2023年云南交通运输职业学院高职单招(数学)试题库含答案解析_第1页
2023年云南交通运输职业学院高职单招(数学)试题库含答案解析_第2页
2023年云南交通运输职业学院高职单招(数学)试题库含答案解析_第3页
2023年云南交通运输职业学院高职单招(数学)试题库含答案解析_第4页
2023年云南交通运输职业学院高职单招(数学)试题库含答案解析_第5页
已阅读5页,还剩41页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年云南交通运输职业学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.用黄金分割法寻找最佳点,试验区间为[1000,2000],若第一个二个试点为好点,则第三个试点应选在(

)。答案:12362.某学校三个社团的人员分布如下表(每名同学只参加一个社团):

声乐社排球社武术社高一4530a高二151020学校要对这三个社团的活动效果里等抽样调查,按分层抽样的方法从社团成员中抽取30人,结果声乐社被抽出12人,则a=______.答案:根据分层抽样的定义和方法可得,1245+15=30120+a,解得a=30,故为303.已知A(-4,6,-1),B(4,3,2),则下列各向量中是平面AOB(O是坐标原点)的一个法向量的是()A.(0,1,6)B.(-1,2,-1)C.(-15,4,36)D.(15,4,-36)答案:设平面AOB(O是坐标原点)的一个法向量是u=(x,y,z)则u•OA=0u•OB=0,即-4x+6y-z=04x+3y+2z=0,令x=-1,解得x=-1y=2z=-1,故u=(-1,2,-1),故选B.4.已知集合A满足{1,2,3}∪A={1,2,3,4},则集合A的个数为______.答案:∵{1,2,3}∪A={1,2,3,4},∴A={4};{1,4};{2,4};{3,4};{1,2,4};{1,3,4};{2,3,4};{1,2,3,4},则集合A的个数为8.故为:85.设点O(0,0,0),A(1,-2,3),B(-1,2,3),C(1,2,-3),则OA•BC=______.答案:因为点O(0,0,0),A(1,-2,3),B(-1,2,3),C(1,2,-3),所以OA=(1,-2,3),BC=(2,0,-6),OA•BC=(1,-2,3)•(2,0,-6)=2-18=-16.故为:-16.6.篮球运动员在比赛中每次罚球命中得1分,罚不中得0分.已知某运动员罚球命中的概率为0.7,求

(1)他罚球1次的得分X的数学期望;

(2)他罚球2次的得分Y的数学期望;

(3)他罚球3次的得分η的数学期望.答案:(1)X的取值为1,2,则因为P(X=1)=0.7,P(X=0)=0.3,所以EX=1×P(X=1)+0×P(X=0)=0.7.(2)Y的取值为0,1,2,则P(Y=0)=0.32=0.09,P(Y=1)=C12×0.7×0.3=0.42,P(Y=2)=0.72=0.49Y的概率分布列为Y012P0.090.420.49所以EY=0×0.09+1×0.42+2×0.49=1.4.(3)η的取值为0,1,2,3,则P(η=0)=0.33=0.027,P(η=1)=C13×0.7×0.32=0.189,P(η=2)=C23×0.72×0.3=0.441,P(η=3)=0.73=0.343∴η的概率分布为η0123P0.0270.1890.4410.343所以Eη=0×0.027+1×0.189+2×0.441+3×0.343=2.1.7.从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是()

A.至少有1个白球;都是白球

B.至少有1个白球;至少有1个红球

C.恰有1个白球;恰有2个白球

D.至少有一个白球;都是红球答案:C8.下列关于算法的说法不正确的是()A.算法必须在有限步操作之后停止.B.求解某一类问题的算法是唯一的.C.算法的每一步必须是明确的.D.算法执行后一定产生确定的结果.答案:因为算法具有有穷性、确定性和可输出性.由算法的特性可知,A是指的有穷性;C是确定性;D是可输出性.而解决某一类问题的算法不一定唯一,例如求排序问题算法就不唯一,所以,给出的说法不正确的是B.故选B.9.条件语句的一般形式如图所示,其中B表示的是()

A.条件

B.条件语句

C.满足条件时执行的内容

D.不满足条件时执行的内容

答案:C10.比较大小:a=0.20.5,b=0.50.2,则()

A.0<a<b<1

B.0<b<a<1

C.1<a<b

D.1<b<a答案:A11.已知直线l:x=2+ty=1-at(t为参数),与椭圆x2+4y2=16交于A、B两点.

(1)若A,B的中点为P(2,1),求|AB|;

(2)若P(2,1)是弦AB的一个三等分点,求直线l的直角坐标方程.答案:(1)直线l:x=2+ty=1-at代入椭圆方程,整理得(4a2+1)t2-4(2a-1)t-8=0设A、B对应的参数分别为t1、t2,则t1+t2=4(2a-1)4a2+1,t1t2=-84a2+1,∵A,B的中点为P(2,1),∴t1+t2=0解之得a=12,∴t1t2=-4,∵|AP|=12+(-12)2|t1|=52|t1|,|BP|=52|t2|,∴|AB|=52(|t1|+|t1|)=52×(t1+t2)2-4t1t2=25,(2)P(2,1)是弦AB的一个三等分点,∴|AP|=12|PB|,∴1+a2|t1|=21+a2|t2|,⇒t1=-2t2,∴t1+t2=-t2=4(2a-1)4a2+1,t1t2=-2t

22=-84a2+1,∴t

22=44a2+1,∴16(2a-1)2(4a2+1)2=44a2+1,解得a=4±76,∴直线l的直角坐标方程y-1=4±76(x-2).12.有一矩形纸片ABCD,按图所示方法进行任意折叠,使每次折叠后点B都落在边AD上,将B的落点记为B′,其中EF为折痕,点F也可落在边CD上,过B′作B′H∥CD交EF于点H,则点H的轨迹为()A.圆的一部分B.椭圆的一部分C.双曲线的一部分D.抛物线的一部分答案:由题意知:点H到定点B的距离以及到定直线AD的距离相等,根据抛物线的定义可知:点H的轨迹为:抛物线,(抛物线的一部分)故选D.13.等腰三角形两腰所在的直线方程是l1:7x-y-9=0,l2:x+y-7=0,它的底边所在直线经过点A(3,-8),求底边所在直线方程.答案:设l1,l2,底边所在直线的斜率分别为k1,k2,k;由l1:7x-y-9=0得y=7x-9,所以k1=7,由l2:x+y-7=0得y=-x+7,所以k2=-1;…(2分)如图,由等腰三角形性质,可知:l到l1的角=l2到l的角;由到角公式得:7-k1+7k=k-(-1)1+k(-1)…(4分)解出:k=-3或k=13…(6分)由已知:底边经过点A(3,-8),代入点斜式,得出直线方程:y-(-8)=(-3)(x-3)或y-(-8)=13(x-3)…(7分)3x+y-1=0或x-3y-27=0.…(8分)14.在极坐标中,由三条曲线θ=0,θ=,ρcosθ+ρsinθ=1围成的图形的面积是()

A.

B.

C.

D.答案:A15.若不等式对一切x恒成立,求实数m的范围.答案:见解析解析:∵x2-8x+20=(x-4)2+4>0,∴只须mx2-mx-1<0恒成立,即可:①

当m=0时,-1<0,不等式成立;②

当m≠0时,则须,解得-4<m<0.由(1)、(2)得:-4<m≤0.</m<0.16.已知=(1,2),=(-3,2),k+与-3垂直时,k的值为(

A.17

B.18

C.19

D.20答案:C17.已知三个向量a,b,c不共面,并且p=a+b-c,q=2a-3b-5c,r=-7a+18b+22c,向量p,q,r是否共面?答案:解:实数λ,μ,使p=λq+μr,则a+b-c=(2λ-7μ)a+(-3λ+18μ)b+(-5λ+22μ)c∵a,b,c不共面,∴∴即存在实数,,使p=λq+μr,故向量p、q、r共面.18.已知曲线C1,C2的极坐标方程分别为ρcosθ=3,ρ=4cosθ(ρ≥0,0≤θ<π2),则曲线C1与C2交点的极坐标为______.答案:我们通过联立解方程组ρcosθ=3ρ=4cosθ(ρ≥0,0≤θ<π2)解得ρ=23θ=π6,即两曲线的交点为(23,π6).故填:(23,π6).19.根据给出的程序语言,画出程序框图,并计算程序运行后的结果.

答案:程序框图:模拟程序运行:当j=1时,n=1,当j=2时,n=1,当j=3时,n=1,当j=4时,n=2,…当j=8时,n=2,…当j=11时,n=2,当j=12时,此时不满足循环条件,退出循环程序运行后的结果是:2.20.一个算法的流程图如图所示,则输出S的值为

.答案:根据程序框图,题意为求:s=1+2+3+4+5+6+7+8+9,计算得:s=45,故为:45.21.如图,PA切圆O于点A,割线PBC经过圆心O,OB=PB=1,OA绕点O逆时针旋转600到OD,则PD的长为()

A.3

B.

C.

D.

答案:D22.点P1,P2是线段AB的2个三等分点,若P∈{P1,P2},则P分有线段AB的比λ的最大值和最小值分别为()

A.3,

B.3,

C.2,

D.2,1答案:C23.点P(x,y)是椭圆2x2+3y2=12上的一个动点,则x+2y的最大值为______.答案:把椭圆2x2+3y2=12化为标准方程,得x26+y24=1,∴这个椭圆的参数方程为:x=6cosθy=2sinθ,(θ为参数)∴x+2y=6cosθ+4sinθ,∴(x+2y)max=6+16=22.故为:22.24.用反证法证明命题“三角形中最多只有一个内角是钝角”时,则假设的内容是()

A.三角形中有两个内角是钝角

B.三角形中有三个内角是钝角

C.三角形中至少有两个内角是钝角

D.三角形中没有一个内角是钝角答案:C25.方程cos2x=x的实根的个数为

______个.答案:cos2x=x的实根即函数y=cos2x与y=x的图象交点的横坐标,故可以将求根个数的问题转化为求两个函数图象的交点个数.如图在同一坐标系中作出y=cos2x与y=x的图象,由图象可以看出两图象只有一个交点,故方程的实根只有一个.故应该填

1.26.已知函数f(x)=x21+x2,那么f(1)+f(2)+f(12)+f(3)+f(13)+f(4)+f(14)=______.答案:∵f(x)=x21+x2,∴f(1x)=11+x2∴f(x)+f(1x)=1∴f(2)+f(12)=1,f(3)+f(13)=1,f(4)+f(14)=1,f(1)=12∴f(1)+f(2)+f(12)+f(3)+f(13)+f(4)+f(14)=72故为:7227.点A(-,1)关于y轴的对称点A′的坐标为(

A.(-,-1)

B.(,-1)

C.(-,1)

D.(,1)答案:D28.在某项测量中,测量结果ξ服从正态分布N(1,σ2)(σ>0).若ξ在(0,1)内取值的概率为0.4,则ξ在(0,2)内取值的概率为()

A.0.9

B.0.5

C.0.6

D.0.8答案:D29.某地区教育主管部门为了对该地区模拟考试成绩进行分析,抽取了总成绩介于350分到650分之间的10000名学生成绩,并根据这10000名学生的总成绩画了样本的频率分布直方图.为了进一步分析学生的总成绩与各科成绩等方面的关系,要从这10000名学生中,再用分层抽样方法抽出200人作进一步调查,则总成绩在[400,500)内共抽出()

A.100人

B.90人

C.65人

D.50人

答案:B30.如图P为空间中任意一点,动点Q在△ABC所在平面内运动,且,则实数m=()

A.0

B.2

C.-2

D.1

答案:C31.不等式log32x-log3x2-3>0的解集为()

A.(,27)

B.(-∞,-1)∪(27,+∞)

C.(-∞,)∪(27,+∞)

D.(0,)∪(27,+∞)答案:D32.若点M到定点F和到定直线l的距离相等,则下列说法正确的是______.

①点M的轨迹是抛物线;

②点M的轨迹是一条与x轴垂直的直线;

③点M的轨迹是抛物线或一条直线.答案:当点F不在直线l上时,点M的轨迹是以F为焦点、l为准线的抛物线;而当点F在直线l上时,点M的轨迹是一条过点F,且与l垂直的直线.故为:③33.某程序框图如图所示,该程序运行后输出的k的值是()A.4B.5C.6D.7答案:根据流程图所示的顺序,程序的运行过程中各变量值变化如下表:是否继续循环

S

K循环前/0

0第一圈

1

1第二圈

3

2第三圈

11

3第四圈

20594第五圈

否∴最终输出结果k=4故为A34.若平面向量a与b的夹角为120°,a=(2,0),|b|=1,则|a+2b|=______.答案:∵|a+2b|=(a+2b)2=a

2+4a?b+4

b2=|a|2+4|a||b|cos<a,b>+4|b|2=22+4×2×1cos120°+4×1=2.故为:235.将3封信投入5个邮筒,不同的投法共有()

A.15

B.35

C.6

D.53种答案:D36.根据给出的空间几何体的三视图,用斜二侧画法画出它的直观图.答案:画法:(1)画轴如下图,画x轴、y轴、z轴,三轴相交于点O,使∠xOy=45°,∠xOz=90°.(2)画圆台的两底面画出底面⊙O假设交x轴于A、B两点,在z轴上截取O′,使OO′等于三视图中相应高度,过O′作Ox的平行线O′x′,Oy的平行线O′y′利用O′x′与O′y′画出底面⊙O′,设⊙O′交x′轴于A′、B′两点.(3)成图连接A′A、B′B,去掉辅助线,将被遮挡的部分要改为虚线,即得到给出三视图所表示的直观图.37.在复平面上,设点A,B,C对应的复数分别为i,1,4+2i,过A、B、C作平行四边形ABCD,则平行四边形对角线BD的长为______.答案:∵点A,B,C对应的复数分别为i,1,4+2i∴A(0,1),B(1,0),C(4,2)设D(x,y)∴AD=BC=(3,2)∴D(3,3)∴对角线BD的长度是4+9=13故为:1338.在极坐标系中,点(2,)到圆ρ=2cosθ的圆心的距离为()

A.2

B.

C.

D.答案:D39.在某项体育比赛中,七位裁判为一选手打出的分数如下:

90

89

90

95

93

94

93

去掉一个最高分和一个最低分后,所剩数的平均值和方差分别为()

A.92,2

B.92,2.8

C.93,2

D.93,2.8答案:B40.不等式|3x-2|>4的解集是______.答案:由|3x-2|>4可得

3x-2>4

或3x-2<-4,∴x>2或x<-23.故为:(-∞,-23)∪(2,+∞).41.已知M为椭圆x2a2+y2b2=1(a>b>0)上的动点,F1、F2为椭圆焦点,延长F2M至点B,则ρF1MB的外角的平分线为MN,过点F1作

F1Q⊥MN,垂足为Q,当点M在椭圆上运动时,则点Q的轨迹方程是______.答案:点F1关于∠F1MF2的外角平分线MQ的对称点N在直线F1M的延长线上,故|F1N|=|PF1|+|PF2|=2a(椭圆长轴长),又OQ是△F2F1N的中位线,故|OQ|=a,点Q的轨迹是以原点为圆心,a为半径的圆,点Q的轨迹方程是x2+y2=a2故为:x2+y2=a242.用演绎法证明y=x2是增函数时的大前提是______.答案:∵证明y=x2是增函数时,依据的原理就是增函数的定义,∴用演绎法证明y=x2是增函数时的大前提是:增函数的定义故填增函数的定义43.我们称正整数n为“好数”,如果n的二进制表示中1的个数多于0的个数.如6=(110):为好数,1984=(11111000000);不为好数,则:

(1)二进制表示中恰有5位数码的好数共有______个;

(2)不超过2012的好数共有______个.答案:(1)二进制表示中恰有5位数码的二进制数分别为:10000,10001,10010,10011,10100,10101,10110,10111,11000,11001,11010,11011,11100,11101,11110,11111,共十六个数,再结合好数的定义,得到其中好数有11个;(2)整数2012的二进制数为:11111011100,它是一个十一位的二进制数.其中一位的二进制数是:1,共有C11个;其中二位的二进制数是:11,共有C22个;

其中三位的二进制数是:101,110,111,共有C12+C22个;

其中四位的二进制数是:1011,1101,1110,1111,共有C23+C33个;

其中五位的二进制数是:10011,10101,10110,11001,11010,11100,10111,11011,11101,11110,11111,共有C24+C34+C44个;

以此类推,其中十位的二进制数是:共有C49+C59+C69+C79+C89+C99个;其中十一位的小于2012二进制数是:共有24+4个;一共不超过2012的好数共有1164个.故1065个44.如图是抛物线形拱桥,当水面在l时,拱顶离水面2米,水面宽4米.水位下降1米后,水面宽为______米.答案:如图建立直角坐标系,设抛物线方程为x2=my,将A(2,-2)代入x2=my,得m=-2∴x2=-2y,代入B(x0,-3)得x0=6,故水面宽为26m.故为:26.45.对于函数f(x),在使f(x)≤M成立的所有常数M中,我们把M的最小值称为函数f(x)的“上确界”则函数f(x)=(x+1)2x2+1的上确界为()A.14B.12C.2D.4答案:因为f(x)=(x+1)2x2+1=x2+2x+1x2+1=1+2xx2+1又因为x2+1=|x|2+1≥2|x|≥2x∴2xx2+1≤1.∴f(x)≤2.即在使f(x)≤M成立的所有常数M中,M的最小值为2.故选C.46.抛物线x2+y=0的焦点位于()

A.y轴的负半轴上

B.y轴的正半轴上

C.x轴的负半轴上

D.x轴的正半轴上答案:A47.若f(x)=x2,则对任意实数x1,x2,下列不等式总成立的是(

)

A.f()≤

B.f()<

C.f()≥

D.f()>答案:A48.集合{1,2,3}的真子集的个数为()A.5B.6C.7D.8答案:集合的真子集为{1},{2},{3},{1,2},{1,3},{2,3},?.共有7个.故选C.49.用“斜二测画法”作正三角形ABC的水平放置的直观图△A′B′C′,则△A′B′C′与△ABC的面积之比为______.答案:设正三角形的标出为:1,正三角形的高为:32,所以正三角形的面积为:34;按照“斜二测画法”画法,△A′B′C′的面积是:12×1×34×sin45°=616;所以△A′B′C′与△ABC的面积之比为:61634=24,故为:2450.设四边形ABCD中,有且,则这个四边形是()

A.平行四边形

B.矩形

C.等腰梯形

D.菱形答案:C第2卷一.综合题(共50题)1.参数方程(θ为参数)表示的曲线是()

A.直线

B.圆

C.椭圆

D.抛物线答案:C2.以椭圆上一点和椭圆两焦点为顶点的三角形的面积最大值为1时,椭圆长轴的最小值为()

A.

B.

C.2

D.2

答案:D3.已知f(n)=1+12+13+L+1n(n∈N*),用数学归纳法证明f(2n)>n2时,f(2k+1)-f(2k)等于______.答案:因为假设n=k时,f(2k)=1+12+13+…+12k,当n=k+1时,f(2k+1)=1+12+13+…+12k+12k+1+…+12k+1∴f(2k+1)-f(2k)=12k+1+12k+2+…+12k+1故为:12k+1+12k+2+…+12k+14.若以(y+2)2=4(x-1)上任一点P为圆心作与y轴相切的圆,那么这些圆必定过平面内的点()

A.(1,-2)

B.(3,-2)

C.(2,-2)

D.不存在这样的点答案:C5.已知向量a与b的夹角为π3,|a|=2,则a在b方向上的投影为______.答案:由投影的定义可得:a在b方向上的投影为:|a|cos<a,b>,而|a|cos<a,b>=2cosπ3=22故为:226.如图,在圆锥中,B为圆心,AB=8,BC=6

(1)求出这个几何体的表面积;

(2)求出这个几何体的体积.(保留π)答案:圆锥母线AC的长=AB2+BC2=82+62=10(1)表面积=π×62+π×6×10=96π(2)体积=13×π×62×8=96π7.已知a=(3,3,2),b=(4,-3,7),c=(0,5,1),则(a+b)•c=______.答案:由于a=(3,3,2),b=(4,-3,7),则a+b=(7,0,9)又由c=(0,5,1),则(a+b)•c=(7,0,9)•(0,5,1)=9故为98.口袋中装有三个编号分别为1,2,3的小球,现从袋中随机取球,每次取一个球,确定编号后放回,连续取球两次.则“两次取球中有3号球”的概率为()A.59B.49C.25D.12答案:每次取球时,出现3号球的概率为13,则两次取得球都是3号求得概率为C22?(13)2=19,两次取得球只有一次取得3号求得概率为C12?13?23=49,故“两次取球中有3号球”的概率为19+49=59,故选A.9.已知:如图,四边形ABCD内接于⊙O,,过A点的切线交CB的延长线于E点,求证:AB2=BE·CD。

答案:证明:连结AC,因为EA切⊙O于A,所以∠EAB=∠ACB,因为,所以∠ACD=∠ACB,AB=AD,于是∠EAB=∠ACD,又四边形ABCD内接于⊙O,所以∠ABE=∠D,所以△ABE∽△CDA,于是,即AB·DA=BE·CD,所以。10.两不重合直线l1和l2的方向向量分别为答案:∵直线l1和l2的方向向量分别为11.已知z是纯虚数,z+21-i是实数,则z=______.答案:令Z=bi,则z+21-i=(2+bi)(1+i)(1-i)(1+i)=(2-b)+(2+b)i2又z+21-i是实数,故b=-2则Z=-2i故为:-2i12.如图P为空间中任意一点,动点Q在△ABC所在平面内运动,且,则实数m=()

A.0

B.2

C.-2

D.1

答案:C13.x2+(m-3)x+m=0

一个根大于1,一个根小于1,m的范围是______.答案:设f(x)=x2+(m-3)x+m,则∵x2+(m-3)x+m=0一个根大于1,一个根小于1,∴f(1)<0∴1+(m-3)+m<0∴m<1故为m<1.14.已知椭圆的参数方程为(ϕ为参数),点M在椭圆上,点O为原点,则当ϕ=时,OM的斜率为()

A.1

B.2

C.

D.2答案:D15.(几何证明选做题)若A,B,C是⊙O上三点,PC切⊙O于点C,∠ABC=110°,∠BCP=40°,则∠AOB的大小为______.答案:∵PC切⊙O于点C,OC为圆的半径∴OC⊥PC,即∠PCO=90°∵∠BCP=40°∴∠BCO=50°由弦切角定理及圆周角定理可知,∠BOC=2∠PCB=80°∵△BOC中,∠OBC=50°,∠ABC=110°∴∠OBA=60°∵OB=OA∴∠AOB=60°故为:60°16.(x+2y)4展开式中各项的系数和为______.答案:令x=y=1,可得(1+2)4=81故为:81.17.(选做题)(几何证明选讲选做题)如图,直角三角形ABC中,∠B=90°,AB=4,以BC为直径的圆交AC边于点D,AD=2,则∠C的大小为______.答案:∵∠B=90°,AB=4,BC为圆的直径∴AB与圆相切,由切割线定理得,AB2=AD?AC∴AC=8故∠C=30°故为:30°18.设A、B为两个事件,若事件A和B同时发生的概率为310,在事件A发生的条件下,事件B发生的概率为12,则事件A发生的概率为______.答案:根据题意,得∵P(A|B)=P(AB)P(B),P(AB)=310,P(A|B)=12∴12=310P(B),解得P(B)=31012=35故为:3519.与直线2x+y+1=0的距离为的直线的方程是()

A.2x+y=0

B.2x+y-2=0

C.2x+y=0或2x+y-2=0

D.2x+y=0或2x+y+2=0答案:D20.要从已编号(1~60)的60枚最新研制的某型导弹中随机抽取6枚来进行发射试验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的6枚导弹的编号可能是()

A.5、10、15、20、25、30

B.3、13、23、33、43、53

C.1、2、3、4、5、6

D.2、4、8、16、32、48答案:B21.设a>2,给定数列{xn},其中x1=a,xn+1=x2n2(xn-1)(n=1,2…)求证:

(1)xn>2,且xn+1xn<1(n=1,2…);

(2)如果a≤3,那么xn≤2+12n-1(n=1,2…).答案:证明:(1)①当n=1时,∵x2=x122(x1-1)=x1+(2-x1)x12(x1-1),x2=x122(x1-1)=4(x1-1)+x12

-4x1+42(x1-1)=2+(x1-2)22(x1-1),x1=a>2,∴2<x2<x1.结论成立.②假设n=k时,结论成立,即2<xk+1<xk(k∈N+),则xk+2=xk+122(xk+1-1)=xk+1+(2-xk+1)xk+12(xk+1-1)>xk+1,xk+2=xk+122(xk+1-1)=2+(xk+1-2)22(xk+1-1)>2.∴2<xk+2<xk+1,综上所述,由①②知2<xn+1<xn.∴xn>2且xn+1xn<1.(2)由条件x1=a≤3知不等式当n=1时成立假设不等式当n=k(k≥1)时成立当n=k+1时,由条件及xk>2知xk+1≤1+12k⇔x2k≤2(xk-1)(2+12k)⇔x2k-2(2+12k)xk+2(2+12k)≤0⇔(xk-2)[xk-(2+12k-1)]≤0,再由xk>2及归纳假设知,上面最后一个不等式一定成立,所以不等式xk+1≤2+12k也成立,从而不等式xn≤2+12n-1对所有的正整数n成立22.在平面直角坐标系xOy中,若抛物线C:x2=2py(p>0)的焦点为F(q,1),则p+q=______.答案:抛物线C:x2=2py(p>0)的焦点坐标为(0,p2),又已知焦点为为F(q,1),∴q=0,p2=1,故p+q=2,故为2.23.四面体ABCD中,设M是CD的中点,则化简的结果是()

A.

B.

C.

D.答案:A24.在5件产品中,有3件一等品,2件二等品.从中任取2件.那么以710为概率的事件是()A.都不是一等品B.至少有一件二等品C.恰有一件一等品D.至少有一件一等品答案:5件产品中,有3件一等品和2件二等品,从中任取2件,从5件产品中任取2件,共有C52=10种结果,∵“任取的2件产品都不是一等品”只有1种情况,其概率是110;“任取的2件产品中至少有一件二等品”有C31C21+1种情况,其概率是710;“任取的2件产品中恰有一件一等品”有C31C21种情况,其概率是610;“任取的2件产品在至少有一件一等品”有C31C21+C32种情况,其概率是910;∴以710为概率的事件是“至少有一件二等品”.故为B.25.根据如图所示的伪代码,可知输出的结果a为______.答案:由题设循环体要执行3次,图知第一次循环结束后c=a+b=2,a=1.b=2,第二次循环结束后c=a+b=3,a=2.b=3,第三次循环结束后c=a+b=5,a=3.b=5,第四次循环结束后不满足循环的条件是b<4,程序输出的结果为3故为:3.26.已知圆锥的母线长为5,底面周长为6π,则圆锥的体积是______.答案:圆锥的底面周长为6π,所以圆锥的底面半径为3;圆锥的高为4所以圆锥的体积为13×π32×4=12π故为12π.27.用“斜二测画法”作正三角形ABC的水平放置的直观图△A′B′C′,则△A′B′C′与△ABC的面积之比为______.答案:设正三角形的标出为:1,正三角形的高为:32,所以正三角形的面积为:34;按照“斜二测画法”画法,△A′B′C′的面积是:12×1×34×sin45°=616;所以△A′B′C′与△ABC的面积之比为:61634=24,故为:2428.在研究打酣与患心脏病之间的关系中,通过收集数据、整理分析数据得“打酣与患心脏病有关”的结论,并且有99%以上的把握认为这个结论是成立的.下列说法中正确的是()

A.100个心脏病患者中至少有99人打酣

B.1个人患心脏病,则这个人有99%的概率打酣

C.100个心脏病患者中一定有打酣的人

D.100个心脏病患者中可能一个打酣的人都没有答案:D29.已知F1(-2,0),F2(2,0)两点,曲线C上的动点P满足|PF1|+|PF2|

=32|F1F2|.

(Ⅰ)求曲线C的方程;

(Ⅱ)若直线l经过点M(0,3),交曲线C于A,B两点,且MA=12MB,求直线l的方程.答案:(Ⅰ)由已知可得|PF1|+|PF2|

=32|F1F2|

=6>|F1F2|=4,故曲线C是以F1,F2为焦点,长轴长为6的椭圆,其方程为x29+y25=1.(Ⅱ)方法一:设A(x1,y1),B(x2,y2),由条件可知A为MB的中点,则有x129+y125=1,

(1)x229+y225=1,(2)2x1=x2,

(3)2y1=y2+3.

(4)将(3)、(4)代入(2)得4x129+(2y1-3)25=1,整理为4x129+4y125-125y1+45=0.将(1)代入上式得y1=2,再代入椭圆方程解得x1=±35,故所求的直线方程为y=±53x+3.方法二:依题意,直线l的斜率存在,设其方程为y=kx+3.由y=kx+3x29+y25=1得(5+9k2)x2+54kx+36=0.令△>0,解得k2>49.设A(x1,y1),B(x2,y2),则x1+x2=-54k5+9k2,①x1x2=365+9k2.②因为MA=12MB,所以A为MB的中点,从而x2=2x1.将x2=2x1代入①、②,得x1=-18k5+9k2,x12=185+9k2,消去x1得(-18k5+9k2)2=185+9k2,解得k2=59,k=±53.所以直线l的方程为y=±53x+3.30.在正方体ABCD-A1B1C1D1中,直线BC1与平面A1BD所成角的余弦值是______.答案:分别以DA、DC、DD1为x、y、z轴建立如图所示空间直角坐标系设正方体的棱长等于1,可得D(0,0,0),B(1,1,0),C1(0,1,1),A1(1,0,1),∴BC1=(-1,0,1),A1D=(-1,0,-1),BD=(-1,-1,0)设n=(x,y,z)是平面A1BD的一个法向量,则n•A1D=-x-z=0n•BD=-x-y=0,取x=1,得y=z=-1∴平面A1BD的一个法向量为n=(1,-1,-1)设直线BC1与平面A1BD所成角为θ,则sinθ=|cos<BC1,n>|=BC1•n|BC1|•n=63∴cosθ=1-sin2θ=33,即直线BC1与平面A1BD所成角的余弦值是33故为:3331.已知集合M={0,1},N={2x+1|x∈M},则M∩N=()A.{1}B.{0,1}C.{0,1,3}D.空集答案:∵M={0,1},N={2x+1|x∈M},当x=0时,2x+1=1;当x=1时,2x+1=3,∴N={1,3}则M∩N={1}.故选A.32.“因为对数函数y=logax是增函数(大前提),而y=logx是对数函数(小前提),所以y=logx是增函数(结论).”上面推理的错误是()

A.大前提错导致结论错

B.小前提错导致结论错

C.推理形式错导致结论错

D.大前提和小前提都错导致结论错答案:A33.为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息.设定原信息为a0a1a2,ai∈{0,1}(i=0,1,2),传输信息为h0a0a1a2h1,其中h0=a0⊕a1,h1=h0⊕a2,⊕运算规则为:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0,例如原信息为111,则传输信息为01111.传输信息在传输过程中受到干扰可能导致接收信息出错,则下列接收信息一定有误的是()A.11010B.01100C.10111D.00011答案:A选项原信息为101,则h0=a0⊕a1=1⊕0=1,h1=h0⊕a2=1⊕1=0,所以传输信息为11010,A选项正确;B选项原信息为110,则h0=a0⊕a1=1⊕1=0,h1=h0⊕a2=0⊕0=0,所以传输信息为01100,B选项正确;C选项原信息为011,则h0=a0⊕a1=0⊕1=1,h1=h0⊕a2=1⊕1=0,所以传输信息为10110,C选项错误;D选项原信息为001,则h0=a0⊕a1=0⊕0=0,h1=h0⊕a2=0⊕1=1,所以传输信息为00011,D选项正确;故选C.34.两平行直线5x+12y+3=0与10x+24y+5=0间的距离是

______.答案:∵两平行直线

ax+by+m=0

ax+by+n=0间的距离是|m-n|a2+b2,5x+12y+3=0即10x+24y+6=0,∴两平行直线5x+12y+3=0与10x+24y+5=0间的距离是|5-6|102+242=1576=126.故为126.35.若p、q是两个简单命题,且“p或q”的否定形式是真命题,则()

A.p真q真

B.p真q假

C.p假q真

D.p假q假答案:D36.四支足球队争夺冠、亚军,不同的结果有()

A.8种

B.10种

C.12种

D.16种答案:C37.如图程序框图表达式中N=______.答案:该程序按如下步骤运行①N=1×2,此时i变成3,满足i≤5,进入下一步循环;②N=1×2×3,此时i变成4,满足i≤5,进入下一步循环;③N=1×2×3×4,此时i变成5,满足i≤5,进入下一步循环;④N=1×2×3×4×5,此时i变成6,不满足i≤5,结束循环体并输出N的值因此,最终输出的N等于1×2×3×4×5=120故为:12038.已知函数y=f(x)是R上的奇函数,其零点为x1,x2,…,x2011,则x1+x2+…+x2011=______.答案:∵f(x)是R上的奇函数,∴0是函数y=f(x)的零点.其他非0的零点关于原点对称.∴x1+x2+…+x2011=0.故为:0.39.从一批含有13只正品,2只次品的产品中,不放回地抽取3次,每次抽取1只,设抽得次品数为X,则E(5X+1)=______.答案:由题意,X的取值为0,1,2,则P(X=0)=1315×1214×1113=2235;P(X=1)=215×1314×1213+1315×214×1213+1315×1214×213=1235P(X=2)=1315×214×113+215×1314×113+215×114×1313=135所以期望E(X)=0×2235+1×1235+2×135=1435,所以E(5X+1)=1435×5+1=3故为3.40.如图,菱形ABCD的对角线AC和BD相交于O点,E,F,G,H分别是AB,BC,CD,DA的中点,求证:E,F,G,H四个点在以O为圆心的同一个圆上.答案:连接OE,OF,OG,OH.∵四边形ABCD为菱形,∴AB=BC=CD=DA,且BD⊥AC.∵E、F、GH分别为AB、BC、CD、DA的中点,∴OE=OF=OG=OH=12AB,∴E、F、G、H四点在以O为圆心,12AB为半径的圆上.41.集合{0,1}的子集有()个.A.1个B.2个C.3个D.4个答案:根据题意,集合{0,1}的子集有{0}、{1}、{0,1}、?,共4个,故选D.42.若k∈R,则“k>3”是“方程表示双曲线”的()

A.充分不必要条件

B.必要不充分条件

C.充要条件

D.既不充分也不必要条件答案:A43.已知向量a=(3,5,1),b=(2,2,3),c=(4,-1,-3),则向量2a-3b+4c的坐标为______.答案:∵a=(3,5,1),b=(2,2,3),c=(4,-1,-3),∴向量2a-3b+4c=2(3,5,1)-3(2,2,3)+4(4,-1,-3)=(16,0,-19)故为:(16,0,-19).44.若矩阵M=1111,则直线x+y+2=0在M对应的变换作用下所得到的直线方程为______.答案:设直线x+y+2=0上任意一点(x0,y0),(x',y')是所得的直线上一点,[1

1][x']=[x0][1

1][y']=[y0]∴x′+y′=x0x′+y′=y0,∴代入直线x+y+2=0方程:(x'+y')+x′+y'+2=0得到I的方程x+y+1=0故为:x+y+1=0.45.已知向量a=(3,4),b=(8,6),c=(2,k),其中k为常数,如果<a,c>=<b,c>,则k=______.答案:由题意可得cos<a,c>=cos<b,c>,∴a?c|a|?|c|=b?c|b|?|c|,∴6+4k54+k

2=16+6k104+k

2.解得k=2,故为2.46.已知圆锥的母线长与底面半径长之比为3:1,一个正方体有四个顶点在圆锥的底面内,另外的四个顶点在圆锥的侧面上(如图),则圆锥与正方体的表面积之比为(

A.π:1

B.3π:1

C.3π:2

D.3π:4

答案:D47.下列关于结构图的说法不正确的是()

A.结构图中各要素之间通常表现为概念上的从属关系和逻辑上的先后关系

B.结构图都是“树形”结构

C.简洁的结构图能更好地反映主体要素之间关系和系统的整体特点

D.复杂的结构图能更详细地反映系统中各细节要素及其关系答案:B48.一个总体中有100个个体,随机编号为0,1,2,3,…,99,依编号顺序平均分成10个小组,组号依次为1,2,3,…10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m,那么在第k组中抽取的号码个位数字与m+k号码的个位数字相同,若m=6,则在第7组中抽取的号码是()

A.66

B.76

C.63

D.73答案:C49.利用独立性检验对两个分类变量是否有关系进行研究时,若有99.5%的把握说事件A和B有关系,则具体计算出的数据应该是()

A.K2≥6.635

B.K2<6.635

C.K2≥7.879

D.K2<7.879答案:C50.已知随机变量ξ服从正态分布N(1,δ2)(δ>0).若ξ在(0,1)内取值的概率为0.4,则ξ在(0,2)内取值的概率为(

A.

B.

C.

D.答案:D第3卷一.综合题(共50题)1.在等腰直角三角形ABC中,若M是斜边AB上的点,则AM小于AC的概率为()A.14B.12C.22D.32答案:记“AM小于AC”为事件E.在线段AB上截取,则当点M位于线段AC内时,AM小于AC,将线段AB看做区域D,线段AC看做区域d,于是AM小于AC的概率为:ACAB=22.故选C.2.如图所示,已知P是平行四边形ABCD所在平面外一点,连结PA、PB、PC、PD,点E、F、G、H分别为△PAB、△PBC、△PCD、△PDA的重心,求证:E、F、G、H四点共面答案:证明:分别延长P、PF、PG、PH交对边于M、N、Q、R.∵E、F、G、H分别是所在三角形的重心,∴M、N、Q、R为所在边的中点,顺次连结MNQR所得四边形为平行四边形,且有∵MNQR为平行四边形,∴由共面向量定理得E、F、G、H四点共面.3.如图,AD是圆内接三角形ABC的高,AE是圆的直径,AB=6,AC=3,则AE×AD等于

______.答案:∵AE是直径∴∠ABE=∠ADC=90°∵∠E=∠C∴△ABE∽△ADC∴ABAD=AEAC∴AE×AD=AB?AC=32故为32.4.底面直径和高都是4cm的圆柱的侧面积为______cm2.答案:∵圆柱的底面直径和高都是4cm,∴圆柱的底面圆的周长是2π×2=4π∴圆柱的侧面积是4π×4=16π,故为:16π.5.若直线

3x+y+a=0过圆x2+y2+2x-4y=0的圆心,则a的值为()

A.-1

B.1

C.3

D.-3答案:B6.用WHILE语句求1+2+22+23+…+263的值.答案:程序如下:i=0S=0While

i<=63s=s+2^ii=i+1WendPrint

send7.两条平行线l1:3x+4y-2=0,l2:9x+12y-10=0间的距离等于()

A.

B.

C.

D.答案:C8.下列说法中正确的是()A.一个命题的逆命题为真,则它的逆否命题一定为真B.“a>b”与“a+c>b+c”不等价C.“a2+b2=0,则a,b全为0”的逆否命题是“若a,b全不为0,则a2+b2≠0”D.一个命题的否命题为真,则它的逆命题一定为真答案:A、逆命题与逆否命题之间不存在必然的真假关系,故A错误;B、由不等式的性质可知,“a>b”与“a+c>b+c”等价,故B错误;C、“a2+b2=0,则a,b全为0”的逆否命题是“若a,b不全为0,则a2+b2≠0”,故C错误;D、否命题和逆命题是互为逆否命题,有着一致的真假性,故D正确;故选D9.证明不等式1+12+13+…+1n<2n(n∈N*)答案:证法一:(1)当n=1时,不等式左端=1,右端=2,所以不等式成立;(2)假设n=k(k≥1)时,不等式成立,即1+12+13+…+1k<2k,则1+12+13+…+1k+1<2k+1k+1=2k(k+1)+1k+1<k+(k+1)+1k+1=2k+1,∴当n=k+1时,不等式也成立.综合(1)、(2)得:当n∈N*时,都有1+12+13+…+1n<2n.证法二:设f(n)=2n-(1+12+13+…+1n),那么对任意k∈N*

都有:f(k+1)-f(k)=2(k+1-k)-1k+1=1k+1[2(k+1)-2k(k+1)-1]=1k+1•[(k+1)-2k(k+1)+k]=(k+1-k)2k+1>0∴f(k+1)>f(k)因此,对任意n∈N*

都有f(n)>f(n-1)>…>f(1)=1>0,∴1+12+13+…+1n<2n.10.已知||=2,||=,∠AOB=150°,点C在∠AOB内,且∠AOC=30°,设(m,n∈R),则=()

A.

B.

C.

D.答案:B11.在独立性检验中,统计量Χ2有两个临界值:3.841和6.635.当Χ2>3.841时,有95%的把握说明两个事件有关,当Χ2>6.635时,有99%的把握说明两个事件有关,当Χ2≤3.841时,认为两个事件无关.在一项打鼾与患心脏病的调查中,共调查了2000人,经计算Χ2=20.87.根据这一数据分析,认为打鼾与患心脏病之间()

A.有95%的把握认为两者有关

B.约有95%的打鼾者患心脏病

C.有99%的把握认为两者有关

D.约有99%的打鼾者患心脏病答案:C12.下列命题:

①垂直于同一直线的两直线平行;

②垂直于同一直线的两平面平行;

③垂直于同一平面的两直线平行;

④垂直于同一平面的两平面平行;

其中正确的有()

A.③④

B.①②④

C.②③

D.②③④答案:C13.设O、A、B、C为平面上四个点,(

A.2

B.2

C.3

D.3答案:C14.根据给出的程序语言,画出程序框图,并计算程序运行后的结果.

答案:程序框图:模拟程序运行:当j=1时,n=1,当j=2时,n=1,当j=3时,n=1,当j=4时,n=2,…当j=8时,n=2,…当j=11时,n=2,当j=12时,此时不满足循环条件,退出循环程序运行后的结果是:2.15.设a=(4,3),a在b上的投影为522,b在x轴上的投影为2,且|b|≤14,则b为()A.(2,14)B.(2,-27)C.(-2,27)D.(2,8)答案:∵b在x轴上的投影为2,∴设b=(2,y)∵a在b上的投影为522,∴8+3y4+y2=522∴7y2-96y-28=0,解可得y=-27或14,∵|b|≤14,即4+y2≤144,∴y=-27,b=(2,-27)故选B16.设A1,A2,A3,A4是平面直角坐标系中两两不同的四点,若A1A3=λA1A2(λ∈R),A1A4=μA1A2(μ∈R),且1λ+1μ=2,则称A3,A4调和分割A1,A2,已知点C(c,0),D(d,O)(c,d∈R)调和分割点A(0,0),B(1,0),则下面说法正确的是()A.C可能是线段AB的中点B.D可能是线段AB的中点C.C,D可能同时在线段AB上D.C,D不可能同时在线段AB的延长线上答案:由已知可得(c,0)=λ(1,0),(d,0)=μ(1,0),所以λ=c,μ=d,代入1λ+1μ=2得1c+1d=2(1)若C是线段AB的中点,则c=12,代入(1)d不存在,故C不可能是线段AB的中,A错误;同理B错误;若C,D同时在线段AB上,则0≤c≤1,0≤d≤1,代入(1)得c=d=1,此时C和D点重合,与条件矛盾,故C错误.故选D17.(几何证明选讲选选做题)如图,AC是⊙O的直径,B是⊙O上一点,∠ABC的平分线与⊙O相交于.D已知BC=1,AB=3,则AD=______;过B、D分别作⊙O的切线,则这两条切线的夹角θ=______.答案:∵AC是⊙O的直径,B是⊙O上一点∴∠ABC=90°∵∠ABC的平分线与⊙O相交于D,BC=1,AB=3∴∠C=60°,∠BAC=30°,∠ABD=∠CBD=45°由圆周角定理可知∠C=∠ADB=60°△ABD中,由正弦定理可得ABsin60°=ADsin45°即AD=3sin60°×sin45°=2∵∠BAD=30°+45°=75°∴∠BOD=2∠BAD=150°设所作的两切线交于点P,连接OB,OD,则可得OB⊥PB,OD⊥PD即∠OBP=∠ODP=90°∴点ODPB共圆∴∠P+∠BOD=180°∴∠P=30°故为:2,30°18.棱长为2的正方体ABCD-A1B1C1D1中,BC1•B1D1=()A.22B.4C.-22D.-4答案:棱长为2的正方体ABCD-A1B1C1D1中,BC1与

B1D1的夹角等于BC1与BD的夹角,等于60°.∴BC1•B1D1=22×22cos60°=4,故选B.19.若向量两两所成的角相等,且,则等于()

A.2

B.5

C.2或5

D.或答案:C20.

已知椭圆(θ为参数)上的点P到它的两个焦点F1、F2的距离之比,

且∠PF1F2=α(0<α<),则α的最大值为()

A.

B.

C.

D.答案:A21.若随机向一个半径为1的圆内丢一粒豆子(假设该豆子一定落在圆内),则豆子落在此圆内接正三角形内的概率是______.答案:∵圆O是半径为R=1,圆O的面积为πR2=π则圆内接正三角形的边长为3,而正三角形ABC的面积为343,∴豆子落在正三角形ABC内的概率P=334π=334π故为:334π22.(参数方程与极坐标选讲)在极坐标系中,圆C的极坐标方程为:ρ2+2ρcosθ=0,点P的极坐标为(2,π2),过点P作圆C的切线,则两条切线夹角的正切值是______.答案:圆C的极坐标方程ρ2+2ρcosθ=0,化为普通方程为x2+y2+2x=0,即(x-1)2+y2=1.它表示以C(1,0)为圆心,以1为半径的圆.点P的极坐标为(2,π2),化为直角坐标为(0,2).设两条切线夹角为2θ,则sinθ=15,cosθ25,故tanθ=12.再由tan2θ=2tanθ1-tan2θ=43,故为43.23.函数y=2x的值域为______.答案:因为:x≥0,所以:y=2x≥20=1.∴函数y=2x的值域为:[1,+∞).故为:[1,+∞).24.已知两点P1(2,-1)、P2(0,5),点P在P1P2延长线上,且满足P1P2=-2PP2,则P点的坐标为______.答案:设分点P(x,y),P1(2,-1)、P2(0,5),∴P1P2=(-2,6),PP2=(-x,5-y),∵P1P2=-2PP2,∴(-2,6)=-2(-x,5-y)-2=-2x,6=2y-10,∴x=-1,y=8∴P(-1,8).25.若矩阵M=1111,则直线x+y+2=0在M对应的变换作用下所得到的直线方程为______.答案:设直线x+y+2=0上任意一点(x0,y0),(x',y')是所得的直线上一点,[1

1][x']=[x0][1

1][y']=[y0]∴x′+y′=x0x′+y′=y0,∴代入直线x+y+2=0方程:(x'+y')+x′+y'+2=0得到I的方程x+y+1=0故为:x+y+1=0.26.平面上动点M到定点F(3,0)的距离比M到直线l:x+1=0的距离大2,则动点M满足的方程()

A.x2=6y

B.x2=12y

C.y2=6x

D.y2=12x答案:D27.设平面α的法向量为(1,2,-2),平面β的法向量为(-2,-4,k),若α∥β,则k=______.答案:∵α∥β∴平面α、β的法向量互相平行,由此可得a=(1,2,-2),b=(-2,-4,k),a∥b∴1-2=2-4=-2k,解之得k=4.故为:428.对任意实数x,y,定义运算x*y=ax+by+cxy,其中a,b,c是常数,等式右边的运算是通常的加法和乘法运算。已知1*2=3,2*3=4,并且有一个非零常数m,使得对任意实数x,都有x*m=x,则m的值是(

)。答案:429.某企业甲、乙、丙三个生产车间的职工人数分别为120人,150人,180人,现用分层抽样的方法抽出一个容量为n的样本,样本中甲车间有4人,那么此样本的容量n=______.答案:每个个体被抽到的概率等于

4120=130,∴样本容量n=(120+150+180)×130=15,故为:15.30.小王通过英语听力测试的概率是,他连续测试3次,那么其中恰有1次获得通过的概率是()

A.

B.

C.

D.答案:A31.若21-i=a+bi(i为虚数单位,a,b∈R),则a+b=______.答案:∵21-i=2(1+i)(1-i)(1+i)=2(1+i)2=1+i,∵21-i=a+bi∴a+bi=1+i∴a=b=1∴a+b=2.故为:232.如果方程x2+(m-1)x+m2-2=0的两个实根一个小于1,另一个大于1,那么实数m的取值范围是()

A.

B.(-2,0)

C.(-2,1)

D.(0,1)答案:C33.在直角梯形ABCD中,已知A(-5,-10),B(15,0),C(5,10),AD是腰且垂直两底,求顶点D的坐标.答案:设D(x,y),则∵DC∥AB,∴y-10x-5=0+1015+5,又∵DA⊥AB,∴y+10x+5•0+1015+5=-1.由以上方程组解得:x=-11,y=2.∴D(-11,2).34.已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为V

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论