费由f(x)=1.06×(0.50×[m]+1)给出,其中m>0,[m]是大于或等于m的最小整数,若通话费为10.6元,则通话时间m∈______.答案:∵10.6=1.06(0.50×[m]+1),∴0.5[m]=9,∴[m]=18,∴m∈(17,18].故为:(17,18].11.已知△ABC的顶点坐标为A(3,4),B(-2,-1),C(4,5),D在BC上,且S△ABC=3S△ABD,则AD的长为______.答案:D在BC上,且S△ABC=3S△ABD,∴D点为BC边上的三等分点则D点分线段BC所成的比为12则易求出D点坐标为:x=-2+12×41+12y=-1+12×51+12∴x=0y=1故AD=32故为:3212.某学校为了解该校1200名男生的百米成绩(单位:秒),随机选择了50名学生进行调查.如图是这50名学生百米成绩的频率分布直方图.根据样本的频率分布,估计这1200名学生中成绩在[13,15](单位:秒)内的人数大约是______.答案:∵由图知,前面两个小矩形的面积=0.02×1+0.18×1=0.2,即频率,∴1200名学生中成绩在[13,15](单位:s)内的人数大约是0.2×1200=240.故为240.13.在平行四边形ABCD中,等于()
A.
B.
C.
D.答案:C14.圆ρ=5cosθ-5sinθ的圆心的极坐标是()
A.(-5,-)
B.(-5,)
C.(5,)
D.(-5,)答案:A15.用随机数表法从100名学生(男生35人)中选20人作样本,男生甲被抽到的可能性为()A.15B.2035C.35100D.713答案:由题意知,本题是一个等可能事件的概率,试验发生包含的事件是用随机数表法从100名学生选一个,共有100种结果,满足条件的事件是抽取20个,∴根据等可能事件的概率公式得到P=20100=15,故选A.16.已知a=(5,4),b=(3,2),则与2a-3b同向的单位向量为
______.答案:∵a=(5,4),b=(3,2),∴2a-3b=(1,2)设与2a-3b平行的单位向量为e=(x,y),则2a-3b=λe,|e|=1∴(1,2)=(λx,λy);x2+y2=1∴1=λx2=λyx2+y2=1解之x=55y=255或x=-55y=-255故为e=±(55,255)17.在复平面内,记复数3+i对应的向量为OZ,若向量OZ饶坐标原点逆时针旋转60°得到向量OZ所对应的复数为______.答案:向量OZ饶坐标原点逆时针旋转60°得到向量所对应的复数为(3+i)(cos60°+isin60°)=(3+i)(12+32i)=2i,故为2i.18.已知平面α内有一个点A(2,-1,2),α的一个法向量为=(3,1,2),则下列点P中,在平面α内的是()
A.(1,-1,1)
B.(1,3,)
C.,(1,-3,)
D.(-1,3,-)答案:B19.从一批产品中取出三件,设A=“三件产品全不是次品”,B=“三件产品全是次品”,C=“三件产品不全是次品”,则下列结论正确的是()
A.A与C互斥
B.B与C互斥
C.任两个均互斥
D.任两个均不互斥答案:B20.已知F1、F2为椭圆x225+y216=1的左、右焦点,若M为椭圆上一点,且△MF1F2的内切圆的周长等于3π,则满足条件的点M有
()个.A.0B.1C.2D.4答案:设△MF1F2的内切圆的内切圆的半径等于r,则由题意可得2πr=3π,∴r=32.由椭圆的定义可得
MF1+MF2=2a=10,又2c=6,∴△MF1F2的面积等于12
(MF1+MF2+2c)r=8r=12.又△MF1F2的面积等于12
2cyM=12,∴yM=4,故M是椭圆的短轴顶点,故满足条件的点M有2个,故选
C.21.某游泳馆出售冬季游泳卡,每张240元,其使用规定:不记名,每卡每次只限一人,每天只限一次.某班有48名同学,老师打算组织同学们集体去游泳,除需购买若干张游泳卡外,每次游泳还需包一辆汽车,无论乘坐多少名同学,每次的包车费均为40元.
若使每个同学游8次,每人最少应交多少元钱?答案:设买x张游泳卡,总开支为y元,则每批去x名同学,共需去48×8x=384x批,总开支又分为:①买卡所需费用240x;②包车所需费用384x×40.∴y=240x+384x×40(0<x≤48,x∈Z).因此,y=240(x+64x)≥240×2x?64x=3840当且仅当x=64x时,即x=8时取等号.∴当x=8时,总开支y的最大值为3840元,此时每人最少应交384048=80(元).答:若使每个同学游8次,每人最少应交80元钱.22.意大利数学家菲波拉契,在1202年出版的一书里提出了这样的一个问题:一对兔子饲养到第二个月进入成年,第三个月生一对小兔,以后每个月生一对小兔,所生小兔能全部存活并且也是第二个月成年,第三个月生一对小兔,以后每月生一对小兔.问这样下去到年底应有多少对兔子?试画出解决此问题的程序框图,并编写相应的程序.答案:见解析解析:解:根据题意可知,第一个月有对小兔,第二个月有对成年兔子,第三个月有两对兔子,从第三个月开始,每个月的兔子对数是前面两个月兔子对数的和,设第个月有对兔子,第个月有对兔子,第个月有对兔子,则有,一个月后,即第个月时,式中变量的新值应变第个月兔子的对数(的旧值),变量的新值应变为第个月兔子的对数(的旧值),这样,用求出变量的新值就是个月兔子的数,依此类推,可以得到一个数序列,数序列的第项就是年底应有兔子对数,我们可以先确定前两个月的兔子对数均为,以此为基准,构造一个循环程序,让表示“第×个月的从逐次增加,一直变化到,最后一次循环得到的就是所求结果.流程图和程序如下:S=1Q=1I=3WHILE
I<=12F=S+QQ=SS=FI=I+1WENDPRINT
FEND23.在直角坐标系xOy中,直线l的参数方程为x=3-22ty=5+22t(t为参数).在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为ρ=25sinθ.
(I)求圆C的参数方程;
(II)设圆C与直线l交于点A,B,求弦长|AB|答案:(Ⅰ)∵ρ=25sinθ,∴ρ2=25ρsinθ…(1分)所以,圆C的直角坐标方程为x2+y2-25y=0,即x2+(y-5)2=5…(3分)所以,圆C的参数方程为x=5cosθy=5+5sinθ(θ为参数)
…(4分)(Ⅱ)将直线l的参数方程代入圆C的直角坐标方程,得(3-22t)2+(22t)2=5即t2-32t+4=0…(5分)设两交点A,B所对应的参数分别为t1,t2,则t1+t2=32t1t2=4…(7分)∴|AB|=|t1-t2|=(t1+t2)2-4t1t2=18-16=2…(8分)24.已知圆C:x2+y2=12,直线l:4x+3y=25.
(1)圆C的圆心到直线l的距离为______;
(2)圆C上任意一点A到直线l的距离小于2的概率为______.答案:(1)由题意知圆x2+y2=12的圆心是(0,0),圆心到直线的距离是d=2532+42=5,(2)由题意知本题是一个几何概型,试验发生包含的事件是从这个圆上随机的取一个点,对应的圆上整个圆周的弧长,满足条件的事件是到直线l的距离小于2,过圆心做一条直线交直线l与一点,根据上一问可知圆心到直线的距离是5,在这条垂直于直线l的半径上找到圆心的距离为3的点做半径的垂线,根据弦心距,半径,弦长之间组成的直角三角形得到符合条件的弧长对应的圆心角是60°根据几何概型的概率公式得到P=60°360°=16故为:5;1625.设a、b为单位向量,它们的夹角为90°,那么|a+3b|等于______.答案:∵a,b它们的夹角为90°∴a?b=0∴(a+3b)2=a2+6a?b+9b2=10∴|a+3b|=10故为1026.由直角△ABC勾上一点D作弦AB的垂线交弦于E,交股的延长线于F,交外接圆于G,求证:EG为EA和EB的比例中项,又为ED和EF的比例中项.
答案:证明:连接GA、GB,则△AGB也是一个直角三角形,因为EG为直角△AGB的斜边AB上的高,所以,EG为EA和EB的比例中项,即EG2=EA?EB∵∠AFE=∠ABC,∴直角△AEF∽直角△DEB,EAEF=EDEB即EA?EB=ED?EF.又∵EG2=EA?EB,∴EG2=ED?EF(等量代换),故EG也是ED和EF的比例中项.27.求由曲线围成的图形的面积.答案:面积为解析:当,时,方程化成,即.上式表示圆心在,半径为的圆.所以,当,时,方程表示在第一象限的部分以及轴,轴负半轴上的点,.同理,当,时,方程表示在第四象限的部分以及轴负半轴上的点;当,时,方程表示圆在第二象限的部分以及轴负半轴上的点;当,时,方程表示圆在第三象限部分.以上合起来构成如图所示的图形,面积为.28.函数f(x)=x2+2的单调递增区间为
______.答案:如图所示:函数的递增区间是:[0,+∞)故为:[0,+∞)29.已知离散型随机变量X服从二项分布X~B(n,p)且E(X)=3,D(X)=2,则n与p的值分别为()
A.
B.
C.
D.答案:B30.设点P(t2+2t,1)(t>0),则|OP|(O为坐标原点)的最小值是()A.3B.5C.3D.5答案:解析:由已知得|OP|=(t2+2t)
2+1≥(2t2×2t)2+1=5,当t=2时取得等号.故选D.31.如图为一个求50个数的平均数的程序,在横线上应填充的语句为()
A.i>50
B.i<50
C.i>=50
D.i<=50
答案:A32.某学校要从5名男生和2名女生中选出2人作为上海世博会志愿者,若用随机变量ξ表示选出的志愿者中女生的人数,则数学期望Eξ______(结果用最简分数表示).答案:用随机变量ξ表示选出的志愿者中女生的人数,ξ可取0,1,2,当ξ=0时,表示没有选到女生;当ξ=1时,表示选到一个女生;当ξ=2时,表示选到2个女生,∴P(ξ=0)=C25C27=1021,P(ξ=1)=C15C12C27=1021,P(ξ=2)=C22C27=121,∴Eξ=0×1021+1×1021+2×121=47.故为:4733.函数f(x)=2,0<x<104,10≤x<155,15≤x<20,则函数的值域是()A.[2,5]B.{2,4,5}C.(0,20)D.N答案:∵f(x)=20<x<10410≤x<15515≤x<20∴函数的值域是{2,4,5}故选B34.若动点P到两个定点F1(-1,0)、F2(1,0)的距离之差的绝对值为定值a(0≤a≤2),试求动点P的轨迹.答案:①当a=0时,||PF1|-|PF2||=0,从而|PF1|=|PF2|,所以点P的轨迹为直线:线段F1F2的垂直平分线.②当a=2时,||PF1|-|PF2||=2=|F1F2|,所以点P的轨迹为两条射线.③当0<a<2时,||PF1|-|PF2||=a<|F1F2|,所以点P的轨迹是以F1、F2为焦点的双曲线.35.双曲线x2n-y2=1(n>1)的两个焦点为F1,F2,P在双曲线上,且满足|PF1|+|PF2|=2n+2,则△PF1F2的面积为______.答案:令|PF1|=x,|PF2|=y,依题意可知x+y=2n+2x-y=2n解得x=n+2+n,y=n+2-n,∴x2+y2=(2n+2+n)2+(2n+2-n)2=4n+4∵|F1F2|=2n+1∴|F1F2|2=4n+4∴x2+y2|F1F2|2∴△PF1F2为直角三角形∴△PF1F2的面积为12xy=(2n+2+n)(n+2-n)=1故为:1.36.已知F1(-2,0),F2(2,0)两点,曲线C上的动点P满足|PF1|+|PF2|
=32|F1F2|.
(Ⅰ)求曲线C的方程;
(Ⅱ)若直线l经过点M(0,3),交曲线C于A,B两点,且MA=12MB,求直线l的方程.答案:(Ⅰ)由已知可得|PF1|+|PF2|
=32|F1F2|
=6>|F1F2|=4,故曲线C是以F1,F2为焦点,长轴长为6的椭圆,其方程为x29+y25=1.(Ⅱ)方法一:设A(x1,y1),B(x2,y2),由条件可知A为MB的中点,则有x129+y125=1,
(1)x229+y225=1,(2)2x1=x2,
(3)2y1=y2+3.
(4)将(3)、(4)代入(2)得4x129+(2y1-3)25=1,整理为4x129+4y125-125y1+45=0.将(1)代入上式得y1=2,再代入椭圆方程解得x1=±35,故所求的直线方程为y=±53x+3.方法二:依题意,直线l的斜率存在,设其方程为y=kx+3.由y=kx+3x29+y25=1得(5+9k2)x2+54kx+36=0.令△>0,解得k2>49.设A(x1,y1),B(x2,y2),则x1+x2=-54k5+9k2,①x1x2=365+9k2.②因为MA=12MB,所以A为MB的中点,从而x2=2x1.将x2=2x1代入①、②,得x1=-18k5+9k2,x12=185+9k2,消去x1得(-18k5+9k2)2=185+9k2,解得k2=59,k=±53.所以直线l的方程为y=±53x+3.37.下列关于结构图的说法不正确的是()
A.结构图中各要素之间通常表现为概念上的从属关系和逻辑上的先后关系
B.结构图都是“树形”结构
C.简洁的结构图能更好地反映主体要素之间关系和系统的整体特点
D.复杂的结构图能更详细地反映系统中各细节要素及其关系答案:B38.直线3x+4y-12=0和3x+4y+3=0间的距离是
______.答案:由两平行线间的距离公式得直线3x+4y-12=0和3x+4y+3=0间的距离是|-12-3|5=3,故为3.39.如图为△ABC和一圆的重迭情形,此圆与直线BC相切于C点,且与AC交于另一点D.若∠A=70°,∠B=60°,则的度数为何()
A.50°
B.60°
C.100°
D.120°
答案:C40.设a=log132,b=log1213,c=(12)0.3,则()A.a<b<cB.a<c<bC.b<c<aD.b<a<c答案:解;∵a=log132<log131=0,b=log1213>log1212=1,c=(12)0.3∈(0,1)∴b>c>a.故选B.41.①平行向量一定相等;②不相等的向量一定不平行;③相等向量一定共线;④共线向量一定相等;⑤长度相等的向量是相等向量;⑥平行于同一个向量的两个向量是共线向量,其中正确的命题是______.答案:∵平行向量即为共线向量其定义是方向相同或相反;相等向量的定义是模相等、方向相同;①平行向量不一定相等;故错;②不相等的向量也可能不平行;故错;③相等向量一定共线;正确;④共线向量不一定相等;故错;⑤长度相等的向量方向相反时不是相等向量;故错;⑥平行于零向量的两个向量是不一定是共线向量,故错.其中正确的命题是③.故为:③.42.设直角三角形的三边长分别为a,b,c(a<b<c),则“a:b:c=3:4:5”是“a,b,c成等差数列”的()A.充分非必要条件B.必要非充分条件C.充分必要条件D.既非充分又非必要条件答案:∵直角三角形的三边长分别为a,b,c(a<b<c),a:b:c=3:4:5,∴a=3k,b=4k,c=5k(k>0),∴a,b,c成等差数列.即“a:b:c=3:4:5”?“a,b,c成等差数列”.∵直角三角形的三边长分别为a,b,c(a<b<c),a,b,c成等差数列,∴a2+b2=c22b=a+c,∴a2+a2+
c2+2ac4=c2,∴4a=3b,5a=3c,∴a:b:c=3:4:5,即“a,b,c成等差数列”?“a:b:c=3:4:5”.故选C.43.三棱柱ABC-A1B1C1中,M、N分别是BB1、AC的中点,设,,=,则等于()
A.
B.
C.
D.答案:A44.关于如图所示几何体的正确说法为______.
①这是一个六面体;
②这是一个四棱台;
③这是一个四棱柱;
④这是一个四棱柱和三棱柱的组合体;
⑤这是一个被截去一个三棱柱的四棱柱.答案:①因为有六个面,属于六面体的范围,②这是一个很明显的四棱柱,因为侧棱的延长线不能交与一点,所以不正确.③如果把几何体放倒就会发现是一个四棱柱,④可以有四棱柱和三棱柱组成,⑤和④的想法一样,割补方法就可以得到.故为:①③④⑤.45.已知复数z满足(1-i)•z=1,则z=______.答案:∵复数z满足(1-i)•z=1,∴z=11-i=1+i(1-i)(1+i)=12+12i,故为12+i2.46.已知向量=(x,1),=(3,6),且⊥,则实数x的值为()
A.
B.-2
C.2
D.-答案:B47.三行三列的方阵.a11a12
a13a21a22
a23a31a32
a33.中有9个数aji(i=1,2,3;j=1,2,3),从中任取三个数,则它们不同行且不同列的概率是()A.37B.47C.114D.1314答案:从给出的9个数中任取3个数,共有C39;从三行三列的方阵中任取三个数,使它们不同行且不同列:从第一行中任取一个数有C13种方法,则第二行只能从另外两列中的两个数任取一个有C12种方法,第三行只能从剩下的一列中取即可有1中方法,∴共有C13×C12×C11=6.∴从三行三列的方阵中任取三个数,则它们不同行且同列的概率P=6C39=114.故选C.48.直线y=x-1的倾斜角是()
A.30°
B.120°
C.60°
D.150°答案:A49.某科目考试有30道题每小题有三个选项,每题2分,另有20道题,每题有四个选项每题3分,每题只有一个答案,某人随机去选答案,则平均能得______分.答案:由题意,30道题每小题有三个选项,每题2分,每题只有一个,某人随机去选,则可得2×30×13=20分;20道题,每题有四个选项每题3分,每题只有一个,某人随机去选,则可得3×20×14=15分故平均能得35分故为:35分.50.已知向量a=(1,1)与b=(2,3),用坐标表示2a+b为______.答案:根据题意,a=(1,1)与b=(2,3),则2a+b=2(1,1)+(2,3)=(4,5);故为(4,5).第3卷一.综合题(共50题)1.为了考察两个变量x和y之间的线性相关性,甲、乙两位同学各自独立地做10次和15次试验,并且利用线性回归方法,求得回归直线分别为l1和l2,已知两个人在试验中发现对变量x的观测数据的平均值都是s,对变量y的观测数据的平均值都是t,那么下列说法正确的是()
A.l1和l2必定平行
B.l1与l2必定重合
C.l1和l2有交点(s,t)
D.l1与l2相交,但交点不一定是(s,t)答案:C2.以下命题:
①二直线平行的充要条件是它们的斜率相等;
②过圆上的点(x0,y0)与圆x2+y2=r2相切的直线方程是x0x+y0y=r2;
③平面内到两定点的距离之和等于常数的点的轨迹是椭圆;
④抛物线上任意一点M到焦点的距离都等于点M到其准线的距离.
其中正确命题的标号是______.答案:①两条直线平行的充要条件是它们的斜率相等,且截距不等,故①不正确,②过点(x0,y0)与圆x2+y2=r2相切的直线方程是x0x+y0y=r2.②正确,③不正确,若平面内到两定点距离之和等于常数,如这个常数正好为两个点的距离,则动点的轨迹是两点的连线段,而不是椭圆;④根据抛物线的定义知:抛物线上任意一点M到焦点的距离都等于点M到其准线的距离.故④正确.故为:②④.3.已知指数函数f(x)=ax(a>0且a≠1)过点(3,8),求f(4)=______.答案:设指数函数为y=ax(a>0且a≠1)将(3,8)代入得8=a3解得a=2,所以y=2x,则f(4)=42=16故为16.4.命题“p:任意x∈R,都有x≥2”的否定是______.答案:命题“任意x∈R,都有x≥2”是全称命题,否定时将量词对任意的x∈R变为存在实数x,再将不等号≥变为<即可.故为:存在实数x,使得x<2.5.已知a=5-12,则不等式logax>loga5的解集是______.答案:∵0<a<1,∴f(x)=logax在(0,+∞)上单调递减∵logax>loga5∴0<x<5故为:(0,5)6.在极坐标系中,直线l经过圆ρ=2cosθ的圆心且与直线ρcosθ=3平行,则直线l与极轴的交点的极坐标为______.答案:由ρ=2cosθ可知此圆的圆心为(1,0),直线ρcosθ=3是与极轴垂直的直线,所以所求直线的极坐标方程为ρcosθ=1,所以直线l与极轴的交点的极坐标为(1,0).故为:(1,0).7.今天为星期六,则今天后的第22010天是()A.星期一B.星期二C.星期四D.星期日答案:∵22010=8670=(7+1)670=C6700×7670×10+C6701×7669×11+C6702×7668×12+…+C6702010×70×1670∴22010除7的余数是1故今天为星期六,则今天后的第22010天是星期日故选D8.如图把椭圆x225+y216=1的长轴AB分成8分,过每个分点作x轴的垂线交椭圆的上半部分于P1,P2,…P7七个点,F是椭圆的一个焦点,则|P1F|+|P2F|+…+|P7F|=______.答案:如图,把椭圆x225+y216=1的长轴AB分成8等份,过每个分点作x轴的垂线交椭圆的上半部分于P1,P2,P3,P4,P5,P6,P7七个点,F是椭圆的一个焦点,则根据椭圆的对称性知,|P1F1|+|P7F1|=|P1F1|+|P1F2|=2a,同理其余两对的和也是2a,又|P4F1|=a,∴|P1F|+|P2F|+|P3F|+|P4F|+|P5F|+|P6F|+|P7F|=7a=35,故为35.9.甲、乙两人破译一种密码,它们能破译的概率分别为和,求:
(1)恰有一人能破译的概率;(2)至多有一人破译的概率;
(3)若要破译出的概率为不小于,至少需要多少甲这样的人?答案:(1)(2)(3)至少需4个甲这样的人才能满足题意.解析:(1)设A为“甲能译出”,B为“乙能译出”,则A、B互相独立,从而A与、与B、与均相互独立.“恰有一人能译出”为事件,又与互斥,则(2)“至多一人能译出”的事件,且、、互斥,∴(3)设至少需要n个甲这样的人,而n个甲这样的人译不出的概率为,∴n个甲这样的人能译出的概率为,由∴至少需4个甲这样的人才能满足题意.10.有一批机器,编号为1,2,3,…,112,为调查机器的质量问题,打算抽取10台,问此样本若采用简单的随机抽样方法将如何获得?答案:本题可以采用抽签法来抽取样本,首先把该校学生都编上号001,002,112…用抽签法做112个形状、大小相同的号签,然后将这些号签放到同一个箱子里,进行均匀搅拌,抽签时,每次从中抽一个号签,连续抽取10次,就得到一个容量为10的样本.11.某程序图如图所示,该程序运行后输出的结果是______.答案:由图知运算规则是对S=2S,故第一次进入循环体后S=21,第二次进入循环体后S=22=4,第三次进入循环体后S=24=16,第四次进入循环体后S=216>2012,退出循环.故该程序运行后输出的结果是:k=4+1=5.故为:512.观察下列各式:1=0+1,2+3+4=1+8,5+6+7+8+9=8+27,…,猜想第5个等式应为______.答案:由题意,(i)等式左边为一段连续自然数之和,且最后一个和数恰为各等式序号的立方,最前一个和数恰为等式序号减1平方加1;(ii)等式右边均为两数立方和,且也与等式序号具有明显的相关性.故猜想第5个等式应为17+18+19+20+21+22+23+24+25=64+125故为:17+18+19+20+21+22+23+24+25=64+12513.已知圆柱的轴截面周长为6,体积为V,则下列关系式总成立的是()A.V≥πB.V≤πC.V≥18πD.V≤18π答案:设圆柱的底面半径为r,高为h,由题意得:4r+2h=6,即2r+h=3,∴体积为V=πr2h≤π[13(r+r+h)]2=π×(33)2=π当且仅当r=h时取等号,由此可得V≤π恒成立故选:B14.设函数f(x)=ax(a>0,a≠1),如果f(x1+x2+…+x2009)=8,那么f(2x1)×f(2x2)×…×f(2x2009)的值等于()A.32B.64C.16D.8答案:f(x1+x2+…+x2009)=8可得ax1+x2+…+x2009=8f(2x1)×f(2x2)×…×f(2x2009)=a2(x1+x2+…+x2009)=82=64故选B.15.要考察某种品牌的850颗种子的发芽率,抽取60粒进行实验.利用随机数表抽取种子时,先将850颗种子按001,002,…,850进行编号,如果从随机数表第8行第11列的数1开始向右读,请你依次写出最先检测的4颗种子的编号______,______,______,______.
(下面摘取了随机数表第7行至第9行的一部分)
84
42
17
53
31
57
24
55
06
88
77
04
74
47
67
21
76
33
50
25
63
01
63
78
59
16
95
55
67
19
98
10
50
71
75
12
86
73
58
07
44
39
52
38
79
33
21
12
34
29
78
64
56
07
82
52
42
07
44
38.答案:由于随机数表中第8行的数字为:63
01
63
78
59
16
95
5567
19
98
10
50
71
75
12
86
73
58
07其第11列数字为1,故产生的第一个数字为:169,第二个数字为:555,第三个数字为:671,第四个数字为:998(超出编号范围舍)第五个数字为:105故为:169,555,671,10516.设F1、F2分别是椭圆x225+y216=1的左、右焦点,P为椭圆上一点,M是F1P的中点,|OM|=3,则P点到椭圆左焦点距离为______.答案:由题意知,OM是三角形PF1P的中位线,∵|OM|=3,∴|PF2|=6,又|PF1|+|PF2|=2a=10,∴|PF1|=4,故为4.17.复数3+4i的模等于______.答案:|3+4i|=32+42=5,故为5.18.如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,点D在AB上,DE⊥EB.
(Ⅰ)求证:AC是△BDE的外接圆的切线;
(Ⅱ)若AD=23,AE=6,求EC的长.答案:证明:(Ⅰ)取BD的中点O,连接OE.∵BE平分∠ABC,∴∠CBE=∠OBE.又∵OB=OE,∴∠OBE=∠BEO,∴∠CBE=∠BEO,∴BC∥OE.…(3分)∵∠C=90°,∴OE⊥AC,∴AC是△BDE的外接圆的切线.
…(5分)(Ⅱ)设⊙O的半径为r,则在△AOE中,OA2=OE2+AE2,即(r+23)2=r2+62,解得r=23,…(7分)∴OA=2OE,∴∠A=30°,∠AOE=60°.∴∠CBE=∠OBE=30°.∴在Rt△BCE中,可得EC=12BE=12×3r=12×3×23=3.
…(10分)19.曲线(θ为参数)上的点到两坐标轴的距离之和的最大值是()
A.
B.
C.1
D.答案:D20.(1+x2)5的展开式中x2的系数()A.10B.5C.52D.1答案:含x2项为C25(x2)2=10×x24=52x2,故选项为为C.21.已知点A(3,0),B(0,3),C(cosα,sinα),O(0,0),若,α∈(0,π),则与的夹角为()
A.
B.
C.
D.答案:D22.已知曲线x2a+y2b=1和直线ax+by+1=0(a,b为非零实数),在同一坐标系中,它们的图形可能是()A.
B.
C.
D.
答案:A选项中,直线的斜率大于0,故系数a,b的符号相反,此时曲线应是双曲线,故不对;B选项中直线的斜率小于0,故系数a,b的符号相同且都为负,此时曲线不存在,故不对;C选项中,直线斜率为正,故系数a,b的符号相反,且a正,b负,此时曲线应是焦点在x轴上的双曲线,图形符合结论,可选;D选项中不正确,由C选项的判断可知D不正确.故选D23.直线2x+y-3=0与直线3x+9y+1=0的夹角是()
A.
B.arctan2
C.
D.答案:C24.设椭圆(m>0,n>0)的右焦点与抛物线y2=8x的焦点相同,离心率为,则此椭圆的方程为(
)
A.
B.
C.
D.答案:B25.将两个数a=8,b=17交换,使a=17,b=8,下面语句正确一组是()
A.a=bb=a
B.c=b
b=a
a=c
C.b=aa=b
D.a=cc=bb=a答案:B26.袋中有5个小球(3白2黑),现从袋中每次取一个球,不放回地抽取两次,则在第一次取到白球的条件下,第二次取到白球的概率是()
A.
B.
C.
D.答案:C27.
008年北京成功举办了第29届奥运会,中国取得了51金、21银、28铜的骄人成绩.下表为北京奥运会官方票务网站公布的几种球类比赛的门票价格,某球迷赛前准备用12000元预定15张下表中球类比赛的门票:
比赛项目
票价(元/场)
篮球
1000
足球
800
乒乓球
500
若在准备资金允许的范围内和总票数不变的前提下,这个球迷想预定上表中三种球类门票,其中足球门票数与乒乓球门票数相同,且足球门票的费用不超过男篮门票的费用,则可以预订男篮门票数为
A.2
B.3
C.4
D.5
答案:D28.如图给出的是计算1+13+15+…+12013的值的一个程序框图,图中空白执行框内应填入i=______.答案:∵该程序的功能是计算1+13+15+…+12013的值,最后一次进入循环的终值为2013,即小于等于2013的数满足循环条件,大于2013的数不满足循环条件,由循环变量的初值为1,步长为2,故执行框中应该填的语句是:i=i+2.故为:i+2.29.集合{x∈N*|
12
x
∈Z}中含有的元素个数为()
A.4
B.6
C.8
D.12答案:B30.给定两个长度为1且互相垂直的平面向量OA和OB,点C在以O为圆心的圆弧AB上变动.若OC=2xOA+yOB,其中x,y∈R,则x+y的最大值是______.答案:由题意|OC|=1,即4x2+y2=1,令x=12cosθ,y=sinθ则x+y=12cosθ+sinθ=(12)2+1sin(θ+φ)≤52故x+y的最大值是52故为:5231.某校对文明班的评选设计了a,b,c,d,e五个方面的多元评价指标,并通过经验公式样S=ab+cd+1e来计算各班的综合得分,S的值越高则评价效果越好,若某班在自测过程中各项指标显示出0<c<d<e<b<a,则下阶段要把其中一个指标的值增加1个单位,而使得S的值增加最多,那么该指标应为()A.aB.bC.cD.d答案:因a,b,cde都为正数,故分子越大或分母越小时,S的值越大,而在分子都增加1的前提下,分母越小时,S的值增长越多,由于0<c<d<e<b<a,分母中d最小,所以c增大1个单位会使得S的值增加最多.故选C.32.设随机事件A、B,P(A)=35,P(B|A)=12,则P(AB)=______.答案:由条件概率的计算公式,可得P(AB)=P(A)×P(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 培养小学生批判性思维的数学教学方法探讨
- 2024年小型无人机研发与制造合同范本3篇
- AI助力广告创意基于图像识别的应用探索
- 创业公司人力资源管理的挑战与对策
- 商业领域的数字化营销趋势与创新企业应对策略
- 2025中国邮政集团限公司山西省分公司校园招聘高频重点提升(共500题)附带答案详解
- 2025中国科学院上海高等研究院智能信息通信技术研究与发展中心公开招聘2人高频重点提升(共500题)附带答案详解
- 2025中国石化春季校园招聘高频重点提升(共500题)附带答案详解
- 2025中国电信学院校园招聘30人高频重点提升(共500题)附带答案详解
- 2025中国国际航空股份限公司空中乘务员苏尼特右旗专场招聘会招聘高频重点提升(共500题)附带答案详解
- 工程数量管理规定
- 高边坡监控量测方案
- PEP英语四年级上册Unit 4 My home 教学反思
- 带式输送机检修维护通用安全技术措施实用版
- JJF 1585-2016固定污染源烟气排放连续监测系统校准规范
- vpn基础与应用简介
- GB/T 23319.2-2009纺织品洗涤后扭斜的测定第2部分:机织物和针织物
- 田螺姑娘阅读测试试题附答案
- 首都博物馆参观汇报参考课件
- 国家开放大学《美学原理》形考作业1-5参考答案
- 《认识长方形》数学
评论
0/150
提交评论