




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年广西理工职业技术学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.若圆C过点M(0,1)且与直线l:y=-1相切,设圆心C的轨迹为曲线E,A、B为曲线E上的两点,点P(0,t)(t>0),且满足AP=λPB(λ>1).
(I)求曲线E的方程;
(II)若t=6,直线AB的斜率为12,过A、B两点的圆N与抛物线在点A处共同的切线,求圆N的方程;
(III)分别过A、B作曲线E的切线,两条切线交于点Q,若点Q恰好在直线l上,求证:t与QA•QB均为定值.答案:【解】(Ⅰ)依题意,点C到定点M的距离等于到定直线l的距离,所以点C的轨迹为抛物线,曲线E的方程为x2=4y.(Ⅱ)直线AB的方程是y=12x+6,即x-2y+12=0.由{_x2=4y,x-2y+12=0,及AP=λPB(λ>1)知|AP|>|PB|,得A(6,9)和B(-4,4)由x2=4y得y=14x2,y′=12x.所以抛物线x2=4y在点A处切线的斜率为y'|x=6=3.直线NA的方程为y-9=-13(x-6),即y=-13x+11.①线段AB的中点坐标为(1,132),线段AB中垂线方程为y-132=-2(x-1),即y=-2x+172.②由①、②解得N(-32,232).于是,圆C的方程为(x+32)2+(y-232)2=(-4+32)2+(4-232)2,即(x+32)2+(y-232)2=1252.(Ⅲ)设A(x1,x124),B(x2,x224),Q(a,-1).过点A的切线方程为y-x214=x12(x-x1),即x12-2ax1-4=0.同理可得x22-2ax2-4=0,所以x1+x2=2a,x1x2=-4.又kAB=x124-x224x1-x2=x1+x24,所以直线AB的方程为y-x124=x1+x24(x-x
1),即y=x1+x24x-x1x24,亦即y=a2x+1,所以t=-1.而QA=(x1-a,x124+1),QB=(x2-a,x224+1),所以QA•QB=(x1-a)(x2-a)+(x214+1)(x224+1)=x1x2-a(x1+x2)+a2+x21x2216+(x1+x2)2-2x1x24+1=-4-2a2+a2+1+4a2+84+1=0.2.规定运算.abcd.=ad-bc,则.1i-i2.=______.答案:根据题目的新规定知,.1i-i2.=1×2-(-i)i=2+i2=2-1=1.故为:1.3.已知P(B|A)=,P(A)=,则P(AB)=()
A.
B.
C.
D.答案:D4.赋值语句M=M+3表示的意义()
A.将M的值赋给M+3
B.将M的值加3后再赋给M
C.M和M+3的值相等
D.以上说法都不对答案:B5.下列图形中不一定是平面图形的是()
A.三角形
B.四边相等的四边形
C.梯形
D.平行四边形答案:B6.对于实数x、y,若|x-1|≤1,|y-2|≤1,则|x-2y+1|的最大值为______.答案:∵|x-2y+1|=|(x-1)-2(y-1)|≤|x-1|+2|(y-2)+1|≤|x-1|+2|y-2|+2,再由|x-1|≤1,|y-2|≤1可得|x-1|+2|y-2|+2≤1+2+2=5,故|x-2y+1|的最大值为5,故为5.7.圆心在原点且圆周被直线3x+4y+15=0分成1:2两部分的圆的方程为
______.答案:如图,因为圆周被直线3x+4y+15=0分成1:2两部分,所以∠AOB=120°.而圆心到直线3x+4y+15=0的距离d=1532+42=3,在△AOB中,可求得OA=6.所以所求圆的方程为x2+y2=36.故为:x2+y2=368.在程序语言中,下列符号分别表示什么运算*;\;∧;SQR;ABS?答案:“*”表示乘法运算;“\”表示除法运算;“∧”表示乘方运算;“SQR()”表示求算术平方根运算;“ABS()”表示求绝对值运算.9.某校有学生1
200人,为了调查某种情况打算抽取一个样本容量为50的样本,问此样本若采用简单随便机抽样将如何获得?答案:本题可以采用抽签法来抽取样本,首先把该校学生都编上号0001,0002,0003…用抽签法做1200个形状、大小相同的号签,然后将这些号签放到同一个箱子里,进行均匀搅拌,抽签时,每次从中抽一个号签,连续抽取50次,就得到一个容量为50的样本.10.袋中有4个形状大小一样的球,编号分别为1,2,3,4,从中任取2个球,则这2个球的编号之和为偶数的概率为()A.16B.23C.12D.13答案:根据题意,从4个球中取出2个,其编号的情况有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共6种;其中编号之和为偶数的有(1,3),(2,4),共2种;则2个球的编号之和为偶数的概率P=26=13;故选D.11.根据一组数据判断是否线性相关时,应选用(
)
A.散点图
B.茎叶图
C.频率分布直方图
D.频率分布折线图答案:A12.利用计算机在区间(0,1)上产生两个随机数a和b,则方程有实根的概率为()
A.
B.
C.
D.1答案:A13.大家知道,在数列{an}中,若an=n,则sn=1+2+3+…+n=12n2+12n,若an=n2,则
sn=12+22+32+…+n2=13n3+12n2+16n,于是,猜想:若an=n3,则sn=13+23+33+…+n3=an4+bn3+cn2+dn.
问:(1)这种猜想,你认为正确吗?
(2)不管猜想是否正确,这个结论是通过什么推理方法得到的?
(3)如果结论正确,请用数学归纳法给予证明.答案:(1)猜想正确;(2)这是一种类比推理的方法;(3)由类比可猜想,a=14,n=1时,a+b+c+d=1;n=2时,16a+8b+4c+d=9;n=3时,81a+27b+9c+d=36故解得a=14,b=12,c=14,∴sn=13+23+33+…+n3=14n4+12n3+14n2用数学归纳法证明:①n=1时,结论成立;②假设n=k时,结论成立,即13+23+33+…+k3=14k4+12k3+14k2=[k(k+1)2]2则n=k+1时,左边=13+23+33+…+k3+(k+1)3=14k4+12k3+14k2+(k+1)3=[k(k+1)2]2+(k+1)3=(k+12)2(k2+4k+4)=[(k+1)(k+2)2]2=右边,结论成立由①②可知,sn=13+23+33+…+n3=14n4+12n3+14n2,成立14.用演绎法证明y=x2是增函数时的大前提是______.答案:∵证明y=x2是增函数时,依据的原理就是增函数的定义,∴用演绎法证明y=x2是增函数时的大前提是:增函数的定义故填增函数的定义15.圆x2+y2-4x=0在点P(1,)处的切线方程为()
A.x+y-2=0
B.x+y-4=0
C.x-y+4=0
D.x-y+2=0答案:D16.在某次数学考试中,考生的成绩X~N(90,100),则考试成绩X位于区间(80,90)上的概率为______.答案:∵考生的成绩X~N(90,100),∴正弦曲线关于x=90对称,根据3?原则知P(80<x<100)=0.6829,∴考试成绩X位于区间(80,90)上的概率为0.3413,故为:0.341317.设15000件产品中有1000件次品,从中抽取150件进行检查,则查得次品数的数学期望为______.答案:∵15000件产品中有1000件次品,从中抽取150件进行检查,∴查得次品数的数学期望为150×100015000=10.故为10.18.已知a>0,且a≠1,解关于x的不等式:
答案:①当a>1时,原不等式解为{x|0<x≤loga2②当0<a<1时,原不等式解为{x|loga2≤x<0解析:原不等式等价于原不等式同解于7分由①②得1<ax<4,由③得从而1<ax≤210分①当a>1时,原不等式解为{x|0<x≤loga2②当0<a<1时,原不等式解为{x|loga2≤x<019.若点M,A,B,C对空间任意一点O都满足则这四个点()
A.不共线
B.不共面
C.共线
D.共面答案:D20.(上海卷理3文8)动点P到点F(2,0)的距离与它到直线x+2=0的距离相等,则P的轨迹方程为______.答案:由抛物线的定义知点P的轨迹是以F为焦点的抛物线,其开口方向向右,且p2=2,解得p=4,所以其方程为y2=8x.故为y2=8x21.已知函数y=f(n),满足f(1)=2,且f(n+1)=3f(n),n∈N+,则
f(3)的值为______.答案:∵f(1)=2,且f(n+1)=3f(n),n∈N+,∴f(2)=3f(1)=6,f(3)=f(2+1)=3f(2)=18,故为18.22.5本不同的书全部分给3个学生,每人至少一本,共有()种分法.
A.60
B.150
C.300
D.210答案:B23.设
是不共线的向量,(k,m∈R),则A、B、C三点共线的充要条件是()
A.k+m=0
B.k=m
C.km+1=0
D.km-1=0答案:D24.(x+1)4的展开式中x2的系数为()A.4B.6C.10D.20答案:(x+1)4的展开式的通项为Tr+1=C4rxr令r=2得T3=C42x2=6x∴展开式中x2的系数为6故选项为B25.棱长为1的正方体ABCD-A1B1C1D1的8个顶点都在球O的表面上,E,F分别是棱AA1,DD1的中点,则直线EF被球O截得的线段长为()
A.
B.1
C.1+
D.答案:D26.若a、b是直线,α、β是平面,a⊥α,b⊥β,向量m在a上,向量n在b上,m=(0,3,4),n=(3,4,0),则α、β所成二面角中较小的一个余弦值为______.答案:由题意,∵m=(0,3,4),n=(3,4,0),∵cos<m,n>=m?n|m||n|=125?5=1225∵a⊥α,b⊥β,向量m在a上,向量n在b上,∴α、β所成二面角中较小的一个余弦值为1225故为122527.空间中,若向量=(5,9,m),=(1,-1,2),=(2,5,1)共面,则m=()
A.2
B.3
C.4
D.5答案:C28.(几何证明选讲选做题)已知PA是⊙O的切线,切点为A,直线PO交⊙O于B、C两点,AC=2,∠PAB=120°,则⊙O的面积为______.答案:∵PA是圆O的切线,∴OA⊥AP又∵∠PAB=120°∴∠BAO=∠ABO=30°又∵在Rt△ABC中,AC=2∴BC=4,即圆O的直径2R=4∴圆O的面积S=πR2=4π故为:4π.29.在下列图象中,二次函数y=ax2+bx+c与函数(的图象可能是()
A.
B.
C.
D.
答案:A30.化简的结果是()
A.a2
B.a
C.a
D.a答案:C31.已知平面向量a=(0,1),b=(x,y),若a⊥b,则实数y=______.答案:由题意平面向量a=(0,1),b=(x,y),由a⊥b,∴a?b=0∴y=0故为032.已知e1
,
e2是夹角为60°的两个单位向量,且向量a=e1+2e2,则|a|=______.答案:由题意可得e21=1,e22=1,e1?e2=12,所以a2=(e1+2e2)2=1+2+4=7,所以|a|=7,故为:733.把一颗骰子掷两次,观察出现的点数,并记第一次出现的点数为a,第二次出现的点数为b,则点(a,b)在直线x+y=5左下方的概率为()A.16B.56C.112D.1112答案:由题意知本题是一个古典概型,试验发生包含的事件数是6×6=36种结果,满足条件的事件是点(a,b)在直线x+y=5左下方即a+b<5,可以列举出所有满足的情况(1,1)(1,2)(1,3),(2,1),(2,2)(3,1)共有6种结果,∴点在直线的下方的概率是636=16故选A.34.由数字0、1、2、3、4可组成不同的三位数的个数是()
A.100
B.125
C.64
D.80答案:A35.已知A=(2,-4,-1),B=(-1,5,1),C=(3,-4,1),若=,=,则对应的点为()
A.(5,-9,2)
B.(-5,9,-2)
C.(5,9,-2)
D.(5,-9,-2)答案:B36.中心在原点,焦点在x轴上的双曲线的一条渐近线经过点(4,2),则它的离心率为()
A.
B.
C.
D.答案:D37.如图,⊙O过点B、C,圆心O在等腰Rt△ABC的内部,,,
.则⊙O的半径为(
).
A.6
B.13
C.
D.答案:C解析:分析:延长AO交BC于D,接OB,根据AB=AC,O是等腰Rt△ABC的内心,推出AD⊥BC,BD=DC=3,AO平分∠BAC,求出∠BAD=∠ABD=45°,AD=BD=3,由勾股定理求出OB即可.解答:解:延长AO交BC于D,连接OB,∵⊙O过B、C,∴O在BC的垂直平分线上,∵AB=AC,圆心O在等腰Rt△ABC的内部,∴AD⊥BC,BD=DC=3,AO平分∠BAC,∵∠BAC=90°,∴∠ADB=90°,∠BAD=45°,∴∠BAD=∠ABD=45°,∴AD=BD=3,∴OD=3-1=2,由勾股定理得:OB==故选C.38.用数学归纳法证明:12+22+32+…+n2=n(n+1)(2n+1)6.答案:证明:(1)当n=1时,左边=12=1,右边=1×2×36=1,等式成立.(4分)(2)假设当n=k时,等式成立,即12+22+32+…+k2=k(k+1)(2k+1)6(6分)那么,当n=k+1时,12+22+32+…+k2+(k+1)2=k(k+1)(2k+1)6+(k+1)2=k(k+1)(2k+1)+6(k+1)26=(k+1)(2k2+7k+6)6=(k+1)(k+2)(2k+3)6=(k+1)[(k+1)+1][2(k+1)+1]6这就是说,当n=k+1时等式也成立.(10分)根据(1)和(2),可知等式对任何n∈N*都成立.(12分)39.附加题(必做题)
如图,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4.
(1)设AD=λAB,异面直线AC1与CD所成角的余弦值为925,求λ的值;
(2)若点D是AB的中点,求二面角D-CB1-B的余弦值.答案:(1)以CA,CB,CC1分别为x,y,z轴建立如图所示空间直角坐标,因为AC=3,BC=4,AA1=4,所以A(3,0,0),B(0,4,0),C(0,0,0),C1=(0,0,4),所以AC1=(-3,0,4),因为AD=λAB,所以点D(-3λ+3,4λ,0),所以CD=(-3λ+3,4λ,0),因为异面直线AC1与CD所成角的余弦值为925,所以|cos<AC1,CD>|=|9λ-9|5(3-3λ)2+16λ2=925,解得λ=12.…(4分)(2)由(1)得B1(0,4,4),因为
D是AB的中点,所以D(32,2,0),所以CD=(32,2,0),CB1=(0,4,4),平面CBB1C1的法向量
n1=(1,0,0),设平面DB1C的一个法向量n2=(x0,y0,z0),则n1,n2的夹角(或其补角)的大小就是二面角D-CB1-B的大小,由n2•CD=0n2•CB
1=0得32x0+2y0=04y0+4z0=0令x0=4,则y0=-3,z0=3,所以n2=(4,-3,3),∴cos<n1,n2>=n1•n2|n1|•|n2|=434=23417.所以二面角D-B1C-B的余弦值为23417.
…(10分)40.
(理)
在长方体ABCD-A1B1C1D1中,以为基底表示,其结果是()
A.
B.
C.
D.答案:C41.椭圆上有一点P,F1,F2是椭圆的左、右焦点,△F1PF2为直角三角形,则这样的点P有()
A.3个
B.4个
C.6个
D.8个答案:C42.如图所示,判断正整数x是奇数还是偶数,(1)处应填______.答案:根据程序的功能是判断正整数x是奇数还是偶数,结合数的奇偶性的定义,我们可得当满足条件是x是奇数,不满足条件时x为偶数故(1)中应填写r=1故为:r=143.已知a>0,b>0,直线l与x轴、y轴分别交于A(a,0),B(0,b),且过点(1,2),O为原点.求△OAB面积的最小值.答案:∵a>0,b>0,直线l与x轴、y轴分别交于A(a,0),B(0,b),∴直线l的方程为xa+yb=1,又直线l过点(1,2),∴1a+2b=1,由基本不等式得1≥22ab,∴ab≥8,△OAB面积为:12ab≥12×8=4,当且仅当1a=2b=12,即a=2且b=4时,等号成立.故△OAB面积的最小值是4.44.若a1≤a2≤…≤an,而b1≥b2≥…≥bn或a1≥a2≥…≥an而b1≤b2≤…≤bn,证明:a1b1+a2b2+…+anbnn≤(a1+a2+…+ann)•(b1+b2+…+bnn).当且仅当a1=a2=…=an或b1=b2=…=bn时等号成立.答案:证明不妨设a1≤a2≤…≤an,b1≥b2≥…≥bn.则由排序原理得:a1b1+a2b2+…+anbn=a1b1+a2b2+…+anbna1b1+a2b2+…+anbn≤a1b2+a2b3+…+anb1a1b1+a2b2+…+anbn≤a1b3+a2b4+…+an-1b1+anb2…a1b1+a2b2+…+anbn≤a1bn+a2b1+…+anbn-1.将上述n个式子相加,得:n(a1b1+a2b2+…+anbn)≤(a1+a2+…+an)(b1+b2+…+bn)上式两边除以n2,得:a1b1+a2b2+…+anbnn≤(a1+a2+…+ann)(b1+b2+…+bnn)等号当且仅当a1=a2=…=an或b1=b2=…=bn时成立.45.一个口袋内有5个白球和3个黑球,任意取出一个,如果是黑球,则这个黑球不放回且另外放入一个白球,这样继续下去,直到取出的球是白球为止.求取到白球所需的次数ξ的概率分布列及期望.答案:由题意知变量的可能取值是1,2,3,4P(ξ=1)=58,P(ξ=2)=932,P(ξ=3)=21256
P(ξ=1)=3256
∴ξ的分布列是ξ1234P58932212563256∴Eξ=1×58+2×923+3×21256+4×3256=37925646.(1+3x)n(其中n∈N且n≥6)的展开式中x5与x6的系数相等,则n=()A.6B.7C.8D.9答案:二项式展开式的通项为Tr+1=3rCnrxr∴展开式中x5与x6的系数分别是35Cn5,36Cn6∴35Cn5=36Cn6解得n=7故选B47.已知=(1,2),=(x,1),当(+2)⊥(2-)时,实数x的值为(
)
A.6
B.2
C.-2
D.或-2答案:D48.BC是Rt△ABC的斜边,AP⊥平面ABC,PD⊥BC于点D,则图中共有直角三角形的个数是()A.8B.7C.6D.5答案:∵AP⊥平面ABC,BC?平面ABC,∴PA⊥BC,又PD⊥BC于D,连接AD,PD∩PA=A,∴BC⊥平面PAD,AD?平面PAD,∴BC⊥AD;又BC是Rt△ABC的斜边,∴∠BAC为直角,∴图中的直角三角形有:△ABC,△PAC,△PAB,△PAD,△PDC,△PDB,△ADC,△ADB.故为:8.49.选修4-4:坐标系与参数方程
已知直线l:x=m+tcosαy=tsinα(t为参数)经过椭圆C:x=2cosφy=3sinφ(φ为参数)的左焦点F.
(Ⅰ)求m的值;
(Ⅱ)设直线l与椭圆C交于A、B两点,求|FA|•|FB|的最大值和最小值.答案:(Ⅰ)将椭圆C的参数方程化为普通方程,得x24+y23=1.a=2,b=3,c=1,则点F坐标为(-1,0).l是经过点(m,0)的直线,故m=-1.…(4分)(Ⅱ)将l的参数方程代入椭圆C的普通方程,并整理,得(3cos2α+4sin2α)t2-6tcosα-9=0.设点A,B在直线参数方程中对应的参数分别为t1,t2,则|FA|•|FB|=|t1t2|=93cos2α+4sin2α=93+sin2α.当sinα=0时,|FA|•|FB|取最大值3;当sinα=±1时,|FA|•|FB|取最小值94.…(10分)50.直线y=3x的倾斜角为______.答案:∵直线y=3x的斜率是3,∴直线的倾斜角的正切值是3,∵α∈[0°,180°],∴α=60°,故为:60°第2卷一.综合题(共50题)1.一个完整的程序框图至少应该包含______.答案:完整程序框图必须有起止框,用来表示程序的开始和结束,还要包括处理框,用来处理程序的执行.故为:起止框、处理框.2.若定义运算a⊕b=b,a<ba,a≥b则函数f(x)=2x⊕(12)x的值域为______(用区间表示).答案:由题意画出f(x)=2x?(12)x的图象(实线部分),由图可知f(x)的值域为[1,+∞).故为:[1,+∞).3.若k∈R,则“k>3”是“方程表示双曲线”的()
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件答案:A4.曲线x=sinθy=sin2θ(θ为参数)与直线y=a有两个公共点,则实数a的取值范围是______.答案:曲线
x=sinθy=sin2θ
(θ为参数),为抛物线段y=x2(-1≤x≤1),借助图形直观易得0<a≤1.5.对任意实数x,y,定义运算x*y为:x*y=ax+by+cxy,其中a,b,c为常数,等式右端运算为通常的实数加法和乘法,现已知1*2=3,2*3=4,并且有一个非零实数m,使得对于任意的实数都有x*m=x,则d的值为(
)
A.4
B.1
C.0
D.不确定答案:A6.已知矩阵A=12-14,向量a=74.
(1)求矩阵A的特征值λ1、λ2和特征向量α1、α2;
(2)求A5α的值.答案:(1)矩阵A的特征多项式为f(λ)=.λ-1-21λ-4.=λ2-5λ+6,令f(λ)=0,得λ1=2,λ2=3,当λ1=2时,得α1=21,当λ2=3时,得α2=11.(7分)(2)由α=mα1+nα2得2m+n=7m+n=4,得m=3,n=1.∴A5α=A5(3α1+α2)=3(A5α1)+A5α2=3(λ51α1)+λ52α2=3×2521+3511=435339.(15分)7.将参数方程x=1+2cosθy=2sinθ(θ为参数)化成普通方程为
______.答案:由题意得,x=1+2cosθy=2sinθ⇒x-1=2cosθy=2sinθ,将参数方程的两个等式两边分别平方,再相加,即可消去含θ的项,所以有(x-1)2+y2=4.8.(a+b)6的展开式的二项式系数之和为______.答案:根据二项式系数的性质:二项式系数和为2n所以(a+b)6展开式的二项式系数之和等于26=64故为:64.9.已知向量a,b满足|a|=2,|b|=3,|2a+b|=则a与b的夹角为()
A.30°
B.45°
C.60°
D.90°答案:C10.方程4x-3×2x+2=0的根的个数是(
)
A.0
B.1
C.2
D.3答案:C11.用行列式讨论关于x,y
的二元一次方程组mx+y=m+1x+my=2m解的情况并求解.答案:D=.m11m.=m2-1=(m+1)(m-1),Dx=.m+112mm.=m2-m=m(m-1),Dy=.mm+112m.=2m2-m-1=(2m+1)(m-1),…(各(1分)共3分)(1)当m≠-1,m≠1时,D≠0,方程组有唯一解,解为(4)x=mm+1(5)y=2m+1m+1(6)…((2分),其中解1分)(2)当m=-1时,D=0,Dx≠0,方程组无解;…(2分)(3)当m=1时,D=Dx=Dy=0,方程组有无穷多组解,此时方程组化为x+y=2x+y=2,令x=t(t∈R),原方程组的解为x=ty=2-t(t∈R).…((2分),没写出解扣1分)12.复数32i+11-i的虚部是______.答案:复数32i+11-i=32i+1+i(1-i)(1+i)=32i+1+i2=12+2i∴复数的虚部是2,故为:213.已知过点A(-2,m)和B(m,4)的直线与直线2x+y-1=0平行,则m的值为()
A.0
B.-8
C.2
D.10答案:B14.如图所示,AF、DE分别是⊙O、⊙O1的直径,AD与两圆所在的平面均垂直,AD=8.BC是⊙O的直径,AB=AC=6,
OE∥AD.
(1)求二面角B-AD-F的大小;
(2)求直线BD与EF所成的角的余弦值.答案:(1)二面角B—AD—F的大小为45°(2)直线BD与EF所成的角的余弦值为解析:(1)∵AD与两圆所在的平面均垂直,∴AD⊥AB,AD⊥AF,故∠BAF是二面角B—AD—F的平面角.依题意可知,ABFC是正方形,∴∠BAF=45°.即二面角B—AD—F的大小为45°;(2)以O为原点,CB、AF、OE所在直线为坐标轴,建立空间直角坐标系(如图所示),则O(0,0,0),A(0,-3,0),B(3,0,0),D(0,-3,8),E(0,0,8),F(0,3,0),∴=(-3,-3,8),=(0,3,-8).cos〈,〉=
==-.设异面直线BD与EF所成角为,则cos=|cos〈,〉|=.即直线BD与EF所成的角的余弦值为.15.某次考试,满分100分,按规定x≥80者为良好,60≤x<80者为及格,小于60者不及格,画出当输入一个同学的成绩x时,输出这个同学属于良好、及格还是不及格的程序框图.答案:第一步:输入一个成绩X(0≤X≤100)第二步:判断X是否大于等于80,若是,则输出良好;否则,判断X是否大于等于60,若是,则输出及格;否则,输出不及格;第三步:算法结束16.如图,⊙O内切于△ABC的边于D,E,F,AB=AC,连接AD交⊙O于点H,直线HF交BC的延长线于点G.
(1)求证:圆心O在直线AD上.
(2)求证:点C是线段GD的中点.答案:证明:(1)∵AB=AC,AF=AE∴CD=BE又∵CF=CD,BD=BE∴CD=BD又∵△ABC是等腰三角形,∴AD是∠CAB的角分线∴圆心O在直线AD上.(5分)(II)连接DF,由(I)知,DH是⊙O的直径,∴∠DHF=90°,∴∠FDH+∠FHD=90°又∵∠G+∠FHD=90°∴∠FDH=∠G∵⊙O与AC相切于点F∴∠AFH=∠GFC=∠FDH∴∠GFC=∠G∴CG=CF=CD∴点C是线段GD的中点.(10分)17.在7块并排、形状大小相同的试验田上进行施化肥量对水稻产量影响的试验,得到如下表所示的一组数据(单位:kg).
(1)画出散点图;
(2)求y关于x的线性回归方程;
(3)若施化肥量为38kg,其他情况不变,请预测水稻的产量.答案:(1)根据题表中数据可得散点图如下:(2)∵.x=15+20+25+30+35+40+457=30,.y=330+345+365+405+445+450+4557=399.3∴利用最小二乘法得到b=4.75,a=257∴根据回归直线方程系数的公式计算可得回归直线方程是?y=4.75x+257.(3)把x=38代入回归直线方程得y=438,可以预测,施化肥量为38kg,其他情况不变时,水稻的产量是438kg.18.已知大于1的正数x,y,z满足x+y+z=33.
(1)求证:x2x+2y+3z+y2y+2z+3x+z2z+2x+3y≥32.
(2)求1log3x+log3y+1log3y+log3z+1log3z+log3x的最小值.答案:(1)由柯西不等式得,(x2x+2y+3z+y2y+2z+3z+z2z+2x+3y)[(x+2y+3z)+(y+2z+3x)+(z+2x+3y)]≥(x+y+z)2=27得:x2x+2y+3z+y2y+2z+3x+z2z+2x+3y≥32;(2)∵1log3x+log3y+1log3y+log3z+1log3z+log3x=1log3(xy)+1log3(yz)+1log3(zx),由柯西不等式得:(1log3(xy)+1log3(yz)+1log3(zx))(log3(xy)+log3(yz)+log3(zx)),由柯西不等式得:(1log3(xy)+1log3(yz)+1log3(zx))(log3(xy)+log3(yz)+log3(zx))≥9所以,(1log3(xy)+1log3(yz)+1log3(zx))≥9(log3(xy)+log3(yz)+log3(zx))=92log3(xyz),又∵33=x+y+z≥33xyz.∴xyz≤33.∴log3xyz≤32.得92log3xyz≥92×23=3所以,1log3x+log3y+1log3y+log3z+1log3z+log3x≥3当且仅当x=y=z=3时,等号成立.故所求的最小值是3.19.某一批花生种子,如果每1粒发芽的概率为,那么播下4粒种子恰有2粒发芽的概率是(
)
A.
B.
C.
D.答案:B20.将4封不同的信随机地投入到3个信箱里,记有信的信箱个数为ξ,试求ξ的分布列.答案:由题意知变量ξ的可能取值是1,2,3,P(ξ=1)=C1334=127,P(ξ=2)=C23(2C14+C24)34=1427,P(ξ=3)=C24A3334=1227,∴ξ的分布列是21.(坐标系与参数方程选做题)在极坐标系中,点M(ρ,θ)关于极点的对称点的极坐标是______.答案:由点的极坐标的意义可得,点M(ρ,θ)关于极点的对称点到极点的距离等于ρ,极角为π+θ,故点M(ρ,θ)关于极点的对称点的极坐标是(ρ,π+θ),故为(ρ,π+θ).22.下列说法:
①在残差图中,残差点比较均匀地落在水平的带状区域内,说明选择的模型比较合适;
②用相关指数可以刻画回归的效果,值越大说明模型的拟和效果越好;
③比较两个模型的拟和效果,可以比较残差平方和的大小,残差平方和越小的模型拟和效果越好.
其中说法正确的个数为()
A.0个
B.1个
C.2个
D.3个答案:C23.设有三个命题:“①0<12<1.②函数f(x)=log
12x是减函数.③当0<a<1时,函数f(x)=logax是减函数”.当它们构成三段论时,其“小前提”是______(填序号).答案:三段话写成三段论是:大前提:当0<a<1时,函数f(x)=logax是减函数,小前提:0<12<1,结论:函数f(x)=log
12x是减函数.其“小前提”是①.故为:①.24.若直线l:ax+by=1与圆C:x2+y2=1有两个不同交点,则点P(a,b)与圆C的位置关系是(
)
A.点在圆上
B.点在圆内
C.点在圆外
D.不能确定答案:C25.已知A=(2,-4,-1),B=(-1,5,1),C=(3,-4,1),若=,=,则对应的点为()
A.(5,-9,2)
B.(-5,9,-2)
C.(5,9,-2)
D.(5,-9,-2)答案:B26.解不等式|2x-1|<|x|+1.答案:根据题意,对x分3种情况讨论:①当x<0时,原不等式可化为-2x+1<-x+1,解得x>0,又x<0,则x不存在,此时,不等式的解集为∅.②当0≤x<12时,原不等式可化为-2x+1<x+1,解得x>0,又0≤x<12,此时其解集为{x|0<x<12}.③当x≥12
时,原不等式可化为2x-1<x+1,解得12≤x<2,又由x≥12,此时其解集为{x|12≤x<2},∅∪{x|0<x<12
}∪{x|12≤x<2
}={x|0<x<2};综上,原不等式的解集为{x|0<x<2}.27.若e1,e2是两个不共线的向量,已知AB=2e1+ke2,CB=e1+3e2,CD=2e1-e2,若A,B,D三点共线,则k=______.答案:BD=CD-CB=(2e1-e2)-(e1+3e2)=2e1-4e2因为A,B,D三点共线,所以AB=kBD,已知AB=2e1+ke2,BD=2e1-4e2所以k=-4故为:-428.已知在平面直角坐标系xOy中,圆C的参数方程为x=3+3cosθy=1+3sinθ,(θ为参数),以Ox为极轴建立极坐标系,直线l的极坐标方程为pcos(θ+π6)=0.
(1)写出直线l的直角坐标方程和圆C的普通方程;
(2)求圆C截直线l所得的弦长.答案:(1)消去参数θ,得圆C的普通方程为(x-3)2+(y-1)2=9.(2分)由ρcos(θ+π6)=0,得32ρcosθ-12ρsinθ=0,∴直线l的直角坐标方程为3x-y=0.(5分)(2)圆心(3,1)到直线l的距离为d=|3×3-1|(3)2+12=1.(7分)设圆C直线l所得弦长为m,则m2=r2-d2=9-1=22,∴m=42.(10分)29.如果执行如图的程序框图,那么输出的S=______.答案:根据题意可知该循环体运行5次第一次:k=2,s=2,第二次:k=3,s=2+4,第三次:k=4,s=2+4+6,第四次:k=5,s=2+4+6+8,因为k=5,结束循环,输出结果S=2+4+6+8=20.故为:20.30.设复数z=cosθ+sinθi,0≤θ≤π,则|z+1|的最大值为______.答案:复数z=cosθ+sinθi,0≤θ≤π,则|z+1|=|cosθ+1+isinθ|=(1+cosθ)2+sin2θ=2+2cosθ≤2.故为:2.31.双曲线x2-4y2=4的两个焦点F1、F2,P是双曲线上的一点,满足·=0,则△F1PF2的面积为()
A.1
B.
C.2
D.答案:A32.过点P(2,3)且以a=(1,3)为方向向量的直线l的方程为______.答案:设直线l的另一个方向向量为a=(1,k),其中k是直线的斜率可得a=(1,3)与a=(1,k)互相平行∴11=k3⇒k=3,所以直线l的点斜式方程为:y-3=3(x-2)化成一般式:3x-y-3=0故为:3x-y-3=0.33.已知中心在原点,对称轴为坐标轴,长半轴长与短半轴长的和为92,离心率为35的椭圆的标准方程为______.答案:由题意可得a+b=92e=ca=35a2=b2+c2,解得a2=50b2=32.∴椭圆的标准方程为x250+y232=1或y250+x232=1.故为x250+y232=1或y250+x232=1.34.抛物线y=ax2(其中a>0)的焦点坐标是(
)
A.(,0)
B.(0,)
C.(,0)
D.(0,)答案:D35.设函数g(x)=ex
x≤0lnx,x>0,则g(g(12))=______.答案:g(g(12))
=g(ln12)
=eln12=12故为:12.36.设x+y+z=1,求F=2x2+3y2+z2的最小值.答案:∵1=(x+y+z)2=(12?2x+13?3y+1?z)2≤(12+13+1)(2x2+3y2+z2)∴F=2x2+3y2+z2≥611(8分)当且仅当2x12=3y13=z1且x+y+z=1,x=311,y=211,z=611F有最小值611(12分)37.已知M(x0,y0)是圆x2+y2=r2(r>0)内异于圆心的一点,则直线x0x+y0y=r2与此圆有何种位置关系?答案:圆心O(0,0)到直线x0x+y0y=r2的距离为d=r2x20+y20.∵P(x0,y0)在圆内,∴x20+y20<r.则有d>r,故直线和圆相离.38.直线的参数方程为,l上的点P1对应的参数是t1,则点P1与P(a,b)之间的距离是(
)
A.|t1|
B.2|t1|
C.
D.答案:C39.已知e1,e2是夹角为60°的单位向量,且a=2e1+e2,b=-3e1+2e2
(1)求a•b;
(2)求a与b的夹角<a,b>.答案:(1)求a•b=(2e1+e2)•
(-3e1+2e2)=
-6e12+e1
•e2+2e22=-6+1×1×cos60°+2=-72.(2)|a|=|2e1+e2|=(2e1+e2)2=4e12+2e1•e2+e22=7同样地求得|b|=7.所以cos<a,b>=a•b|a||b|=-727
×7=-12,又0<<a,b><π,所以<a,b>=2π3.40.能较好地反映一组数据的离散程度的是()
A.众数
B.平均数
C.标准差
D.极差答案:C41.在如图所示的茎叶图中,甲、乙两组数据的中位数分别是______.答案:由茎叶图可得甲组共有9个数据中位数为45乙组共9个数据中位数为46故为45、4642.在研究打酣与患心脏病之间的关系中,通过收集数据、整理分析数据得“打酣与患心脏病有关”的结论,并且有99%以上的把握认为这个结论是成立的.下列说法中正确的是()
A.100个心脏病患者中至少有99人打酣
B.1个人患心脏病,则这个人有99%的概率打酣
C.100个心脏病患者中一定有打酣的人
D.100个心脏病患者中可能一个打酣的人都没有答案:D43.已知在一个二阶矩阵M对应变换的作用下,点A(1,2)变成了点A′(7,10),点B(2,0)变成了点B′(2,4),求矩阵M.答案:设M=abcd,则abcd12=710,abcd20=24,(4分)即a+2b=7c+2d=102a=22c=4,解得a=1b=3c=2d=4(8分)所以M=1234.(10分)44.解关于x的不等式(k≥0,k≠1).答案:不等式的解集为{x|x2}解析:原不等式即,1°若k=0,原不等式的解集为空集;2°若1-k>0,即0,所以原不等式的解集为{x|x2}.</k<1,由原不等式的解集为{x|2<x<</k<1时,原不等式等价于45.若随机变量ξ~N(2,9),则随机变量ξ的数学期望c=()
A.4
B.3
C.2
D.1答案:C46.某项选拔共有四轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则
即被淘汰.已知某选手能正确回答第一、二、三、四轮的问题的概率分别为、、、,且各轮问题能否正确回答互不影响.
(Ⅰ)求该选手进入第四轮才被淘汰的概率;
(Ⅱ)求该选手至多进入第三轮考核的概率.
(注:本小题结果可用分数表示)答案:(1)该选手进入第四轮才被淘汰的概率.(Ⅱ)该选手至多进入第三轮考核的概率.解析:(Ⅰ)记“该选手能正确回答第轮的问题”的事件为,则,,,,该选手进入第四轮才被淘汰的概率.(Ⅱ)该选手至多进入第三轮考核的概率.47.应用反证法推出矛盾的推导过程中要把下列哪些作为条件使用()
①结论相反的判断,即假设
②原命题的条件
③公理、定理、定义等
④原结论
A.①②
B.①②④
C.①②③
D.②③答案:C48.有一个容量为66的样本,数据的分组及各组的频数如下:
[11.5,15.5)2[15.5,19.5)4[19.5,23.5)9[23.5,27.5)18
[27.5,31.5)11[31.5,35.5)12[35.5,39.5)7[39.5,43.5)3
根据样本的频率分布估计,大于或等于31.5的数据约占()A.211B.13C.12D.23答案:根据所给的数据的分组和各组的频数知道,大于或等于31.5的数据有[31.5,35.5)12;[35.5,39.5)7;[39.5,43.5)3,可以得到共有12+7+3=22,∵本组数据共有66个,∴大于或等于31.5的数据约占2266=13,故选B49.已知曲线C的参数方程为x=4t2y=t(t为参数),若点P(m,2)在曲线C上,则m=______.答案:因为曲线C的参数方程为x=4t2y=t(t为参数),消去参数t得:x=4y2;∵点P(m,2)在曲线C上,所以m=4×4=16.故为:16.50.若a1≤a2≤…≤an,而b1≥b2≥…≥bn或a1≥a2≥…≥an而b1≤b2≤…≤bn,证明:a1b1+a2b2+…+anbnn≤(a1+a2+…+ann)•(b1+b2+…+bnn).当且仅当a1=a2=…=an或b1=b2=…=bn时等号成立.答案:证明不妨设a1≤a2≤…≤an,b1≥b2≥…≥bn.则由排序原理得:a1b1+a2b2+…+anbn=a1b1+a2b2+…+anbna1b1+a2b2+…+anbn≤a1b2+a2b3+…+anb1a1b1+a2b2+…+anbn≤a1b3+a2b4+…+an-1b1+anb2…a1b1+a2b2+…+anbn≤a1bn+a2b1+…+anbn-1.将上述n个式子相加,得:n(a1b1+a2b2+…+anbn)≤(a1+a2+…+an)(b1+b2+…+bn)上式两边除以n2,得:a1b1+a2b2+…+anbnn≤(a1+a2+…+ann)(b1+b2+…+bnn)等号当且仅当a1=a2=…=an或b1=b2=…=bn时成立.第3卷一.综合题(共50题)1.倾斜角为60°的直线的斜率为______.答案:因为直线的倾斜角为60°,所以直线的斜率k=tan60°=3.故为:3.2.若集合A={x|x2-4x-5<0,x∈Z},B={x|y=log0.5x>-3,x∈Z},记x0为抛掷一枚骰子出现的点数,则x0∈A∩B的概率等于______.答案:由x2-4x-5<0,x∈Z,解得:-1<x<5,x∈Z,∴x=0,1,2,3,4.即A={0,1,2,3,4},B={x|y=log0.5x>-3,x∈Z}={1,2,3,4,5,6,7},∴A∩B={1,2,3,4},而x0为抛掷一枚骰子出现的点数可能有6种,∴P=46=23,故为:23.3.四面体ABCD中,设M是CD的中点,则化简的结果是()
A.
B.
C.
D.答案:A4.直线x+ky=0,2x+3y+8=0和x-y-1=0交于一点,则k的值是()
A.
B.-
C.2
D.-2答案:B5.直线(t为参数)的倾斜角等于()
A.
B.
C.
D.答案:A6.已知直线l的参数方程为x=3+12ty=7+32t(t为参数),曲线C的参数方程为x=4cosθy=4sinθ(θ为参数).
(I)将曲线C的参数方程转化为普通方程;
(II)若直线l与曲线C相交于A、B两点,试求线段AB的长.答案:(I)由x=4cosθy=4sinθ得x2=16cos2θy2=16sin2θ故圆的方程为x2+y2=16.(II)把x=3+12ty=7+32t代入方程x2+y2=16,得t2+83t+36=0∴线段AB的长为|AB|=|t1-t2|=(t1+t2)2-4t1t2=43.7.
如图,平面内向量,的夹角为90°,,的夹角为30°,且||=2,||=1,||=2,若=λ+2
,则λ等()
A.
B.1
C.
D.2
答案:D8.执行如图的程序框图,若p=15,则输出的n=______.答案:当n=1时,S=2,n=2;当n=2时,S=6,n=3;当n=3时,S=14,n=4;当n=4时,S=30,n=5;故最后输出的n值为5故为:59.若不等式(﹣1)na<2+对任意n∈N*恒成立,则实数a的取值范围是
[
]A.[﹣2,)
B.(﹣2,)
C.[﹣3,)
D.(﹣3,)答案:A10.如图放置的等腰直角三角形ABC薄片(∠ACB=90°,AC=2)沿x轴滚动,设顶点A(x,y)的轨迹方程是y=f(x),则f(x)在其相邻两个零点间的图象与x轴所围区域的面积为______.答案:作出点A的轨迹中相邻两个零点间的图象,如图所示.其轨迹为两段圆弧,一段是以C为圆心,CA为半径的四分之一圆弧;一段是以B为圆心,BA为半径,圆心角为3π4的圆弧.其与x轴围成的图形的面积为12×22×π2+12×2×2+12×(22)2×3π4=2+4π.故为:2+4π.11.A、B、C、D、E五种不同的商品要在货架上排成一排,其中A、B两种商品必须排在一起,而C、D两种商品不能排在一起,则不同的排法共有______种.答案:先把A、B进行排列,有A22种排法,再把A、B看成一个元素,和E进行排列,有A22种排法,最后再把C、D插入进去,有A23种排法,根据分步计数原理可得A22A22A23=24种排法.故为:2412.若矩阵满足下列条件:①每行中的四个数所构成的集合均为{1,2,3,4};②四列中有且只有两列的上下两数是相同的.则这样的不同矩阵的个数为()
A.24
B.48
C.144
D.288答案:C13.已知点P在曲线C1:x216-y29=1上,点Q在曲线C2:(x-5)2+y2=1上,点R在曲线C3:(x+5)2+y2=1上,则|PQ|-|PR|的最大值是()A.6B.8C.10D.12答案:由双曲线的知识可知:C1x216-y29=1的两个焦点分别是F1(-5,0)与F2(5,0),且|PF1|+|PF2|=8而这两点正好是两圆(x+5)2+y2=1和(x-5)2+y2=1的圆心,两圆(x+5)2+y2=4和(x-5)2+y2=1的半径分别是r1=1,r2=1,∴|PQ|max=|PF1|+1,|PR|min=|PF2|-1,∴|PQ|-|PR|的最大值为:(|PF1|+1)-(|PF2|-1)=|PF1|+|PF2|+2=8+2=10,故选C14.AB是圆O的直径,EF切圆O于C,AD⊥EF于D,AD=2,AB=6,则AC长为______.答案:连接AC、BC,则∠ACD=∠ABC,又因为∠ADC=∠ACB=90°,所以△ACD~△ACB,所以ADAC=ACAB,解得AC=23.故填:23.15.3i(1+i)2的虚部等于______.答案:3i(1+i)2=2,所以其虚部等于0,故为016.某校欲在一块长、短半轴长分别为10米与8米的椭圆形土地中规划一个矩形区域搞绿化,则在此椭圆形土地中可绿化的最大面积为()平方米.
A.80
B.160
C.320
D.160答案:B17.为了了解某社区居民是否准备收看奥运会开幕式,某记者分别从社区的60~70岁,40~50岁,20~30岁的三个年龄段中的160,240,X人中,采用分层抽样的方法共抽出了30人进行调查,若60~70岁这个年龄段中抽查了8人,那么x为()
A.90
B.120
C.180
D.200答案:D18.等边三角形ABC中,P在线段AB上,且AP=λAB,若CP•AB=PA•PB,则实数λ的值是______.答案:设等边三角形ABC的边长为1.则|AP|=λ|AB|=λ,|PB|=1-λ.(0<λ<1)CP•AB=(CA+AP)•AB=CA•AB+
AP•AB=PA•PB,所以1×1×cos120°+λ×1×cos0°=λ×(1-λ)cos180°.化简-12+λ=-λ(1-λ),整理λ2-2λ+12=0,解得λ=2-22(λ=2+22>1舍去)故为:2-2219.春天到了,曲曲折折的荷塘上面,弥望的是田田的叶子,已知每一天荷叶覆盖水面的面积是前一天的2倍,若荷叶20天可以完全长满池塘水面,当荷叶刚好覆盖水面面积的一半时,荷叶已生长了()A.10天B.15天C.19天D.20天答案:设荷叶覆盖水面的初始面积为a,则x天后荷叶覆盖水面的面积y=a?2x(x∈N+),根据题意,令2(a?2x)=a?220,解得x=19,故选C.20.已知矩阵M=2a21,其中a∈R,若点P(1,-2)在矩阵M的变换下得到点P'(-4,0)
(1)求实数a的值;
(2)求矩阵M的特征值及其对应的特征向量.答案:(1)由2a211-2=-40,∴2-2a=-4⇒a=3.(2)由(1)知M=2321,则矩阵M的特征多项式为f(λ)=.λ-2-3-2λ-1.=(λ-2)(λ-1)-6=λ2-3λ-4令f(λ)=0,得矩阵M的特征值为-1与4.当λ=-1时,(λ-2)x-3y=0-2x+(λ-1)y=0⇒x+y=0∴矩阵M的属于特征值-1的一个特征向量为1-1;当λ=4时,(λ-2)x-3y=0-2x+(λ-1)y=0⇒2x-3y=0∴矩阵M的属于特征值4的一个特征向量为32.21.某程序框图如图所示,若a=3,则该程序运行后,输出的x值为______.答案:由题意,x的初值为1,每次进行循环体则执行乘二加一的运算,执行4次后所得的结果是:1×2+1=3,3×2+1=7,7×2+1=15,15×2+1=31,故为:31.22.已知f(10x)=x,则f(5)=______.答案:令10x=5可得x=lg5所以f(5)=f(10lg5)=lg5故为:lg523.如果过点A(x,4)和(-2,x)的直线的斜率等于1,那么x=()A.4B.1C.1或3D.1或4答案:由于直线的斜率等于1,故1=4-xx-(-2),解得x=1故选B24.下表是x与y之间的一组数据,则y关于x的线性回归方程
必过点()
x
0
1
2
3
y
1
3
5
7
A.(2,2)
B.(1.5,2)
C.(1,2)
D.(1.5,4)答案:D25.分析法是从要证明的结论出发,逐步寻求使结论成立的()
A.充分条件
B.必要条件
C.充要条件
D.等价条件答案:A26.设f(n)=nn+1,g(n)=(n+1)n,n∈N*.
(1)当n=1,2,3,4时,比较f(n)与g(n)的大小.
(2)根据(1)的结果猜测一个一般性结论,并加以证明.答案:(1)当n=1时,nn+1=1,(n+1)n=2,此时,nn+1<(n+1)n,当n=2时,nn+1=8,(n+1)n=9,此时,nn+1<(n+1)n,当n=3时,nn+1=81,(n+1)n=64,此时,nn+1>(n+1)n,当n=4时,nn+1=1024,(n+1)n=625,此时,nn+1>(n+1)n,(2)根据上述结论,我们猜想:当n≥3时,nn+1>(n+1)n(n∈N*)恒成立.①当n=3时,nn+1=34=81>(n+1)n=43=64即nn+1>(n+1)n成立.②假设当n=k时,kk+1>(k+1)k成立,即:kk+1(k+1)k>1则当n=k+1时,(k+1)k+2(k+2)k+1=(k+1)?(k+1k+2)k+1>(k+1)?(kk+1)k+1=kk+1(k+1)k>1即(k+1)k+2>(k+2)k+1成立,即当n=k+1时也成立,∴当n≥3时,nn+1>(n+1)n(n∈N*)恒成立.27.在空间四边形OABC中,OA+AB-CB等于()A.OAB.ABC.OCD.AC答案:根据向量的加法、减法法则,得OA+AB-CB=OB-CB=OB+BC=OC.故选C.28.过点(1,0)且与直线x-2y-2=0平行的直线方程是()
A.x-2y-1=0
B.x-2y+1=0
C.2x+y-2=0
D.x+2y-1=0答案:A29.在等腰直角三角形ABC中,若M是斜边AB上的点,则AM小于AC的概率为()A.14B.12C.22D.32答案:记“AM小于AC”为事件E.在线段AB上截取,则当点M位于线段AC内时,AM小于AC,将线段AB看做区域D,线段AC看做区域d,于是AM小于AC的概率为:ACAB=22.故选C.30.已知a,b,c是三条直线,且a∥b,a与c的夹角为θ,那么b与c夹角是______.答案:∵a∥b,∴b与c夹角等于a与c的夹角又∵a与c的夹角为θ∴b与c夹角也为θ故为:θ31.
如图梯形A1B1C1D1是一平面图形ABCD的斜二侧直观图,若A1D1∥O′y′A1B1∥C1D1,A1B1=C1D1=2,A1D1=1,则四边形ABCD的面积是()
A.10
B.5
C.2
D.10
答案:B32.设z∈C,|z|≤2,则点Z表示的图形是()A.直线x=2的左半平面B.半径为2的圆面C.直线x=2的右半平面D.半径为2的圆答案:由题意z∈C,|z|≤2,由得数的几何意义知,点Z表示的图形是半径为2的圆面,故选B33.已知集合M={1,2,3},N={1,2,3,4},定义函数f:M→N.若点A(1,f(1))、B(2,f(2))、C(3,f(3)),△ABC的外接圆圆心为D,且
则满足条件的函数f(x)有()
A.6个
B.10个
C.12个
D.16个答案:C34.在△ABC中,∠ABC=60°,AB=2,BC=3,在BC上任取一点D,使△ABD为钝角三角形的概率为()A.16B.13C.12D.23答案:由题意知本题是一个等可能事件的概率,试验发生包含的事件对应的是长度为3的一条线段,满足条件的事件是组成钝角三角形,包括两种情况第一种∠ADB为钝角,这种
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 玻璃器具仓储管理制度
- 理论宣讲人员管理制度
- 瑜伽馆饮用水管理制度
- 甘肃现代医院管理制度
- 生产包装流程管理制度
- 下井安全管理制度
- 专科病历管理制度
- 业主拜访管理制度
- 业务质量管理制度
- 东莞公厕管理制度
- 燕罗智能网联汽车产业园建筑方案设计
- 特许经营合作合同
- 人教版九年级物理 14.3能量的转化和守恒(学习、上课课件)
- 江苏省徐州市贾汪区2023-2024学年七年级上学期期中考试数学试卷(含解析)
- 《港口粉尘在线监测系统建设技术规范(征求意见稿)》编制说明
- 品质巡检个人工作计划
- 医院采购委员会管理制度
- 设备管道 防腐保温施工方案
- DZ∕T 0214-2020 矿产地质勘查规范 铜、铅、锌、银、镍、钼(正式版)
- 校车安全行车记录表
- QCSG1204009-2015电力监控系统安全防护技术规范
评论
0/150
提交评论