![2023年云南机电职业技术学院高职单招(数学)试题库含答案解析_第1页](http://file4.renrendoc.com/view/e9fd6bc7bd6cfa40d20fe2e088fd0fdd/e9fd6bc7bd6cfa40d20fe2e088fd0fdd1.gif)
![2023年云南机电职业技术学院高职单招(数学)试题库含答案解析_第2页](http://file4.renrendoc.com/view/e9fd6bc7bd6cfa40d20fe2e088fd0fdd/e9fd6bc7bd6cfa40d20fe2e088fd0fdd2.gif)
![2023年云南机电职业技术学院高职单招(数学)试题库含答案解析_第3页](http://file4.renrendoc.com/view/e9fd6bc7bd6cfa40d20fe2e088fd0fdd/e9fd6bc7bd6cfa40d20fe2e088fd0fdd3.gif)
![2023年云南机电职业技术学院高职单招(数学)试题库含答案解析_第4页](http://file4.renrendoc.com/view/e9fd6bc7bd6cfa40d20fe2e088fd0fdd/e9fd6bc7bd6cfa40d20fe2e088fd0fdd4.gif)
![2023年云南机电职业技术学院高职单招(数学)试题库含答案解析_第5页](http://file4.renrendoc.com/view/e9fd6bc7bd6cfa40d20fe2e088fd0fdd/e9fd6bc7bd6cfa40d20fe2e088fd0fdd5.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年云南机电职业技术学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.如图的算法的功能是______.输出结果i=______,i+2=______.答案:框图首先输入变量i的值,判断i(i+2)=624,执行输出i,i+2;否则,i=i+2.算法结束.故此算法执行的是求积为624的两个连续偶数,i=24,i+2=26;故为:求积为624的两个连续偶数,24,26.2.P是△ABC所在平面上的一点,且满足,若△ABC的面积为1,则△PAB的面积为()
A.
B.
C.
D.答案:B3.已知G是△ABC的重心,过G的一条直线交AB、AC两点分别于E、F,且有AE=λAB,AF=μAC,则1λ+1μ=______.答案:∵G是△ABC的重心∴取过G平行BC的直线EF∵AE=λAB,AF=μAC∴λ=23,μ=23∴1λ+1μ=32+32=3故为34.若平面α与β的法向量分别是a=(1,0,-2),b=(-1,0,2),则平面α与β的位置关系是()A.平行B.垂直C.相交不垂直D.无法判断答案:∵a=(1,0,-2),b=(-1,0,2),∴a+b=(1-1,0+0,-2+2)=(0,0,0),即a+b=0由此可得a∥b∵a、b分别是平面α与β的法向量∴平面α与β的法向量平行,可得平面α与β互相平行.5.已知变量a,b已被赋值,要交换a、b的值,应采用的算法是()
A.a=b,b=a
B.a=c,b=a,c=b
C.a=c,b=a,c=a
D.c=a,a=b,b=c答案:D6.若纯虚数z满足(2-i)z=4-bi,(i是虚数单位,b是实数),则b=()
A.-2
B.2
C.-8
D.8答案:C7.要从已编号(1~60)的60枚最新研制的某型导弹中随机抽取6枚来进行发射试验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的6枚导弹的编号可能是()
A.5、10、15、20、25、30
B.3、13、23、33、43、53
C.1、2、3、4、5、6
D.2、4、8、16、32、48答案:B8.已知椭圆的短轴长等于2,长轴端点与短轴端点间的距离等于5,则此椭圆的标准方程是______.答案:由题意可得2b=2a2+b2=(5)2,解得b=1a=2.故椭圆的标准方程是x24+y2=1或y24+x2=1.故为x24+y2=1或y24+x2=1.9.三个数a=0.32,b=log20.3,c=20.3之间的大小关系是()A.a<c<bB.a<b<cC.b<a<cD.b<c<a答案:由对数函数的性质可知:b=log20.3<0,由指数函数的性质可知:0<a<1,c>1∴b<a<c故选C10.某校有老师300人,男学生1200人,女学生1000人.现用分层抽样的方法从所有师生中抽取一个容量为n的样本,已知从女学生中抽取的人数为80,则n=()
A.171
B.184
C.200
D.392答案:C11.直角△PIB中,∠PBO=90°,以O为圆心、OB为半径作圆弧交OP于A点.若弧AB等分△POB的面积,且∠AOB=α弧度,则(
)
A.tanα=α
B.tan=2α
C.sinα=2cosα
D.2sin=cosα答案:B12.已知实数x,y满足3x+4y+10=0,那么x2+y2的最小值为______.答案:设P(x,y),则|OP|=x2+y2,即x2+y2的几何意义表示为直线3x+4y+10=0上的点P到原点的距离的最小值.则根据点到直线的距离公式得点P到直线3x+4y+10=0的距离d=|10|32+42=105=2.故为:2.13.为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文a,b,c,d对应密文a+2b,2b+c,2c+3d,4d,例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为()A.4,6,1,7B.7,6,1,4C.6,4,1,7D.1,6,4,7答案:∵明文a,b,c,d对应密文a+2b,2b+c,2c+3d,4d,∴当接收方收到密文14,9,23,28时,则a+2b=142b+c=92c+3d=234d=28,解得a=6b=4c=1d=7,解密得到的明文为6,4,1,7故选C.14.,不等式恒成立的否定是
▲
答案:,不等式成立解析::,不等式成立点评:本题考查推理与证明部分命题的否定,属于容易题15.直线3x+4y-12=0和3x+4y+3=0间的距离是
______.答案:由两平行线间的距离公式得直线3x+4y-12=0和3x+4y+3=0间的距离是|-12-3|5=3,故为3.16.若椭圆长轴长与短轴长之比为2,它的一个焦点是(215,0),则椭圆的标准方程是______.答案:由题设条件知a=2b,c=215,∴4b2=b2+60,∴b2=20,a2=80,∴椭圆的标准方程是x280+y220=1.故为:x280+y220=1.17.设a,b,c都是正数,求证:bca+cab+abc≥a+b+c.答案:证明:∵2(bca+acb+abc)=(bca+acb)+(bca+abc)+(acb+abc)≥2abc2ab+2acb2ac+2bca2bc=2c+2b+2a,∴bca+acb+abc≥a+b+c当且仅当a=b=c时,等号成立.18.设x,y,z∈R,且满足:x2+y2+z2=1,x+2y+3z=14,则x+y+z=______.答案:根据柯西不等式,得(x+2y+3z)2≤(12+22+32)(x2+y2+z2)=14(x2+y2+z2)当且仅当x1=y2=z3时,上式的等号成立∵x2+y2+z2=1,∴(x+2y+3z)2≤14,结合x+2y+3z=14,可得x+2y+3z恰好取到最大值14∴x1=y2=z3=1414,可得x=1414,y=147,z=31414因此,x+y+z=1414+147+31414=3147故为:314719.已知平面α内有一个点A(2,-1,2),α的一个法向量为=(3,1,2),则下列点P中,在平面α内的是()
A.(1,-1,1)
B.(1,3,)
C.,(1,-3,)
D.(-1,3,-)答案:B20.在平面直角坐标系xOy中,已知圆C:x=5cosθ-1y=5sinθ+2(θ为参数)和直线l:x=4t+6y=-3t-2(t为参数),则直线l与圆C相交所得的弦长等于______.答案:∵在平面直角坐标系xOy中,已知圆C:x=5cosθ-1y=5sinθ+2(θ为参数),∴(x+1)2+(y-2)2=25,∴圆心为(-1,2),半径为5,∵直线l:x=4t+6y=-3t-2(t为参数),∴3x+4y-10=0,∴圆心到直线l的距离d=|-3+8-10|5=1,∴直线l与圆C相交所得的弦长=2×52-1=46.故为46.21.已知=(3,4),=(5,12),与则夹角的余弦为()
A.
B.
C.
D.答案:A22.函数f(x)=2x2+1,&x∈[0,2],则函数f(x)的值域为()A.[1,32]B.[4,32]C.[2,32]D.[2,4]答案:∵f(x)=2x2+1,x∈[0,2],∴设y=2t,t=x2+1∈[1,5],∵y=2t是增函数,∴t=1时,ymin=2;t=5时,ymax=25=32.∴函数f(x)的值域为[2,32].故为:C.23.已知双曲线的顶点到渐近线的距离为2,焦点到渐近线的距离为6,则该双曲线的离心率为(
)
A.
B.
C.3
D.2答案:C24.过抛物线y2=4x的焦点作一条直线与抛物线相交于A、B两点,它们的横坐标之和等于5,则这样的直线()
A.有且仅有一条
B.有且仅有两条
C.有无穷多条
D.不存在答案:B25.已知某试验范围为[10,90],若用分数法进行4次优选试验,则第二次试点可以是(
)。答案:40或60(不唯一)26.已知点P1的球坐标是P1(4,,),P2的柱坐标是P2(2,,1),则|P1P2|=()
A.
B.
C.
D.4答案:A27.如果x2+ky2=2表示焦点在y轴上的椭圆,则实数k的取值范围是
______.答案:根据题意,x2+ky2=2化为标准形式为x22+y22k=1;根据题意,其表示焦点在y轴上的椭圆,则有2k>2;解可得0<k<1;故为0<k<1.28.三棱锥P-ABC中,M为BC的中点,以为基底,则可表示为()
A.
B.
C.
D.答案:D29.若不等式对一切x恒成立,求实数m的范围.答案:见解析解析:∵x2-8x+20=(x-4)2+4>0,∴只须mx2-mx-1<0恒成立,即可:①
当m=0时,-1<0,不等式成立;②
当m≠0时,则须,解得-4<m<0.由(1)、(2)得:-4<m≤0.</m<0.30.刻画数据的离散程度的度量,下列说法正确的是()
(1)应充分利用所得的数据,以便提供更确切的信息;
(2)可以用多个数值来刻画数据的离散程度;
(3)对于不同的数据集,其离散程度大时,该数值应越小.
A.(1)和(3)
B.(2)和(3)
C.(1)和(2)
D.都正确答案:C31.求由曲线围成的图形的面积.答案:面积为解析:当,时,方程化成,即.上式表示圆心在,半径为的圆.所以,当,时,方程表示在第一象限的部分以及轴,轴负半轴上的点,.同理,当,时,方程表示在第四象限的部分以及轴负半轴上的点;当,时,方程表示圆在第二象限的部分以及轴负半轴上的点;当,时,方程表示圆在第三象限部分.以上合起来构成如图所示的图形,面积为.32.设α∈[0,π],则方程x2sinα+y2cosα=1不能表示的曲线为()
A.椭圆
B.双曲线
C.抛物线
D.圆答案:C33.用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,假设正确的是()
A.假设三内角都不大于60度
B.假设三内角都大于60度
C.假设三内角至多有一个大于60度
D.假设三内角至多有两个大于60度答案:B34.某重点高中高二历史会考前,进行了五次历史会考模拟考试,某同学在这五次考试中成绩如下:90,90,93,94,93,则该同学的这五次成绩的平均值和方差分别为()
A.92,2
B.92,2.8
C.93,2
D.93,2.8答案:B35.袋子里有大小相同的3个红球和4个黑球,今从袋子里随机取球.
(Ⅰ)若有放回地取3次,每次取1个球,求取出1个红球2个黑球的概率;
(Ⅱ)若无放回地取3次,每次取1个球,
①求在前2次都取出红球的条件下,第3次取出黑球的概率;
②求取出的红球数X
的分布列和数学期望.答案:(Ⅰ)记“取出1个红球2个黑球”为事件A,根据题意有P(A)=C13(37)×(47)2=144343;
所以取出1个红球2个黑球的概率是144343.(Ⅱ)①记“在前2次都取出红球”为事件B,“第3次取出黑球”为事件C,则P(B)=3×27×6=17,P(BC)=3×2×47×6×5=435,所以P(C|B)=P(BC)P(B)=43517=45.所以在前2次都取出红球的条件下,第3次取出黑球的概率是45.②随机变量X
的所有取值为0,1,2,3.P(X=0)=C34?A33A37=435,P(X=1)=C24C13?A33A37=1835,P(X=2)=C14C23?A33A37=1235,P(X=3)=C33?A33A37=135.所以X的分布列为:所以EX=0×435+1×1835+2×1235+3×135=4535=97.36.如图所示,在Rt△ABC内有一内接正方形,它的一条边在斜边BC上,设AB=a,∠ABC=θ
(1)求△ABC的面积f(θ)与正方形面积g(θ);
(2)当θ变化时,求f(θ)g(θ)的最小值.答案:(1)由题得:AC=atanθ∴f(θ)=12a2tanθ(0<θ<π2)
设正方形的边长为x,则BG=xsinθ,由几何关系知:∠AGD=θ∴AG=xcosθ
由BG+AG=a?xsinθ+xcosθ=a?x=asinθ1+sinθcosθ∴g(θ)=a2sin2θ(1+sinθcosθ)2(0<θ<π2)(2)f(θ)g(θ)=(1+sinθcoθ)22sinθcosθ=1+1sin2θ+sin2θ4
令:t=sin2θ∵0<θ<π2∴t∈(0,1]∴y=1+1t+t4=1+14(t+t4)∵函数y=1+14(t+t4)在(0,1]递减∴ymin=94(当且仅当t=1即θ=π4时成立)∴当θ=π4时,f(θ)g(θ)的最小值为94.37.已知O是△ABC所在平面内一点,D为BC边中点,且,那么(
)
A.
B.
C.
D.2
答案:A38.2012年3月2日,国家环保部发布了新修订的《环境空气质量标准》.其中规定:居民区的PM2.5年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米.
某城市环保部门随机抽取了一居民区去年20天PM2.5的24小时平均浓度的监测数据,数据统计如下:
组别PM2.5浓度
(微克/立方米)频数(天)频率
第一组(0,25]50.25第二组(25,50]100.5第三组(50,75]30.15第四组(75,100)20.1(Ⅰ)从样本中PM2.5的24小时平均浓度超过50微克/立方米的5天中,随机抽取2天,求恰好有一天PM2.5的24小时平均浓度超过75微克/立方米的概率;
(Ⅱ)求样本平均数,并根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境是否需要改进?说明理由.答案:(Ⅰ)
设PM2.5的24小时平均浓度在(50,75]内的三天记为A1,A2,A3,PM2.5的24小时平均浓度在(75,100)内的两天记为B1,B2.所以5天任取2天的情况有:A1A2,A1A3,A1B1,A1B2,A2A3,A2B1,A2B2,A3B1,A3B2共10种.
…(4分)其中符合条件的有:A1B1,A1B2,A2B1,A2B2,A3B1,A3B2共6种.
…(6分)所以所求的概率P=610=35.
…(8分)(Ⅱ)去年该居民区PM2.5年平均浓度为:12.5×0.25+37.5×0.5+62.5×0.15+87.5×0.1=40(微克/立方米).…(10分)因为40>35,所以去年该居民区PM2.5年平均浓度不符合环境空气质量标准,故该居民区的环境需要改进.
…(12分)39.已知ABCD是平行四边形,P点是ABCD所在平面外的一点,连接PA、PB、PC、PD.设点E、F、G、H分别为△PAB、△PBC、△PCD、△PDA的重心.
(1)试用向量方法证明E、F、G、H四点共面;
(2)试判断平面EFGH与平面ABCD的位置关系,并用向量方法证明你的判断.答案:(1)证明略(2)平面EFGH∥平面ABCD解析:(1)
分别延长PE、PF、PG、PH交对边于M、N、Q、R点,因为E、F、G、H分别是所在三角形的重心,所以M、N、Q、R为所在边的中点,顺次连接M、N、Q、R得到的四边形为平行四边形,且有=,=,=,
=∴=+=(-)+(-)=(-)+(-)=(+)又∵=-=-=∴=(+),∴=+由共面向量定理知:E、F、G、H四点共面.(2)
由(1)得=,故∥.又∵平面ABC,EG平面ABC.∴EG∥平面ABC.又∵=-=-=∴MN∥EF,又∵MN平面ABC,EF平面ABC,EF∥平面ABC.∵EG与EF交于E点,∴平面EFGH∥平面ABCD.40.抛物线y=4x2的焦点坐标为()
A.(1,0)
B.(0,)
C.(0,1)
D.(,0)答案:B41.两圆相交于点A(1,3)、B(m,-1),两圆的圆心均在直线x-y+c=0上,则m+c的值为(
)
A.3
B.2
C.-1
D.0答案:A42.若一个底面为正三角形、侧棱与底面垂直的棱柱的三视图如下图所示,则这个棱柱的体积为()A.123B.363C.273D.6答案:此几何体为一个三棱柱,棱柱的高是4,底面正三角形的高是33,设底面边长为a,则32a=33,∴a=6,故三棱柱体积V=12?62?32?4=363.故选B43.为了了解学校学生的身体发育情况,抽查了该校100名高中男生的体重情况,根据所得数据画出样本的频率分布直方图如图所示,根据此图,估计该校2000名高中男生中体重大于70.5公斤的人数为()
A.300B.350C.420D.450答案:∵由图得,∴70.5公斤以上的人数的频率为:(0.04+0.035+0.016)×2=0.181,∴70.5公斤以上的人数为2000×0.181=362,故选B44.拟定从甲地到乙地通话m分钟的电话费由f(x)=1.06×(0.50×[m]+1)给出,其中m>0,[m]是大于或等于m的最小整数,若通话费为10.6元,则通话时间m∈______.答案:∵10.6=1.06(0.50×[m]+1),∴0.5[m]=9,∴[m]=18,∴m∈(17,18].故为:(17,18].45.直线y=2x+1的参数方程是()
A.(t为参数)
B.(t为参数)
C.(t为参数)
D.(θ为参数)
答案:B46.下列四组函数,表示同一函数的是()A.f(x)=x2,g(x)=xB.f(x)=x,g(x)=x2xC.f(x)=lnx2,g(x)=2lnxD.f(x)=logaax(0<a≠1),g(x)=3x3答案:同一函数必然具有相同的定义域、值域、对应关系,A中的2个函数的值域不同,B中的2个函数的定义域不同,C中的2个函数的对应关系不同,只有D的2个函数的定义域、值域、对应关系完全相同,故选D.47.设a>2,给定数列{xn},其中x1=a,xn+1=x2n2(xn-1)(n=1,2…)求证:
(1)xn>2,且xn+1xn<1(n=1,2…);
(2)如果a≤3,那么xn≤2+12n-1(n=1,2…).答案:证明:(1)①当n=1时,∵x2=x122(x1-1)=x1+(2-x1)x12(x1-1),x2=x122(x1-1)=4(x1-1)+x12
-4x1+42(x1-1)=2+(x1-2)22(x1-1),x1=a>2,∴2<x2<x1.结论成立.②假设n=k时,结论成立,即2<xk+1<xk(k∈N+),则xk+2=xk+122(xk+1-1)=xk+1+(2-xk+1)xk+12(xk+1-1)>xk+1,xk+2=xk+122(xk+1-1)=2+(xk+1-2)22(xk+1-1)>2.∴2<xk+2<xk+1,综上所述,由①②知2<xn+1<xn.∴xn>2且xn+1xn<1.(2)由条件x1=a≤3知不等式当n=1时成立假设不等式当n=k(k≥1)时成立当n=k+1时,由条件及xk>2知xk+1≤1+12k⇔x2k≤2(xk-1)(2+12k)⇔x2k-2(2+12k)xk+2(2+12k)≤0⇔(xk-2)[xk-(2+12k-1)]≤0,再由xk>2及归纳假设知,上面最后一个不等式一定成立,所以不等式xk+1≤2+12k也成立,从而不等式xn≤2+12n-1对所有的正整数n成立48.如图,AC是⊙O的直径,∠ACB=60°,连接AB,过A、B两点分别作⊙O的切线,两切线交于点P.若已知⊙O的半径为1,则△PAB的周长为______.答案:∵AC是⊙O的直径,∴∠ABC=90°,∠BAC=30°,CB=1,AB=3,∵AP为切线,∴∠CAP=90°,∠PAB=60°,又∵AP=BP,∴△PAB为正三角形,∴周长=33.故填:33.49.直线2x-y=7与直线3x+2y-7=0的交点是()
A.(3,-1)
B.(-1,3)
C.(-3,-1)
D.(3,1)答案:A50.若m∈{-2,-1,1,2},n∈{-2,-1,1,2,3},则方程x2m+y2n=1表示的是双曲线的概率为______.答案:由题意,方程x2m+y2n=1表示双曲线时,mn<0,m>0,n<0时,有2×2=4种,m<0,n>0时,有2×3=6种∵m,n的取值共有4×5=20种∴方程x2m+y2n=1表示的是双曲线的概率为4+620=12故为:12第2卷一.综合题(共50题)1.已知双曲线的顶点到渐近线的距离为2,焦点到渐近线的距离为6,则该双曲线的离心率为(
)
A.
B.
C.3
D.2答案:C2.已知点A(1,3),B(4,-1),则与向量同方向的单位向量为()
A.(,-)
B.(,-)
C.(-,)
D.(-,)答案:A3.口袋中装有三个编号分别为1,2,3的小球,现从袋中随机取球,每次取一个球,确定编号后放回,连续取球两次.则“两次取球中有3号球”的概率为()A.59B.49C.25D.12答案:每次取球时,出现3号球的概率为13,则两次取得球都是3号求得概率为C22?(13)2=19,两次取得球只有一次取得3号求得概率为C12?13?23=49,故“两次取球中有3号球”的概率为19+49=59,故选A.4.一部记录影片在4个单位轮映,每一单位放映一场,则不同的轮映方法数有()A.16B.44C.A44D.43答案:本题可以看做把4个单位看成四个位置,在四个位置进行全排列,故有A44种结果,故选C.5.4位学生与2位教师并坐合影留念,针对下列各种坐法,试问:各有多少种不同的坐法?(用数字作答)
(1)教师必须坐在中间;
(2)教师不能坐在两端,但要坐在一起;
(3)教师不能坐在两端,且不能相邻.答案:(1)先排4位学生,有A44种坐法,2位教师坐在中间,可以交换位置,有A22种坐法,则共有A22A44=48种坐法;(2)先排4位学生,有A44种坐法,2位教师坐在一起,将其看成一个整体,可以交换位置,有2种坐法,将这个“整体”插在4个学生的空位中,又由教师不能坐在两端,则有3个空位可选,则共有2A44A31=144种坐法;(3)先排4位学生,有A44种坐法,教师不能相邻,将其依次插在4个学生的空位中,又由教师不能坐在两端,则有3个空位可选,有A32种坐法,则共有A44A32=144种坐法..6.正方体的全面积为18cm2,则它的体积是()A.4cm3B.8cm3C.11272cm3D.33cm3答案:设正方体边长是acm,根据题意得6a2=18,解得a=3,∴正方体的体积是33cm3.故选D.7.设P点在x轴上,Q点在y轴上,PQ的中点是M(-1,2),则|PQ|等于______.答案:设P(a,0),Q(0,b),∵PQ的中点是M(-1,2),∴由中点坐标公式得a+02=-10+b2=2,解之得a=-2b=4,因此可得P(-2,0),Q(0,4),∴|PQ|=(-2-0)2+(0-4)2=25.故为:258.求证:菱形各边中点在以对角线的交点为圆心的同一个圆上.答案:已知:如图,菱形ABCD的对角线AC和BD相交于点O.求证:菱形ABCD各边中点M、N、P、Q在以O为圆心的同一个圆上.证明:∵四边形ABCD是菱形,∴AC⊥BD,垂足为O,且AB=BC=CD=DA,而M、N、P、Q分别是边AB、BC、CD、DA的中点,∴OM=ON=OP=OQ=12AB,∴M、N、P、Q四点在以O为圆心OM为半径的圆上.所以菱形各边中点在以对角线的交点为圆心的同一个圆上.9.Direchlet函数定义为:D(t)=1,t∈Q0,t∈CRQ,关于函数D(t)的性质叙述不正确的是()A.D(t)的值域为{0,1}B.D(t)为偶函数C.D(t)不是周期函数D.D(t)不是单调函数答案:函数D(t)是分段函数,值域是两段的并集,所以值域为{0,1};有理数和无理数正负关于原点对称,所以函数D(t)的图象关于y轴对称,所以函数是偶函数;对于不同的有理数x对应的函数值相等,所以函数不是单调函数;因为任取一个非0有理数,都有有理数加有理数为有理数,有理数加无理数为无理数,所以函数D(t)的图象周期出现,所以函数是周期函数,所以选项C不正确.故选C.10.为了了解某地母亲身高x与女儿身高Y的相关关系,随机测得10对母女的身高如下表所示:
母亲身x(cm)159160160163159154159158159157女儿身Y(cm)158159160161161155162157162156计算x与Y的相关系数r≈0.71,通过查表得r的临界值r0.05=0.632,从而有______的把握认为x与Y之间具有线性相关关系,因而求回归直线方程是有意义的.通过计算得到回归直线方程为y═34.92+0.78x,因此,当母亲的身高为161cm时,可以估计女儿的身高大致为______.答案:查对临界值表,由临界值r0.05=0.632,可得有95%的把握认为x与Y之间具有线性相关关系,回归直线方程为y=34.92+0.78x,因此,当x=161cm时,y=34.92+0.78x=34.92+0.78×161=161cm故为:95%,161cm.11.根据如图的框图,写出打印的第五个数是______.答案:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是:输出N<35时,打印A值.程序在运行过程中各变量的情况如下表示:
是否继续循环
A
N循环前
1
1
第一圈
2×1+1=3
2
是第二圈
2×3+1=7
3
是第三圈
2×7+1=15
4
是第四圈
2×15+1=31
5
是…所以这个打印的第五个数是31.故为:3112.北京期货商会组织结构设置如下:
(1)会员代表大会下设监事会、会长办公会,而会员代表大会于会长办公会共辖理事会;
(2)会长办公会设会长,会长管理秘书长;
(3)秘书长具体分管:秘书处、规范自律委员会、服务推广委员会、发展创新委员会.
根据以上信息绘制组织结构图.答案:绘制组织结构图:13.如果关于x的不等式组有解,那么实数a的取值范围(
)
A.(-∞,-3)∪(1,+∞)
B.(-∞,-1)∪(3,+∞)
C.(-1,3)
D.(-3,1)答案:C14.函数y=2x的值域为______.答案:因为:x≥0,所以:y=2x≥20=1.∴函数y=2x的值域为:[1,+∞).故为:[1,+∞).15.如图,某公司制造一种海上用的“浮球”,它是由两个半球和一个圆柱筒组成.其中圆柱的高为2米,球的半径r为0.5米.
(1)这种“浮球”的体积是多少立方米(结果精确到0.1m3)?
(2)假设该“浮球”的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为20元,半球形部分每平方米建造费用为30元.求该“浮球”的建造费用(结果精确到1元).答案:(1)∵球的半径r为0.5米,∴两个半球的体积之和为V球=43πr3=43π?18=16πm3,∵圆柱的高为2米,∴V圆柱=πr2?h=π×14×2=12πm3,∴该“浮球”的体积是:V=V球+V圆柱=23π≈2.1m3;(2)圆柱筒的表面积为2πrh=2πm2;两个半球的表面积为4πr2=πm2,∵圆柱形部分每平方米建造费用为20元,半球形部分每平方米建造费用为30元,∴该“浮球”的建造费用为2π×20+π×30=70π≈220元.16.下列随机变量ξ服从二项分布的是()
①随机变量ξ表示重复抛掷一枚骰子n次中出现点数是3的倍数的次数;
②某射手击中目标的概率为0.9,从开始射击到击中目标所需的射击次数ξ;
③有一批产品共有N件,其中M件为次品,采用有放回抽取方法,ξ表示n次抽取中出现次品的件数(M<N);
④有一批产品共有N件,其中M件为次品,采用不放回抽取方法,ξ表示n次抽取中出现次品的件数(M<N).
A.②③
B.①④
C.③④
D.①③答案:D17.已知曲线C1,C2的极坐标方程分别为ρcosθ=3,ρ=4cosθ(ρ≥0,0≤θ<π2),则曲线C1与C2交点的极坐标为______.答案:我们通过联立解方程组ρcosθ=3ρ=4cosθ(ρ≥0,0≤θ<π2)解得ρ=23θ=π6,即两曲线的交点为(23,π6).故填:(23,π6).18.命题“若b≠3,则b2≠9”的逆命题是______.答案:根据“若p则q”的逆命题是“若q则p”,可得命题“若b≠3,则b2≠9”的逆命题是若b2≠9,则b≠3.故为:若b2≠9,则b≠3.19.已知点G是△ABC的重心,过G作直线与AB,AC两边分别交于M,N两点,且,则的值()
A.3
B.
C.2
D.答案:B20.Rt△ABC中,AB=3,BC=4,AC=5,将三角形绕直角边AB旋转一周形成一个新的几何体,想象几何体的结构,画出它的三视图,求出它的表面积和体积.答案:以绕AB边旋转为例,其直观图、正(侧)视图、俯视图依次分别为:其表面是扇形的表面,所以其表面积为S=πRL=36π,V=13×π×BC2×AB=16π.21.两直线3x+y-3=0与6x+my+1=0平行,则它们之间的距离为()
A.4
B.
C.
D.答案:D22.质地均匀的正四面体玩具的4个面上分别刻着数字1,2,3,4,将4个这样的玩具同时抛掷于桌面上.
(1)求与桌面接触的4个面上的4个数的乘积不能被4整除的概率;
(2)设ξ为与桌面接触的4个面上数字中偶数的个数,求ξ的分歧布列及期望Eξ.答案:(1)不能被4整除的有两种情形;①4个数均为奇数,概率为P1=(12)4=116②4个数中有3个奇数,另一个为2,概率为P2=C34(12)3?14=18这两种情况是互斥的,故所求的概率为P=116+18=316(2)ξ为与桌面接触的4个面上数字中偶数的个数,由题意知ξ的可能取值是0,1,2,3,4,根据符合二项分布,得到P(ξ=k)=Ck4(12)4(k=0,1,2,3,4),ξ的分布列为∵ξ服从二项分布B(4,12),∴Eξ=4×12=2.23.一个完整的程序框图至少应该包含______.答案:完整程序框图必须有起止框,用来表示程序的开始和结束,还要包括处理框,用来处理程序的执行.故为:起止框、处理框.24.求证:答案:证明见解析解析:证:∴25.(理)已知函数f(x)=sinπxx∈[0,1]log2011xx∈(1,+∞)若满足f(a)=f(b)=f(c),(a、b、c互不相等),则a+b+c的取值范围是______.答案:作出函数的图象如图,直线y=y0交函数图象于如图,由正弦曲线的对称性,可得A(a,y0)与B(b,y0)关于直线x=12对称,因此a+b=1当直线线y=y0向上平移时,经过点(2011,1)时图象两个图象恰有两个公共点(A、B重合)所以0<y0<1时,两个图象有三个公共点,此时满足f(a)=f(b)=f(c),(a、b、c互不相等),说明1<c<2011,因此可得a+b+c∈(2,2012)故为(2,2012)26.设a,b,c都是正数,求证:
(1)(a+b+c)≥9;
(2)(a+b+c)≥.答案:证明略解析:证明
(1)∵a,b,c都是正数,∴a+b+c≥3,++≥3.∴(a+b+c)≥9,当且仅当a=b=c时,等号成立.(2)∵(a+b)+(b+c)+(c+a)≥3,又≥,∴(a+b+c)≥,当且仅当a=b=c时,等号成立.27.已知空间四边形ABCD中,M、G分别为BC、CD的中点,则等于()
A.
B.
C.
D.
答案:A28.口袋内有100个大小相同的红球、白球和黑球,其中有45个红球,从中摸出1个球,摸出白球的概率为0.23,则摸出黑球的概率为______.答案:∵口袋内有100个大小相同的红球、白球和黑球从中摸出1个球,摸出白球的概率为0.23,∴口袋内白球数为32个,又∵有45个红球,∴为32个.从中摸出1个球,摸出黑球的概率为32100=0.32故为0.3229.甲、乙两人参加一次考试,已知在备选的10道试题中,甲能答对其中6题,乙能答对其中8题.若规定每次考试分别都从这10题中随机抽出3题进行测试,至少答对2题算合格.
(1)分别求甲、乙两人考试合格的概率;
(2)求甲、乙两人至少有一人合格的概率.答案:(1)(2)解析:(1)设甲、乙考试合格分别为事件A、B,甲考试合格的概率为P(A)=,乙考试合格的概率为P(B)=.(2)A与B相互独立,且P(A)=,P(B)=,则甲、乙两人至少有一人合格的概率为P(AB++A)=×+×+×=.30.设四边形ABCD中,有且,则这个四边形是()
A.平行四边形
B.矩形
C.等腰梯形
D.菱形答案:C31.求由曲线围成的图形的面积.答案:面积为解析:当,时,方程化成,即.上式表示圆心在,半径为的圆.所以,当,时,方程表示在第一象限的部分以及轴,轴负半轴上的点,.同理,当,时,方程表示在第四象限的部分以及轴负半轴上的点;当,时,方程表示圆在第二象限的部分以及轴负半轴上的点;当,时,方程表示圆在第三象限部分.以上合起来构成如图所示的图形,面积为.32.袋中有5个小球(3白2黑),现从袋中每次取一个球,不放回地抽取两次,则在第一次取到白球的条件下,第二次取到白球的概率是()
A.
B.
C.
D.答案:C33.六个不同大小的数按如图形式随机排列,设第一行这个数为M1,M2,M3分别表示第二、三行中最大数,则满足M1<M2<M3所有排列的个数______.答案:首先M3一定是6个数中最大的,设这六个数分别为a,b,c,d,e,f,不妨设a>b>c>d>e>f.因为如果a在第三行,则a一定是M3,若a不在第三行,则a一定是M1或M2,此时无法满足M1<M2<M3,故a一定在第三行.故
M2一定是b,c,d中一个,否则,若M2是e,则第二行另一个数只能是f,那么第一行的数就比e大,无法满足M1<M2<M3.当M2是b时,此时,a在第三行,b在第二行,其它数任意排,所有的排法有C31
C21
A44=144(种),当M2是c时,此时a和b必须在第三行,c在第二行,其它数任意排,所有的排法有A32
C21
A33=72(种),当M2是d时,此时,a,b,c在第三行,d在第二行,其它数任意排,所有的排法有A33
C21
A22=24(种),故满足M1<M2<M3所有排列的个数为:24+72+144=240种,故为:240.34.如图是抛物线形拱桥,当水面在l时,拱顶离水面2米,水面宽4米.水位下降1米后,水面宽为______米.答案:如图建立直角坐标系,设抛物线方程为x2=my,将A(2,-2)代入x2=my,得m=-2∴x2=-2y,代入B(x0,-3)得x0=6,故水面宽为26m.故为:26.35.在茎叶图中,样本的中位数为______,众数为______.答案:由茎叶图可知样本数据共有6,出现在中间两位位的数据是20,24,所以样本的中位数是(20+24)÷2=22由茎叶图可知样本数据中出现最多的是12,样本的众数是12为:22,1236.已知函数f(x)=f(x+1)(x<4)2x(x≥4),则f(log23)=______.答案:因为1<log23<2,所以4<log23+3<5,所以f(log23)=f(log23+3)=f(log224)=2log224=24.故为:24.37.如图,四条直线互相平行,且相邻两条平行线的距离均为h,一直正方形的4个顶点分别在四条直线上,则正方形的面积为()
A.4h2
B.5h2
C.4h2
D.5h2
答案:B38.用数字1,2,3,4,5组成的无重复数字的四位偶数的个数为()
A.8
B.24
C.48
D.120答案:C39.已知在△ABC中,A(2,-5,3),AB=(4,1,2),BC=(3,-2,5),则C点坐标为
______.答案:设C(x,y,z),则:
AC=AB+BC即:(x-2,y+5,z-3)=(4,1,2)+(3,-2,5)=(7,-1,7)所以得:x-2=7y+5=-1z-3=7,即x=9y=-6z=10故为:(9,-6,10)40.从1,2,…,9这九个数中,随机抽取3个不同的数,则这3个数的和为偶数的概率是()A.59B.49C.1121D.1021答案:基本事件总数为C93,设抽取3个数,和为偶数为事件A,则A事件数包括两类:抽取3个数全为偶数,或抽取3数中2个奇数1个偶数,前者C43,后者C41C52.∴A中基本事件数为C43+C41C52.∴符合要求的概率为C34+C14C25C39=1121.41.已知椭圆(a>b>0)的焦点分别为F1,F2,b=4,离心率e=过F1的直线交椭圆于A,B两点,则△ABF2的周长为()
A.10
B.12
C.16
D.20答案:D42.如图所示,已知PA切圆O于A,割线PBC交圆O于B、C,PD⊥AB于D,PD与AO的延长线相交于点E,连接CE并延长交圆O于点F,连接AF.
(1)求证:B,C,E,D四点共圆;
(2)当AB=12,tan∠EAF=23时,求圆O的半径.答案:(1)由切割线定理PA2=PB?PC由已知易得Rt△PAD∽Rt△PEA,∴PA2=PD?PE,∴PA2=PB?PC=PA2=PD?PE,又∠BPD为公共角,∴△PBD∽△PEC,∴∠BDP=∠C∴B,C,E,D四点共圆
(2)作OG⊥AB于G,由(1)知∠PBD=∠PEC,∵∠PBD=∠F,∴∠F=∠PEC,∴PE∥AF.∵AB=12,∴AG=6.∵PD⊥AB,∴PD∥OG.∴PE∥OG∥AF,∴∠AOG=∠EAF.在Rt△AOG中,tan∠AOG=tan∠EAF=23=6OG,∴OG=9∴R=AO=AG2+OG2=313∴圆O的半径313.43.直线kx-y+1=3k,当k变动时,所有直线都通过定点
A.(0,0)
B.(0,1)
C.(3,1)
D.(2,1)答案:C44.在直角坐标系xoy
中,已知曲线C1:x=t+1y=1-2t(t为参数)与曲线C2:x=asinθy=3cosθ(θ为参数,a>0
)
有一个公共点在X轴上,则a等于______.答案:曲线C1:x=t+1y=1-2t(t为参数)化为普通方程:2x+y-3=0,令y=0,可得x=32曲线C2:x=asinθy=3cosθ(θ为参数,a>0
)化为普通方程:x2a2+y29=1∵两曲线有一个公共点在x轴上,∴94a2=1∴a=32故为:3245.已知向量a=(-2,1),b=(-3,-1),若单位向量c满足c⊥(a+b),则c=______.答案:设c=(x,y),∵向量a=(-2,1),b=(-3,-1),单位向量c满足c⊥(a+b),∴c•a+c•b=0,∴-2x+y-3x-y=0,解得x=0,∴c=(0,y),∵c是单位向量,∴0+y2=1,∴y=±1.故c=(0,1),或c=(0,-1).故为:(0,1)或(0,-1).46.椭圆焦点在x轴,离心率为32,直线y=1-x与椭圆交于M,N两点,满足OM⊥ON,求椭圆方程.答案:设椭圆方程x2a2+y2b2=1(a>b>0),∵e=32,∴a2=4b2,即a=2b.∴椭圆方程为x24b2+y2b2=1.把直线方程代入化简得5x2-8x+4-4b2=0.设M(x1,y1)、N(x2,y2),则x1+x2=85,x1x2=15(4-4b2).∴y1y2=(1-x1)(1-x2)=1-(x1+x2)+x1x2=15(1-4b2).由于OM⊥ON,∴x1x2+y1y2=0.解得b2=58,a2=52.∴椭圆方程为25x2+85y2=1.47.已知抛物线方程为y2=2px(p>0),过该抛物线焦点F且不与x轴垂直的直线AB交抛物线于A,B两点,过点A,点B分别作AM,BN垂直于抛物线的准线,分别交准线于M,N两点,那么∠MFN必是()
A.锐角
B.直角
C.钝角
D.以上皆有可能答案:B48.若双曲线的焦点到其渐近线的距离等于实轴长,则该双曲线的离心率为()
A.5
B.
C.2
D.答案:B49.如图,圆与圆内切于点,其半径分别为与,圆的弦交圆于点(不在上),求证:为定值。
答案:见解析解析:考察圆的切线的性质、三角形相似的判定及其性质,容易题。证明:由弦切角定理可得50.(1)用红、黄、蓝、白四种不同颜色的鲜花布置如图一所示的花圃,要求同一区域上用同一种颜色鲜花,相邻区域用不同颜色鲜花,问共有多少种不同的摆放方案?
(2)用红、黄、蓝、白、橙五种不同颜色的鲜花布置如图二所示的花圃,要求同一区域上用同一种颜色鲜花,相邻区域使用不同颜色鲜花.
①求恰有两个区域用红色鲜花的概率;
②记花圃中红色鲜花区域的块数为S,求它的分布列及其数学期望E(S).
答案:(1)根据分步计数原理,摆放鲜花的不同方案有:4×3×2×2=48种(2)①设M表示事件“恰有两个区域用红色鲜花”,如图二,当区域A、D同色时,共有5×4×3×1×3=180种;当区域A、D不同色时,共有5×4×3×2×2=240种;因此,所有基本事件总数为:180+240=420种.(由于只有A、D,B、E可能同色,故可按选用3色、4色、5色分类计算,求出基本事件总数为A53+2A51+A55=420种)它们是等可能的.又因为A、D为红色时,共有4×3×3=36种;B、E为红色时,共有4×3×3=36种;因此,事件M包含的基本事件有:36+36=72种.所以,P(M)=72420=635②随机变量ξ的分布列为:ξ012P6352335635所以,E(ξ)=0×635+1×2335+2×635=1第3卷一.综合题(共50题)1.若直线l的方向向量为a,平面α的法向量为n,能使l∥α的是()A.a=(1,0,0),n=(-2,0,0)B.a=(1,3,5),n=(1,0,1)C.a=(0,2,1),n=(-1,0,-1)D.a=(1,-1,3),n=(0,3,1)答案:若l∥α,则a•n=0.而A中a•n=-2,B中a•n=1+5=6,C中a•n=-1,只有D选项中a•n=-3+3=0.故选D.2.甲,乙两个工人在同样的条件下生产,日产量相等,每天出废品的情况如下表所列,则有结论:()
工人
甲
乙
废品数
0
1
2
3
0
1
2
3
概率
0.4
0.3
0.2
0.1
0.3
0.5
0.2
0
A.甲的产品质量比乙的产品质量好一些
B.乙的产品质量比甲的产品质量好一些
C.两人的产品质量一样好
D.无法判断谁的质量好一些答案:B3.直线x+y-1=0到直线xsinα+ycosα-1=0(<α<)的角是()
A.α-
B.-α
C.α-
D.-α答案:D4.已知三个向量a,b,c不共面,并且p=a+b-c,q=2a-3b-5c,r=-7a+18b+22c,向量p,q,r是否共面?答案:解:实数λ,μ,使p=λq+μr,则a+b-c=(2λ-7μ)a+(-3λ+18μ)b+(-5λ+22μ)c∵a,b,c不共面,∴∴即存在实数,,使p=λq+μr,故向量p、q、r共面.5.已知圆C的极坐标方程是ρ=2sinθ,那么该圆的直角坐标方程为
______,半径长是
______.答案:把极坐标方程是ρ=2sinθ的两边同时乘以ρ得:ρ2=2ρsinθ,∴x2+y2=2y,即x2+(y-1)2=1,表示以(0,1)为圆心,半径等于1的圆,故为:x2+(y-1)2=1;1.6.函数f(x)=2x2+1,&x∈[0,2],则函数f(x)的值域为()A.[1,32]B.[4,32]C.[2,32]D.[2,4]答案:∵f(x)=2x2+1,x∈[0,2],∴设y=2t,t=x2+1∈[1,5],∵y=2t是增函数,∴t=1时,ymin=2;t=5时,ymax=25=32.∴函数f(x)的值域为[2,32].故为:C.7.设直线的参数方程是x=2+12ty=3+32t,那么它的斜截式方程是______.答案:∵直线的参数方程为x=2+12ty=3+32t(t为参数),消去参数化为普通方程可得y-3=3(x-2),那么它的斜截式方程是y=3x+3-23.故为:y=3x+3-23.8.正方体的全面积为18cm2,则它的体积是()A.4cm3B.8cm3C.11272cm3D.33cm3答案:设正方体边长是acm,根据题意得6a2=18,解得a=3,∴正方体的体积是33cm3.故选D.9.双曲线x225-y29=1的两个焦点分别是F1,F2,双曲线上一点P到F1的距离是12,则P到F2的距离是()A.17B.7C.7或17D.2或22答案:由题意,a=5,则由双曲线的定义可知PF1-PF2=±10,∴PF2=2或22,故选D.10.如图示程序运行后的输出结果为______.答案:该程序的作用是求数列ai=2i+3中满足条件的ai的值∵最终满足循环条件时i=9∴ai的值为21故为:2111.为了调查甲、乙两个网站受欢迎的程度,随机选取了14天,统计上午8:00-10:00间各自的点击量,得如下所示的统计图,根据统计图:
(1)甲、乙两个网站点击量的极差,中位数分别是多少?
(2)甲网站点击量在[10,40]间的频率是多少?(结果用分数表示)
(3)甲、乙两个网站哪个更受欢迎?并说明理由。答案:解:(1)甲网站的极差为73-8=65,乙网站的极差为71-5=66;甲网站的中位数是56.5,乙网站的中位数是36.5。(2)甲网站点击量在[10,40]间的频率是;(3)甲网站的点击量集中在茎叶图的下方,而乙网站的点击量集中在茎叶图的上方,从数据的分布情况来看,甲网站更受欢迎。12.在甲、乙两个盒子里分别装有标号为1、2、3、4的四个小球,现从甲、乙两个盒子里各取出1个小球,每个小球被取出的可能性相等.
(1)求取出的两个小球上标号为相邻整数的概率;
(2)求取出的两个小球上标号之和能被3整除的概率;
(3)求取出的两个小球上标号之和大于5整除的概率.答案:甲、乙两个盒子里各取出1个小球计为(X,Y)则基本事件共有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)总数为16种.(1)其中取出的两个小球上标号为相邻整数的基本事件有:(1,2),(2,1),(2,3),(3,2),(3,4),(4,3)共6种故取出的两个小球上标号为相邻整数的概率P=38;(2)其中取出的两个小球上标号之和能被3整除的基本事件有:(1,2),(2,1),(2,4),(3,3),(4,2)共5种故取出的两个小球上标号之和能被3整除的概率为516;(3)其中取出的两个小球上标号之和大于5的基本事件有:(2,4),(3,3),(3,4),(4,2),(4,3),(4,4)共6种故取出的两个小球上标号之和大于5的概率P=3813.从数字1,2,3,4,5中任取两个不同的数字构成一个两位数,这个两位数大于40的概率()A.15B.25C.35D.45答案:由题意知本题是一个古典概型,试验发生包含的事件是从数字1,2,3,4,5中任取两个不同的数字构成一个两位数,共有A52=20种结果,满足条件的事件可以列举出有,41,41,43,45,54,53,52,51共有8个,根据古典概型概率公式得到P=820=25,故选B.14.已知圆C:x2+y2-4x-6y+12=0的圆心在点C,点A(3,5),求:
(1)过点A的圆的切线方程;
(2)O点是坐标原点,连接OA,OC,求△AOC的面积S.答案:(1)⊙C:(x-2)2+(y-3)2=1.当切线的斜率不存在时,对直线x=3,C(2,3)到直线的距离为1,满足条件;当k存在时,设直线y-5=k(x-3),即y=kx+5-3k,∴|-k+2|k2+1=1,得k=34.∴得直线方程x=3或y=34x+114.(2)|AO|=9+25=34,l:5x-3y=0,d=134,S=12d|AO|=12.15.用演绎法证明y=x2是增函数时的大前提是______.答案:∵证明y=x2是增函数时,依据的原理就是增函数的定义,∴用演绎法证明y=x2是增函数时的大前提是:增函数的定义故填增函数的定义16.若A(-1,0,1),B(1,4,7)在直线l上,则直线l的一个方向向量为()
A.(1,2,3)
B.(1,3,2)
C.(2,1,3)
D.(3,2,1)答案:A17.下图是由A、B、C、D中的哪个平面图旋转而得到的(
)答案:A18.若随机变量ξ~N(2,9),则随机变量ξ的数学期望c=()
A.4
B.3
C.2
D.1答案:C19.曲线C:x=t-2y=1t+1(t为参数)的对称中心坐标是______.答案:曲线C:x=t-2y=1t+1(t为参数)即y-1=1x+2,其对称中心为(-2,1).故为:(-2,1).20.已知四边形ABCD,
点E、
F、
G、
H分别是AB、BC、CD、DA的中点,
求证:
EF=HG.答案:证明:∵E、F、G、H分别是AB、BC、CD、DA的中点,∴HG=12AC,EF=12AC,∴EF=HG.21.把下列直角坐标方程或极坐标方程进行互化:
(1)ρ(2cosϑ-3sinϑ)+1=0
(2)x2+y2-4x=0.答案:(1)将原极坐标方程ρ(2cosθ-3sinθ)+1=0展开后化为:2ρcosθ-3ρsinθ+1=0,化成直角坐标方程为:2x-3y+1=0,(2)把公式x=ρcosθ、y=ρsinθ代入曲线的直角坐标方程为x2+y2-4x=0,可得极坐标方程ρ2-4ρcosθ=0,即ρ=4cosθ.22.如图,在正方体ABCD-A1B1C1D1中,M、N分别为AB、B1C的中点.用AB、AD、AA1表示向量MN,则MN=______.答案:∵MN=MB+BC+CN=12AB+AD+12(CB+BB1)=12AB+AD+12(-AD+AA1)=12AB+12AD+12AA1.故为12AB+12AD+12AA1.23.如图,四边形ABCD是圆O的内接四边形,延长AB和DC相交于点P.若PB=1,PD=3,则BCAD的值为______.答案:因为A,B,C,D四点共圆,所以∠DAB=∠PCB,∠CDA=∠PBC,因为∠P为公共角,所以△PBC∽△PAD,所以BCAD=PBPD=13.故为:13.24.设m、n是两条不同的直线,α、β是两个不同的平面,则下列命题中正确的是()
A.若m∥n,m∥α,则n∥α
B.若α⊥β,m∥α,则m⊥β
C.若α⊥β,m⊥β,则m∥α
D.若m⊥n,m⊥α,n⊥β,则α⊥β答案:D25.如图所示,图中线条构成的所有矩形中(由6个小的正方形组成),其中为正方形的概率为
______.答案:它的长有10种取法,由长与宽的对称性,得到它的宽也有10种取法;因为,长与宽相互独立,所以得到长X宽的个数有:10X10=100个即总的矩形的个数有:100个长=宽的个数为:(1X1的正方形的个数)+(2X2的正方形个数)+(3X3的正方形个数)+(4X4的正方形个数)=16+9+4+1=30个即正方形的个数有:30个所以为正方形的概率是30100=0.3故为0.326.已知直线l的方程为x=2-4
ty=1+3
t,则直线l的斜率为______.答案:直线x=2-4
ty=1+3
t,所以直线的普通方程为:(y-1)=-34(x-2);所以直线的斜率为:-34;故为:-34.27.在平行六面体ABCD-A′B′C′D′中,向量是()
A.有相同起点的向量
B.等长的向量
C.共面向量
D.不共面向量答案:C28.已知F1(-2,0),F2(2,0)两点,曲线C上的动点P满足|PF1|+|PF2|
=32|F1F2|.
(Ⅰ)求曲线C的方程;
(Ⅱ)若直线l经过点M(0,3),交曲线C于A,B两点,且MA=12MB,求直线l的方程.答案:(Ⅰ)由已知可得|PF1|+|PF2|
=32|F1F2|
=6>|F1F2|=4,故曲线C是以F1,F2为焦点,长轴长为6的椭圆,其方程为x29+y25=1.(Ⅱ)方法一:设A(x1,y1),B(x2,y2),由条件可知A为MB的中点,则有x129+y125=1,
(1)x229+y225=1,(2)2x1=x2,
(3)2y1=y2+3.
(4)将(3)、(4)代入(2)得4x129+(2y1-3)25=1,整理为4x129+4y125-125y1+45=0.将(1)代入上式得y1=2,再代入椭圆方程解得x1=±35,故所求的直线方程为y=±53x+3.方法二:依题意,直线l的斜率存在,设其方程为y=kx+3.由y=kx+3x29+y25=1得(5+9k2)x2+54kx+36=0.令△>0,解得k2>49.设A(x1,y1),B(x2,y2),则x1+x2=-54k5+9k2,①x1x2=365+9k2.②因为MA=12MB,所以A为MB的中点,从而x2=2x1.将x2=2x1代入①、②,得x1=-18k5+9k2,x12=185+9k2,消去x1得(-18k5+9k2)2=185+9k2,解得k2=59,k=±53.所以直线l的方程为y=±53x+3.29.用数学归纳法证明:“1×4+2×7+3×10+…+n(3n+1)=n(n+1)2,n∈N+”,当n=1时,左端为______.答案:在等式:“1×4+2×7+3×10+…+n(3n+1)=n(n+1)2,n∈N+”中,当n=1时,3n+1=4,而等式左边起始为1×4的连续的正整数积的和,故n=1时,等式左端=1×4=4故为:4.30.已知直线a、b、c,其中a、b是异面直线,c∥a,b与c不相交.用反证法证明b、c是异面直线.答案:证明:假设b、c不是异面直线,则b、c共面.∵b与c不相交,∴b∥c.又∵c∥a,∴根据公理4可知b∥a.这与已知a、b是异面直线相矛盾.故b、c是异面直线.31.从一批羽毛球产品中任取一个,质量小于4.8
g的概率是0.3,质量不小于4.85
g的概率是0.32,那么质量在[4.8,4.85)g范围内的概率是()
A.0.62
B.0.38
C.0.7
D.0.68答案:B32.设抛物线x2=12y的焦点为F,经过点P(2,1)的直线l与抛物线相交于A、B两点,若点P恰为线段AB的中点,则|AF|+|BF|=______.答案:过点A,B,P分别作抛物线准线y=-3的垂线,垂足为C,D,Q,据抛物线定义,得|AF|+|BF|=|AC|+|BD|=2|PQ|=8.故为833.已知点B是点A(2,-3,5)关于平面xOy的对称点,则|AB|=()
A.10
B.
C.
D.38答案:A34.如图,P-ABCD是正四棱锥,ABCD-A1B1C1D1是正方体,其中AB=2,PA=6.
(1)求证:PA⊥B1D1;
(2)求平面PAD与平面BDD1B1所成锐二面角的余弦值.答案:以D1为原点,D1A1所在直线为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 环艺设计与绿色办公空间打造舒适高效的工作环境
- 10 升国旗(教学设计)2024-2025学年部编版语文一年级上册
- UI界面设计与制作 教案 第4章教案
- 《能量:6 神奇的小电动机》教学设计-2024-2025学年教科版科学六年级上册
- 百科知识科普儿童
- 20陀螺教学设计-2024-2025学年统编版四年级上册语文
- 学生身心发展现状调查
- 《涉江采芙蓉》教学设计 2024-2025学年统编版高中语文必修上册
- 备课素材:光合作用将光能转化为化学能教学设计-2024-2025学年高一上学期生物人教版(2019)必修1
- 小学信息技术六年级下册第6课《连续量与开关量》教学设计
- 新人教版八年级下册初中物理全册课前预习单
- 第三章-隋唐佛教宗派的兴盛与思想发展课件
- 中国典章制度ppt课件
- 高考古代诗歌鉴赏复习教案
- 负数的认识1202
- 中国铁塔建设维护工作培训PPT通用通用课件
- 地铁建设工程安全文明施工标准化指南(通用篇)
- 新视野大学英语第三版Book 2 Unit 1 Text A
- SHD干燥机说明书(英)
- 调换班申请表
- 热轧无缝钢管缺陷及产生原因
评论
0/150
提交评论