版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年四川职业技术学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.执行如图所示的程序框图,输出的S值为()
A.2
B.4
C.8
D.16
答案:C2.执行下列程序后,输出的i的值是()
A.5
B.6
C.10
D.11答案:D3.构成多面体的面最少是(
)
A.三个
B.四个
C.五个
D.六个答案:B4.已知D是△ABC所在平面内一点,,则()
A.
B.
C.=
D.答案:A5.已知a=(1,-2,4),b=(1,0,3),c=(0,0,2).求
(1)a•(b+c);
(2)4a-b+2c.答案:解(1)∵b+c=(1,0,5),∴a•(b+c)=1×1+(-2)×0+4×5=21.(2)4a-b+2c=(4,-8,16)-(1,0,3)+(0,0,4)=(3,-8,17).6.将正方形ABCD沿对角线BD折起,使平面ABD⊥平面CBD,E是CD中点,则∠AED的大小为()
A.45°
B.30°
C.60°
D.90°答案:D7.有50件产品编号从1到50,现在从中抽取抽取5件检验,用系统抽样确定所抽取的编号为()
A.5,10,15,20,25
B.5,15,20,35,40
C.5,11,17,23,29
D.10,20,30,40,50答案:D8.在极坐标系中,若点A(ρ0,π3)(ρ0≠0)是曲线ρ=2cosθ上的一点,则ρ0=______.答案:∵点A(ρ0,π3)(ρ0≠0)是曲线ρ=2cosθ上的一点,∴ρ0=2cosπ3.∴ρ0=2×12=1.故为:1.9.若将方程|(x-4)2+y2-(x+4)2+y2|=6化简为x2a2-y2b2=1的形式,则a2-b2=______.答案:方程|(x-4)2+y2-(x+4)2+y2|=6,表示点(x,y)到(4,0),(-4,0)两点距离差的绝对值为6,∴轨迹为以(4,0),(-4,0)为焦点的双曲线,方程为x29-y27=1∴a2-b2=2故为:210.若集合M={a,b,c}中的元素是△ABC的三边长,则△ABC一定不是()
A.锐角三角形
B.直角三角形
C.钝角三角形
D.等腰三角形答案:D11.下列各量:①密度
②浮力
③风速
④温度,其中是向量的个数有()个.A.1B.3C.2D.4答案:根据向量的定义,知道需要同时具有大小和方向两个要素才是向量,在所给的四个量中,密度只有大小,浮力既有大小又有方向,风速既有大小又有方向,温度只有大小没有方向综上可知向量的个数是2个,故选C.12.设平面α内两个向量的坐标分别为(1,2,1)、(-1,1,2),则下列向量中是平面的法向量的是()
A.(-1,-2,5)
B.(-1,1,-1)
C.(1,1,1)
D.(1,-1,-1)答案:B13.设集合A={1,3},集合B={1,2,4,5},则集合A∪B=()A.{1,3,1,2,4,5}B.{1}C.{1,2,3,4,5}D.{2,3,4,5}答案:∵集合A={1,3},集合B={1,2,4,5},∴集合A∪B={1,2,3,4,5}.故选C.14.小王通过英语听力测试的概率是,他连续测试3次,那么其中恰有1次获得通过的概率是()
A.
B.
C.
D.答案:A15.圆心在x轴上,且过两点A(1,4),B(3,2)的圆的方程为______.答案:设圆心坐标为(m,0),半径为r,则圆的方程为(x-m)2+y2=r2,∵圆经过两点A(1,4)、B(3,2)∴(1-m)2+42=r2(3-m)2+22=r2解得:m=-1,r2=20∴圆的方程为(x+1)2+y2=20故为:(x+1)2+y2=2016.已知数列{an}中,a1=1,an+1=an+n,若利用如图所示的种序框图计算该数列的第10项,则判断框内的条件是()
A.n≤8?
B.n≤9?
C.n≤10?
D.n≤11?
答案:B17.如图,弯曲的河流是近似的抛物线C,公路l恰好是C的准线,C上的点O到l的距离最近,且为0.4千米,城镇P位于点O的北偏东30°处,|OP|=10千米,现要在河岸边的某处修建一座码头,并修建两条公路,一条连接城镇,一条垂直连接公路l,以便建立水陆交通网.
(1)建立适当的坐标系,求抛物线C的方程;
(2)为了降低修路成本,必须使修建的两条公路总长最小,请给出修建方案(作出图形,在图中标出此时码头Q的位置),并求公路总长的最小值(精确到0.001千米)答案:(1)过点O作准线的垂线,垂足为A,以OA所在直线为x轴,OA的垂直平分线为y轴,建立平面直角坐标系…(2分)由题意得,p2=0.4…(4分)所以,抛物线C:y2=1.6x…(6分)(2)设抛物线C的焦点为F由题意得,P(5,53)…(8分)根据抛物线的定义知,公路总长=|QF|+|QP|≥|PF|≈9.806…(12分)当Q为线段PF与抛物线C的交点时,公路总长最小,最小值为9.806千米…(16分)18.一圆台上底半径为5cm,下底半径为10cm,母线AB长为20cm,其中A在上底面上,B在下底面上,从AB中点M,拉一条绳子,绕圆台的侧面一周转到B点,则这条绳子最短长为______cm.答案:画出圆台的侧面展开图,并还原成圆锥展开的扇形,且设扇形的圆心为O.有图得:所求的最短距离是MB',设OA=R,圆心角是α,则由题意知,10π=αR
①,20π=α(20+R)
②,由①②解得,α=π2,R=20,∴OM=30,OB'=40,则MB'=50cm.故为:50cm.19.若直线l:ax+by=1与圆C:x2+y2=1有两个不同交点,则点P(a,b)与圆C的位置关系是(
)
A.点在圆上
B.点在圆内
C.点在圆外
D.不能确定答案:C20.已知斜二测画法得到的直观图△A′B′C′是正三角形,画出原三角形的图形.答案:由斜二测法知:B′C′不变,即BC与B′C′重合,O′A′由倾斜45°变为与x轴垂直,并且O′A′的长度变为原来的2倍,得到OA,由此得到原三角形的图形ABC.21.若不等式(﹣1)na<2+对任意n∈N*恒成立,则实数a的取值范围是
[
]A.[﹣2,)
B.(﹣2,)
C.[﹣3,)
D.(﹣3,)答案:A22.将包含甲、乙两人的4位同学平均分成2个小组参加某项公益活动,则甲、乙两名同学分在同一小组的概率为()
A.
B.
C.
D.答案:C23.已知两个点M(-5,0)和N(5,0),若直线上存在点P,使|PM|-|PN|=6,则称该直线为“B型直线”给出下列直线①y=x+1;②y=2;③y=x④y=2x+1;其中为“B型直线”的是()
A.①③
B.①②
C.③④
D.①④答案:B24.直线2x-y=7与直线3x+2y-7=0的交点是()
A.(3,-1)
B.(-1,3)
C.(-3,-1)
D.(3,1)答案:A25.已知曲线C1,C2的极坐标方程分别为ρcosθ=3,ρ=4cosθ(ρ≥0,0≤θ<π2),则曲线C1与C2交点的极坐标为______.答案:我们通过联立解方程组ρcosθ=3ρ=4cosθ(ρ≥0,0≤θ<π2)解得ρ=23θ=π6,即两曲线的交点为(23,π6).故填:(23,π6).26.某重点高中高二历史会考前,进行了五次历史会考模拟考试,某同学在这五次考试中成绩如下:90,90,93,94,93,则该同学的这五次成绩的平均值和方差分别为()
A.92,2
B.92,2.8
C.93,2
D.93,2.8答案:B27.设随机变量X服从B(6,),则P(X=3)的值是()
A.
B.
C.
D.答案:B28.如图表示空间直角坐标系的直观图中,正确的个数为()
A.1个
B.2个
C.3个
D.4个答案:C29.已知a=20.5,,,则a,b,c的大小关系是()
A.a>c>b
B.a>b>c
C.c>b>a
D.c>a>b答案:B30.若命题P(n)对n=k成立,则它对n=k+2也成立,又已知命题P(2)成立,则下列结论正确的是()
A.P(n)对所有自然数n都成立
B.P(n)对所有正偶数n成立
C.P(n)对所有正奇数n都成立
D.P(n)对所有大于1的自然数n成立答案:B31.圆的极坐标方程是ρ=2cosθ+2sinθ,则其圆心的极坐标是()
A.(2,)
B.(2,)
C.(1,)
D.(1,)答案:A32.已知=(3,4),=(5,12),与则夹角的余弦为()
A.
B.
C.
D.答案:A33.(理)下列以t为参数的参数方程中表示焦点在y轴上的椭圆的是()
A.
B.(a>b>0)
C.
D.
答案:C34.已知随机变量X~B(n,0.8),D(X)=1.6,则n的值是()
A.8
B.10
C.12
D.14答案:B35.不等式x+x3≥0的解集是(
)。答案:{x|x≥0}36.已知a=5-12,则不等式logax>loga5的解集是______.答案:∵0<a<1,∴f(x)=logax在(0,+∞)上单调递减∵logax>loga5∴0<x<5故为:(0,5)37.一个总体中有100个个体,随机编号为0,1,2,3,…,99,依编号顺序平均分成10个小组,组号依次为1,2,3,…10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m,那么在第k组中抽取的号码个位数字与m+k号码的个位数字相同,若m=6,则在第7组中抽取的号码是()
A.66
B.76
C.63
D.73答案:C38.直线y=kx+1与圆x2+y2=4的位置关系是()
A.相交
B.相切
C.相离
D.与k的取值有关答案:A39.若向量=(1,λ,2),=(2,-1,2)且与的夹角余弦为,则λ等于(
)
A.2
B.-2
C.-2或
D.2或答案:C40.已知点G是△ABC的重心,点P是△GBC内一点,若,则λ+μ的取值范围是()
A.
B.
C.
D.(1,2)答案:B41.已知向量a=(2,4),b=(1,1),若向量b⊥(a+λb),则实数λ的值是
______.答案:a+λb=(2,4)+λ(1,1)=(2+λ,4+λ).∵b⊥(a+λb),∴b•(a+λb)=0,即(1,1)•(2+λ,4+λ)=2+λ+4+λ=6+2λ=0,∴λ=-3.故:-342.用辗转相除法或者更相减损术求三个数的最大公约数.答案:同解析解析:解:324=243×1+81
243=81×3+0
则324与243的最大公约数为81又135=81×1+54
81=54×1+27
54=27×2+0则81与135的最大公约数为27所以,三个数324、243、135的最大公约数为27.另法为所求。43.已知△ABC三个顶点的坐标为A(1,3)、B(-1,-1)、C(-3,5),求这个三角形外接圆的方程.答案:设圆的方程为(x-a)2+(y-b)2=r2,则(1-a)2+(3-b)2=r2(-1-a)2+(-1-b)2=r2(-3-a)2+(5-b)2=r2,整理得a+2b-2=02a-b+6=0,解之得a=-2,b=2,可得r2=10,因此,这个三角形外接圆的方程为(x+2)2+(y-2)2=10.44.在同一坐标系中,y=ax与y=a+x表示正确的是()A.
B.
C.
D.
答案:由y=x+a得斜率为1排除C,由y=ax与y=x+a中a同号知若y=ax递增,则y=x+a与y轴的交点在y轴的正半轴上,由此排除B;若y=ax递减,则y=x+a与y轴的交点在y轴的负半轴上,由此排除D,知A是正确的;故选A.45.设、、是三角形的边长,求证:
≥答案:证明见解析解析:证明:由不等式的对称性,不防设≥≥,则≥左式-右式≥≥≥046.如图,花园中间是喷水池,喷水池周围的A、B、C、D区域种植草皮,要求相邻的区域种不同颜色的草皮,现有4种不同颜色的草皮可供选用,则共有______种不同的种植方法(以数字作答).答案:若AD相同,有4×(3+3×2)种种植方法,若AD不同,有4×3×(2+2×1)种种植方法∴共有4×(3+3×2)+4×3×(2+2×1)=36+48=84种不同方法.故为84.47.在半径为1的圆内任取一点,以该点为中点作弦,则所做弦的长度超过3的概率是()A.15B.14C.13D.12答案:如图,C是弦AB的中点,在直角三角形AOC中,AC=12AB=32,OA=1,∴OC=12.∴符合条件的点必须在半径为12圆内,则所做弦的长度超过3的概率是P=S小圆S大圆=(12)2ππ=14.故选B.48.设a、b、c均为正数.求证:≥.答案:证明略解析:证明
方法一
∵+3=="(a+b+c)"=[(a+b)+(a+c)+(b+c)]≥
(·+·+·)2=.∴+≥.方法二
令,则∴左边=≥=.∴原不等式成立.49.在(1+x)3+(1+x)4…+(1+x)7的展开式中,含x项的系数是______.(用数字作答)答案:(1+x)3+(1+x)4…+(1+x)7的展开式中,含x项的系数是C31+C41+C51+…+C71=25故为:2550.到两互相垂直的异面直线的距离相等的点,在过其中一条直线且平行于另一条直线的平面内的轨迹是()
A.直线
B.椭圆
C.抛物线
D.双曲线答案:D第2卷一.综合题(共50题)1.若随机向一个半径为1的圆内丢一粒豆子(假设该豆子一定落在圆内),则豆子落在此圆内接正三角形内的概率是______.答案:∵圆O是半径为R=1,圆O的面积为πR2=π则圆内接正三角形的边长为3,而正三角形ABC的面积为343,∴豆子落在正三角形ABC内的概率P=334π=334π故为:334π2.如图:在平行六面体ABCD-A1B1C1D1中,M为A1C1与B1D1的交点.若则下列向量中与相等的向量是()
A.
B.
C.
D.
答案:A3.在空间直角坐标系0xyz中有两点A(2,5,1)和B(2,4,-1),则|AB|=______.答案:∵点A(2,5,1)和B(2,4,-1),∴AB=(0,-1,-2).∴|AB|=0+(-1)2+(-2)2=5.故为5.4.巳知椭圆{xn}与{yn}的中心在坐标原点,长轴在x轴上,离心率为32,且G上一点到G的两个焦点的距离之和为12,则椭圆G的方程为______.答案:由题设知e=32,2a=12,∴a=6,b=3,∴所求椭圆方程为x236+y29=1.:x236+y29=1.5.用数学归纳法证明“<n(n∈N*,n>1)”时,由n=k(k>1)不等式成立,推证n=k+1时,左边应增加的项数是()
A.2k-1
B.2k-1
C.2k
D.2k+1答案:C6.由1、2、3可以组成______个没有重复数字的两位数.答案:没有重复数字的两位数共有3×2=6个故为:67.若a,b∈{2,3,4,5,7},则可以构成不同的椭圆的个数为()
A.10
B.20
C.5
D.15答案:B8.已知向量a=(2,4),b=(1,1),若向量b⊥(a+λb),则实数λ的值是
______.答案:a+λb=(2,4)+λ(1,1)=(2+λ,4+λ).∵b⊥(a+λb),∴b•(a+λb)=0,即(1,1)•(2+λ,4+λ)=2+λ+4+λ=6+2λ=0,∴λ=-3.故:-39.赋值语句M=M+3表示的意义()
A.将M的值赋给M+3
B.将M的值加3后再赋给M
C.M和M+3的值相等
D.以上说法都不对答案:B10.如图程序框图表达式中N=______.答案:该程序按如下步骤运行①N=1×2,此时i变成3,满足i≤5,进入下一步循环;②N=1×2×3,此时i变成4,满足i≤5,进入下一步循环;③N=1×2×3×4,此时i变成5,满足i≤5,进入下一步循环;④N=1×2×3×4×5,此时i变成6,不满足i≤5,结束循环体并输出N的值因此,最终输出的N等于1×2×3×4×5=120故为:12011.下列向量组中,能作为表示它们所在平面内所有向量的基底的是()A.a=(0,0),b=(1,-2)B.a=(1,-2),b=(2,-4)C.a=(3,5),b=(6,10)D.a=(2,-3),b=(6,9)答案:可以作为基底的向量需要是不共线的向量,A中一个向量是零向量,两个向量共线,不合要求B中两个向量是a=12b,两个向量共线,C项中的两个向量也共线,故选D.12.已知直线的倾斜角为α,且cosα=45,则此直线的斜率是______.答案:∵直线l的倾斜角为α,cosα=45,∴α的终边在第一象限,故sinα=35故l的斜率为tanα=sinαcosα=34故为:3413.已知命题p:“△ABC是等腰三角形”,命题q:“△ABC是直角三角形”,则命题“△ABC是等腰直角三角形”的形式是()A.p或qB.p且qC.非pD.以上都不对答案:因为“△ABC是等腰直角三角形”即为“△ABC是等腰且直角三角形”,所以命题“△ABC是等腰直角三角形”的形式是p且q,故选B.14.设a1,a2,…,an为正数,求证:a21a2+a22a3+…+a2n-1an+a2na1≥a1+a2+…+an.答案:证明:不妨设a1>a2>…>an>0,则a12>a22>…>an2,1a1<1a2<…1an由排序原理:乱序和≥反序和,可得:a21a2+a22a3+…+a2n-1an+a2na1≥a12a1+a22a2+…+an2an=a1+a2+…+an.15.已知正方体ABCD-A1B1C1D1中,M、N分别为BB1、C1D1的中点,建立适当的坐标系,求平面AMN的法向量.答案:(-3,2,-4)为平面AMN的一个法向量.解析:以D为原点,DA、DC、DD1所在直线为坐标轴建立空间直角坐标系.(如图所示).设棱长为1,则A(1,0,0),M(1,1,),N(0,,1).∴=(0,1,),=(-1,,1).设平面AMN的法向量n=(x,y,z)∴令y=2,∴x=-3,z=-4.∴n=(-3,2,-4).∴(-3,2,-4)为平面AMN的一个法向量.16.(几何证明选讲选做题)如图,⊙O中,直径AB和弦DE互相垂直,C是DE延长线上一点,连接BC与圆0交于F,若∠CFE=α(α∈(0,π2)),则∠DEB______.答案:∵直径AB和弦DE互相垂直∴AB平分DE∴BD=BE,∠D=∠BED∵DEFB四点共圆∴∠EFC=∠D=α∴∠DEB=α故为:α17.直三棱柱ABC-A1B1C1中,若CA=a,CB=b,CC1=c,则A1B=()A.a+b-cB.a-b+cC.-a+b+cD.-a+b-c答案:A1B=A1A+AB=-CC1+CB-CA=-c+b-a故选D.18.设α∈[0,π],则方程x2sinα+y2cosα=1不能表示的曲线为()
A.椭圆
B.双曲线
C.抛物线
D.圆答案:C19.A、B为球面上相异两点,则通过A、B两点可作球的大圆有()A.一个B.无穷多个C.零个D.一个或无穷多个答案:如果A,B两点为球面上的两极点(即球直径的两端点)则通过A、B两点可作球的无数个大圆如果A,B两点不是球面上的两极点(即球直径的两端点)则通过A、B两点可作球的一个大圆故选:D20.已知二阶矩阵A=2ab0属于特征值-1的一个特征向量为1-3,求矩阵A的逆矩阵.答案:由矩阵A属于特征值-1的一个特征向量为α1=1-3,可得2ab01-3=-1-3,得2-3a=-1b=3即a=1,b=3;
…(3分)解得A=2130,…(8分)∴A逆矩阵是A-1=dad-bc-bad-bc-cad-bcaad-bc=0131-23.21.如图是容量为150的样本的频率分布直方图,则样本数据落在[6,10)内的频数为()A.12B.48C.60D.80答案:根据频率分布直方图,样本数据落在[6,10)内的频数为0.08×4×150=48故选B.22.已知方程(1+k)x2-(1-k)y2=1表示焦点在x轴上的双曲线,则k的取值范围为(
)
A.-1<k<1
B.k>1
C.k<-1
D.k>1或k<-1答案:A23.设a=log32,b=log23,c=,则()
A.c<b<a
B.a<c<b
C.c<a<b
D.b<c<a答案:C24.向面积为S的△ABC内任投一点P,则△PBC的面积小于S2的概率为______.答案:记事件A={△PBC的面积小于S2},基本事件空间是三角形ABC的面积,(如图)事件A的几何度量为图中阴影部分的面积(DE是三角形的中位线),因为阴影部分的面积是整个三角形面积的34,所以P(A)=阴影部分的面积三角形ABC的面积=34.故为:34.25.如图,PT是⊙O的切线,切点为T,直线PA与⊙O交于A、B两点,∠TPA的平分线分别交直线TA、TB于D、E两点,已知PT=2,PB=3,则PA=______,TEAD=______.答案:由题意,如图可得PT2=PB×PA又由已知PT=2,PB=3,故可得PA=433又TPA的平分线分别交直线TA、TB于D、E两点,可得∠TPE=∠APD又由弦切角定理知∠PTE=∠PAD故有△PET≈△PDA故有TE:AD=PT:PA=3:2故为433,3226.半径为5,圆心在y轴上,且与直线y=6相切的圆的方程为______.答案:如图所示,因为半径为5,圆心在y轴上,且与直线y=6相切,所以可知有两个圆,上圆圆心为(0,11),下圆圆心为(0,1),所以圆的方程为x2+(y-1)2=25或x2+(y-11)2=25.27.点P(x,y)是椭圆2x2+3y2=12上的一个动点,则x+2y的最大值为______.答案:把椭圆2x2+3y2=12化为标准方程,得x26+y24=1,∴这个椭圆的参数方程为:x=6cosθy=2sinθ,(θ为参数)∴x+2y=6cosθ+4sinθ,∴(x+2y)max=6+16=22.故为:22.28.函数y=f(x)的图象如图所示,在区间[a,b]上可找到n(n≥2)个不同的数x1,x2,…xn,使得f(x1)x1=f(x2)x2=…=f(xn)xn,则n的取值范围为()A.{2,3}B.{2,3,4}C.{3,4}D.{3,4,5}答案:令y=f(x),y=kx,作直线y=kx,可以得出2,3,4个交点,故k=f(x)x(x>0)可分别有2,3,4个解.故n的取值范围为2,3,4.故选B.29.直线被圆x2+y2=9截得的弦长为(
)
A.
B.
C.
D.答案:B30.命题“正数的绝对值等于它本身”的逆命题是______.答案:将命题“正数的绝对值等于它本身”改写为“若一个数是正数,则其绝对值等于它本身”,所以逆命题是“若一个数的绝对值等于它本身,则这个数是正数”,即“绝对值等于它本身的数是正数”.故为:“绝对值等于它本身的数是正数”.31.算法:第一步
x=a;第二步
若b>x则x=b;第三步
若c>x,则x=c;
第四步
若d>x,则x=d;
第五步
输出x.则输出的x表示()A.a,b,c,d中的最大值B.a,b,c,d中的最小值C.将a,b,c,d由小到大排序D.将a,b,c,d由大到小排序答案:x=a,若b>x,则b>a,x=b,否则x=a,即x为a,b中较大的值;若c>x,则x=c,否则x仍为a,b中较大的值,即x为a,b,c中较大的值;若d>x,则x=d,否则x仍为a,b,c中较大的值,即x为a,b,c中较大的值.故x为a,b,c,d中最大的数,故选A.32.当x∈N+时,用“>”“<”或“=”填空:
(12)x______1,2x______1,(12)x______2x,(12)x______(13)x,2x______3x.答案:根据指数函数的性质得,当x∈N+时,(12)x<1,2x>1,则2x>(12)x,且2x<3x,则(12)x>(13)x,故为:<、>、<、>、<.33.在直径为4的圆内接矩形中,最大的面积是()
A.4
B.2
C.6
D.8答案:D34.在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是()
A.若k2的观测值为k=6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病
B.从独立性检验可知,有99%的把握认为吸烟与患肺病有关时,我们说某人吸烟,那么他有99%的可能患有肺病
C.若从统计量中求出有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误
D.以上三种说法都不正确答案:D35.袋中装着标有数字1,2,3,4,5的小球各2个,现从袋中任意取出3个小球,假设每个小球被取出的可能性都相等.
(Ⅰ)求取出的3个小球上的数字分别为1,2,3的概率;
(Ⅱ)求取出的3个小球上的数字恰有2个相同的概率;
(Ⅲ)用X表示取出的3个小球上的最大数字,求P(X≥4)的值.答案:(I)记“取出的3个小球上的数字分别为1,2,3”的事件记为A,则P(A)=C12C12C12C310=8120=115;(Ⅱ)记“取出的3个小球上的数字恰有2个相同”的事件记为A,则P(B)=C15C18C310=40120=13;(Ⅲ)用X表示取出的3个小球上的最大数字,则X≥4包含取出的3个小球上的最大数字为4或5两种情况,当取出的3个小球上的最大数字为4时,P(X=4)=C12C26+C22C16C310=36120=310;当取出的3个小球上的最大数字为5时,P(X=5)=C12C28+C22C18C310=64120=815故P(X≥4)=56.36.计算:x10÷x5=______.答案:根据有理数指数幂的运算性质:x10÷x5=x5故为:x537.从装有2个红球和2个黒球的口袋内任取2个球,那么互斥而不对立的两个事件是()
A.至少有一个黒球与都是红球
B.至少有一个黒球与都是黒球
C.至少有一个黒球与至少有1个红球
D.恰有1个黒球与恰有2个黒球答案:D38.某程序图如图所示,该程序运行后输出的结果是______.答案:由图知运算规则是对S=2S,故第一次进入循环体后S=21,第二次进入循环体后S=22=4,第三次进入循环体后S=24=16,第四次进入循环体后S=216>2012,退出循环.故该程序运行后输出的结果是:k=4+1=5.故为:539.将y=sin2x的图象向右按作最小的平移,使平移后的图象在[k,k+](kz)上递减,试求平移后的函数解析式和.答案:y=-cos2x,
=(,0)解析:将y=sin2x的图象向右按作最小的平移,使平移后的图象在[k,k+](kz)上递减,试求平移后的函数解析式和.40.已知点E在△ABC所在的平面且满足AB+AC=λAE(λ≠0),则点E一定落在()A.BC边的垂直平分线上B.BC边的中线所在的直线上C.BC边的高线所在的直线上D.BC边所在的直线上答案:因为点E在△ABC所在的平面且满足AB+AC=λAE(λ≠0)所以,根据平行四边形法则,E一定落在这个平行四边形的起点为A的对角线上,又平行四边形对角线互相平分,所以E一定落在BC边的中线所在的直线上,故选B.41.某校有老师200人,男学生1200人,女学生1000人.现用分层抽样的方法从所有师生中抽取一个容量为n的样本;已知从女学生中抽取的人数为80人,则n=______.答案:∵某校有老师200人,男学生1
200人,女学生1
000人.∴学校共有200+1200+1000人由题意知801000=n200+1200+1000,∴n=192.故为:19242.已知函数y=与y=ax2+bx,则下列图象正确的是(
)
A.
B.
C.
D.
答案:C43.直线y=3x+1的斜率是()A.1B.2C.3D.4答案:因为直线y=3x+1是直线的斜截式方程,所以直线的斜率是3.故选C.44.设P、Q为两个非空实数集,定义集合P+Q={a+b|a∈P,b∈Q}.若P={0,2,5},Q={1,2,6},则P+Q中元素的个数是()A.6B.7C.8D.9答案:∵P={0,2,5},Q={1,2,6},P+Q={a+b|a∈P,b∈Q}∴当a=0时,b∈Q,P+Q={1,2,6}当a=2时,b∈Q,P+Q={3,4,8}当a=5时,b∈Q,P+Q={6,7,11}∴P+Q={1,2,3,4,6,7,8,11}故选C45.某校为提高教学质量进行教改实验,设有试验班和对照班.经过两个月的教学试验,进行了一次检测,试验班与对照班成绩统计如下的2×2列联表所示(单位:人),则其中m=______,n=______.
80及80分以下80分以上合计试验班321850对照班12m50合计4456n答案:由题意,18+m=56,50+50=n,∴m=38.n=100,故为38,010.46.一位母亲记录了她的儿子3~9岁的身高数据,并由此建立身高与年龄的回归模型为y=7.19x+73.93,用这个模型预测她的儿子10岁时的身高,则正确的叙述是()A.身高一定是145.83
cmB.身高在145.83
cm以上C.身高在145.83
cm左右D.身高在145.83
cm以下答案:∵身高与年龄的回归模型为y=7.19x+73.93.∴可以预报孩子10岁时的身高是y=7.19x+73.93.=7.19×10+73.93=145.83则她儿子10岁时的身高在145.83cm左右.故选C.47.下列集合中,不同于另外三个集合的是()A.{0}B.{y|y2=0}C.{x|x=0}D.{x=0}答案:解析:A是列举法,C是描述法,对于B要注意集合的代表元素是y,故与A,C相同,而D表示该集合含有一个元素,即方程“x=0”.故选D.48.设m、n是两条不同的直线,α、β是两个不同的平面,则下列命题中正确的是()
A.若m∥n,m∥α,则n∥α
B.若α⊥β,m∥α,则m⊥β
C.若α⊥β,m⊥β,则m∥α
D.若m⊥n,m⊥α,n⊥β,则α⊥β答案:D49.如图,四面体ABCD中,点E是CD的中点,记=(
)
A.
B.
C.
D.
答案:B50.已知点A(1-t,1-t,t),B(2,t,t),则A、B两点距离的最小值为()
A.
B.
C.
D.2答案:A第3卷一.综合题(共50题)1.小王通过英语听力测试的概率是,他连续测试3次,那么其中恰有1次获得通过的概率是()
A.
B.
C.
D.答案:A2.在投掷两枚硬币的随机试验中,记“一枚正面朝上,一枚反面朝上”为事件A,“两枚正面朝上”为事件B,则事件A,B()
A.既是互斥事件又是对立事件
B.是对立事件而非互斥事件
C.既非互斥事件也非对立事件
D.是互斥事件而非对立事件答案:D3.已知回归直线的斜率的估计值是1.23,样本中心点为(4,5),若解释变量的值为10,则预报变量的值约为()A.16.3B.17.3C.12.38D.2.03答案:设回归方程为y=1.23x+b,∵样本中心点为(4,5),∴5=4.92+b∴b=0.08∴y=1.23x+0.08x=10时,y=12.38故选C.4.一个完整的程序框图至少应该包含______.答案:完整程序框图必须有起止框,用来表示程序的开始和结束,还要包括处理框,用来处理程序的执行.故为:起止框、处理框.5.从某校随机抽取了100名学生,将他们的体重(单位:kg)数据绘制成频率分布直方图(如图),由图中数据可知m=______,所抽取的学生中体重在45~50kg的人数是______.答案:由频率分步直方图知,(0.02+m+0.06+0.02)×5=1,∴m=0.1,∴所抽取的体重在45~50kg的人数是0.1×5×100=50人,故为:0.1;506.若数据x1,x2,x3…xn的平均数.x=5,方差σ2=2,则数据3x1+1,3x2+1,3x3+1…,3xn+1的方差为______.答案:∵x1,x2,x3,…,xn的方差为2,∴3x1+1,3x2+1,3x3+1,…,3xn+1的方差是32×2=18.故为:18.7.△ABC内接于以O为圆心的圆,且∠AOB=60°.则∠C=______.答案:∵△ABC内接于以O为圆心的圆,∴∠C=12∠AOB,∵∠AOB=60°∴∠C=12×60°=30°故为30°.8.如图所示,已知A、B、C三点不共线,O为平面ABC外的一点,若点M满足
(1)判断三个向量是否共面;
(2)判断点M是否在平面ABC内.答案:解:(1)由已知,得,∴向量共面.(2)由(1)知向量共面,三个向量的基线又有公共点M,∴M、A、B、C共面,即点M在平面ABC内,9.已知x与y之间的一组数据:
x0123y1357则y与x的线性回归方程为y=bx+a必过点______.答案:∵.x=0+1+2+34=1.5,.y=1+3+5+74=4,∴本组数据的样本中心点是(1.5,4),∴y与x的线性回归方程为y=bx+a必过点(1.5,4)故为:(1.5,4)10.下表是x与y之间的一组数据,则y关于x的线性回归方程
必过点()
x
0
1
2
3
y
1
3
5
7
A.(2,2)
B.(1.5,2)
C.(1,2)
D.(1.5,4)答案:D11.已知点A(1-t,1-t,t),B(2,t,t),则A、B两点距离的最小值为()
A.
B.
C.
D.2答案:A12.已知点M的极坐标为,下列所给四个坐标中能表示点M的坐标是()
A.
B.
C.
D.答案:D13.过点P(3,0)作一直线,它夹在两条直线l1:2x-y-3=0,l2:x+y+3=0之间的线段恰被点P平分,该直线的方程是()
A.4x-y-6=0
B.3x+2y-7=0
C.5x-y-15=0
D.5x+y-15=0答案:C14.直线上与点的距离等于的点的坐标是_______。答案:,或15.已知a,b
,c满足a+2c=b,且a⊥c,|a|=1,|c|=2,则|b|=______.答案:根据题意,a⊥c?a?c=0,则|b|2=(a+2c)2=a2+4c2=17,则|b|=17;故为17.16.某地位于甲、乙两条河流的交汇处,根据统计资料预测,今年汛期甲河流发生洪水的概率为0.25,乙河流发生洪水的概率为0.18(假设两河流发生洪水与否互不影响).现有一台大型设备正在该地工作,为了保护设备,施工部门提出以下三种方案:
方案1:运走设备,此时需花费4000元;
方案2:建一保护围墙,需花费1000元,但围墙只能抵御一个河流发生的洪水,当两河流同时发生洪水时,设备仍将受损,损失约56
000元;
方案3:不采取措施,此时,当两河流都发生洪水时损失达60000元,只有一条河流发生洪水时,损失为10000元.
(1)试求方案3中损失费ξ(随机变量)的分布列;
(2)试比较哪一种方案好.答案:(1)在方案3中,记“甲河流发生洪水”为事件A,“乙河流发生洪水”为事件B,则P(A)=0.25,P(B)=0.18,所以,有且只有一条河流发生洪水的概率为P(A?.B+.A?B)=P(A)?P(.B)+P(.A)?P(B)=0.34,两河流同时发生洪水的概率为P(A?B)=0.045,都不发生洪水的概率为P(.A?.B)=0.75×0.82=0.615,设损失费为随机变量ξ,则ξ的分布列为:(2)对方案1来说,花费4000元;对方案2来说,建围墙需花费1000元,它只能抵御一条河流的洪水,但当两河流都发生洪水时,损失约56000元,而两河流同时发生洪水的概率为P=0.25×0.18=0.045.所以,该方案中可能的花费为:1000+56000×0.045=3520(元).对于方案来说,损失费的数学期望为:Eξ=10000×0.34+60000×0.045=6100(元),比较可知,方案2最好,方案1次之,方案3最差.17.设直线过点(0,a),其斜率为1,且与圆x2+y2=2相切,则a的值为()
A.±
B.±2
C.±2
D.±4答案:B18.在极坐标系中,曲线ρ=4sinθ和ρcosθ=1相交于点A、B,则|AB|=______.答案:将其化为直角坐标方程为x2+y2-4y=0,和x=1,代入得:y2-4y+1=0,则|AB|=|y1-y2|=(y1+y2)2-4y1y1=(4)2-4=23.故为:23.19.点P从(2,0)出发,沿圆x2+y2=4按逆时针方向运动弧长到达点Q,则点Q的坐标为()
A.(-1,
)
B.(-,
-1)
C.(-1,
-)
D.(-,
1)答案:C20.已知四边形ABCD中,AB=12DC,且|AD|=|BC|,则四边形ABCD的形状是______.答案:∵AB=12DC,∴AB∥DC,且|AB|=12|DC|,即线段AB平行于线段CD,且线段AB长度是线段CD长度的一半∴四边形ABCD为以AB为上底、CD为下底的梯形,又∵|AD|=|BC|,∴梯形ABCD的两腰相等,因此四边形ABCD是等腰梯形.故为:等腰梯形21.某学校为了解该校1200名男生的百米成绩(单位:秒),随机选择了50名学生进行调查.如图是这50名学生百米成绩的频率分布直方图.根据样本的频率分布,估计这1200名学生中成绩在[13,15](单位:秒)内的人数大约是______.答案:∵由图知,前面两个小矩形的面积=0.02×1+0.18×1=0.2,即频率,∴1200名学生中成绩在[13,15](单位:s)内的人数大约是0.2×1200=240.故为240.22.设集合M={x|0<x≤3},N={x|0<x≤1},那么“a∈M”是“a∈N”的()
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件答案:B23.在茎叶图中,样本的中位数为______,众数为______.答案:由茎叶图可知样本数据共有6,出现在中间两位位的数据是20,24,所以样本的中位数是(20+24)÷2=22由茎叶图可知样本数据中出现最多的是12,样本的众数是12为:22,1224.用0、1、2、3、4、5这6个数字,可以组成无重复数字的五位偶数的个数为______(用数字作答).答案:末尾是0时,有A55=120种;末尾不是0时,有2种选择,首位有4种选择,中间有A44,故有2×4×A44=192种故共有120+192=312种.故为:31225.利用“直接插入排序法”给按从大到小的顺序排序,
当插入第四个数时,实际是插入哪两个数之间(
)A.与B.与C.与D.与答案:B解析:先比较与,得;把插入到,得;把插入到,得;26.4名学生参加3项不同的竞赛,则不同参赛方法有()A.34B.A43C.3!D.43答案:由题意知本题是一个分步计数问题,首先第一名学生从三种不同的竞赛中选有三种不同的结果,第二名学生从三种不同的竞赛中选有3种结果,同理第三个和第四个同学从三种竞赛中选都有3种结果,∴根据分步计数原理得到共有3×3×3×3=34故选A.27.一个路口的红绿灯,红灯的时间为30秒,黄灯的时间为5秒,绿灯的时间为40秒,一学生到达该路口时,见到红灯的概率是()A.25B.58C.115D.35答案:由题意知本题是一个那可能事件的概率,试验发生包含的事件是总的时间长度为30+5+40=75秒,设红灯为事件A,满足条件的事件是红灯的时间为30秒,根据等可能事件的概率得到出现红灯的概率P(A)=构成事件A的时间长度总的时间长度=3075=25.故选A.28.选修4-2:矩阵与变换
已知矩阵M=0110,N=0-110.在平面直角坐标系中,设直线2x-y+1=0在矩阵MN对应的变换作用下得到曲线F,求曲线F的方程.答案:由题设得MN=01100-111=100-1.…(3分)设(x,y)是直线2x-y+1=0上任意一点,点(x,y)在矩阵MN对应的变换作用下变为(x′,y′),则有1001xy=x′y′,即x-y=x′y′,所以x=x′y=-y′…(7分)因为点(x,y)在直线2x-y+1=0上,从而2x′-(-y′)+1=0,即2x′+y′+1=0.所以曲线F的方程为2x+y+1=0.
…(10分)29.某射击运动员在四次射击中分别打出了9,x,10,8环的成绩,已知这组数据的平均数为9,则这组数据的方差是______.答案:∵四次射击中分别打出了10,x,10,8环,这组数据的平均数为9,∴9+x+10+84,∴x=9,∴这组数据的方差是14(00+1+1)=12,故为:1230.用数学归纳法证明“<n+1
(n∈N*)”.第二步证n=k+1时(n=1已验证,n=k已假设成立),这样证明:=<=(k+1)+1,所以当n=k+1时,命题正确.此种证法()
A.是正确的
B.归纳假设写法不正确
C.从k到k+1推理不严密
D.从k到k+1推理过程未使用归纳假设答案:D31.在△ABC所在平面存在一点O使得OA+OB+OC=0,则面积S△OBCS△ABC=______.答案:∵OA+OB+OC=0,∴OB+
OC=AO,设OB+OC=OD∴O是AD的中点,要求面积之比的两个三角形是同底的三角形,∴面积之比等于三角形的高之比,∴比值是13,故为:13.32.已知,求证:答案:证明略解析:∵
∴①
又∵②
③由①②③得
∴,又不等式①、②、③中等号成立的条件分别为,,故不能同时成立,从而.33.已知椭圆C的中心在原点,焦点F1,F2在轴上,离心率e=22,且经过点M(0,2),求椭圆c的方程答案:若焦点在x轴很明显,过点M(0,2)点M即椭圆的上端点,所以b=2ca=22c2=12a2∵a2=b2+c2所以b2=c2=2a2=4椭圆:x24+y22=1若焦点在y轴,则a=2,ca=22,c=1∴b=1椭圆方程:x22+y2=1.34.如图,设a,b,c,d>0,且不等于1,y=ax,y=bx,y=cx,y=dx在同一坐标系中的图象如图,则a,b,c,d的大小顺序()
A.a<b<c<d
B.a<b<d<c
C.b<a<d<c
D.b<a<c<d
答案:C35.将两个数a=8,b=17交换,使a=17,b=8,下面语句正确一组是()
A.
B.
C.
D.
答案:B36.若a=()x,b=x3,c=logx,则当x>1时,a,b,c的大小关系式(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年行政车辆租赁合规合同样本
- 2024年度健康养生产品销售结算与市场拓展合同3篇
- 2024年特许经营合同详细条款与标的
- 2024年版:房屋买卖违约金索赔协议
- 2024年货车租赁合同(带维修责任规定)
- 2024年纪录片创作与制作服务合同版B版
- 2024年绿化工程苗木种植养护合同2篇
- 2025年度环保仓储仓单质押反担保服务协议3篇
- 2024年离婚合同书:女方放弃财产分割版版
- 运维服务能力指标体系
- 医院骨科2025年带教计划(2篇)
- 2024-2025学年北京市东城区高一上学期期末考试数学试卷(含答案)
- 销售总监年度总结规划
- 生物安全柜的使用及维护培训
- 机械制造企业风险分级管控手册
- 地系梁工程施工方案
- 《NOIP图的基础算法》课件
- 《建筑工程QC课题》课件
- 病历质控流程
- 藏文基础-教你轻轻松松学藏语(西藏大学)知到智慧树章节答案
- 政府采购评审专家考试试题库(完整版)
评论
0/150
提交评论