版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第三章弹性力学平面问题的解析解法第七节简支梁受均布荷载第八节楔形体受重力和液体压力(1)(2-27)(2)然后将代入式(2-26)求出应力分量:先由方程(2-27)求出应力函数:(2-26)(3)再让满足应力边界条件和位移单值条件(多连体问题)。按应力求解平面问题的基本步骤:按应力求解平面问题的方法:逆解法(1)根据问题的条件(几何形状、受力特点、边界条件等),假设各种满足相容方程(2-27)的φ(x,y)
的形式;(2)然后利用应力分量计算式(2-26),求出(具有待定系数);(3)再利用应力边界条件式(2-18),来考察这些应力函数φ(x,y)
对应什么样的边界面力问题,从而得知所设应力函数φ(x,y)
可以求解什么问题。上堂课内容回顾:(1)根据问题的条件(几何形状、受力特点、边界条件等),假设部分应力分量的某种函数形式;(2)根据与应力函数φ(x,y)的关系及,求出φ(x,y)
的形式;(3)最后利用式(2-26)计算出并让其满足边界条件和位移单值条件。——半逆解法的数学基础:数理方程中分离变量法。半逆解法位移分量求解:(1)将已求得的应力分量(2)(3)代入物理方程,求得应变分量将应变分量代入几何方程,并积分求得位移分量表达式;由位移边界条件确定表达式中常数,得最终结果。要点——用半逆解法求解梁、长板类平面问题。xyllqlql1yzh/2h/2q1.
应力函数的确定(1)分析:——主要由弯矩引起;——主要由剪力引起;——由q引起(挤压应力)。又∵q=常数,图示坐标系和几何对称,∴不随x变化。推得:(2)由应力分量表达式确定应力函数的形式:积分得:(a)(b)——任意的待定函数第七节简支梁受均布荷载xyllqlql1yzh/2h/2q(a)(b)——任意的待定函数(3)由确定:代入相容方程:xyllqlql1yzh/2h/2q方程的特点:关于x的二次方程,且要求-l≤x≤l内方程均成立。由“高等代数”理论,须有x的一、二次的系数、自由项同时为零。即:对前两个方程积分:(c)此处略去了f1(y)中的常数项对第三个方程得:积分得:(d)(c)(d)xyllqlql1yzh/2h/2q(a)(b)将(c)(d)代入(b),有(e)此处略去了f2(y)中的一次项和常数项式中含有9个待定常数。(e)2.
应力分量的确定(f)(g)(h)3.
对称条件与边界条件的应用(f)(g)(h)3.
对称条件与边界条件的应用(1)对称条件的应用:xyllqlql1yzh/2h/2q由q对称、几何对称:——x的偶函数——x的奇函数由此得:要使上式对任意的y成立,须有:xyllqlql1yzh/2h/2q(2)边界条件的应用:(a)上下边界(主要边界):由此解得:代入应力公式xyllqlql1yzh/2h/2q(i)(j)(k)(b)左右边界(次要边界):(由于对称,只考虑右边界即可。)——难以满足,需借助于圣维南原理。静力等效条件:轴力N=0;弯矩M=0;剪力Q=-ql;(i)(j)(k)可见,这一条件自动满足。xyllqlql1yzh/2h/2q(p)截面上的应力分布:三次抛物线4.
与材料力学结果比较xyllqlql1yzh/2h/2q(p)4.
与材料力学结果比较材力中几个参数:截面宽:b=1,截面惯矩:静矩:弯矩:剪力:将其代入式(p),有(3-6)xyllqlql1yzh/2h/2q(3-6)比较,得:(1)第一项与材力结果相同,为主要项。第二项为修正项。当h/l<<1,该项误差很小,可略;当h/l较大时,须修正。(2)为梁各层纤维间的挤压应力,材力中不考虑。(3)与材力中相同。注意:按式(3-6),梁的左右边界存在水平面力:说明式(3-6)在两端不适用。解题步骤小结:(1)(2)(3)根据问题的条件:几何特点、受力特点、约束特点(面力分布规律、对称性等),估计某个应力分量()的变化形式。由与应力函数的关系式,求得应力函数的具体形式(具有待定函数)。(4)(5)将具有待定函数的应力函数代入相容方程:确定中的待定函数形式。由与应力函数的关系式,求得应力分量。由边界条件确定中的待定常数。用半逆解法求解梁、矩形长板类弹性力学平面问题的基本步骤:要点——半逆解法(因次或量纲分析法)xyO问题的提法:楔形体,下部可无限延伸。侧面受水压作用:(水的容重);自重作用:(楔形体的容重);求:楔形体应力分布规律。1.
应力函数及应力分量(1)分析:(a)∵的量纲为:∴的形式应为:的线性组合。
的量纲为:(b)由推理得:应为x、y的三次函数。应力函数可假设为:第八节楔形体受重力和液体压力)m/N(3xyO(2)应力分量考虑到:X=0,Y=(常体力)(a)显然,上述应力函数满足相容方程。2.
边界条件的利用(1)
x=0(应力边界):代入式(a),则应力分量为:xyON(b)(2)
(应力边界):其中:将(b)代入,有代入,可求得:xyO(b)代入式(b),有:(3-7)——李维(Levy)解答沿水平方向的应力分布与材力结果比较:——沿水平方向不变,在材力中无法求得。——沿水平方向线性分布,与材力中偏心受压公式算得结果相同。——沿水平方向线性分布,材力中为抛物线分布。(3-7)——李维(Levy)解答xyO沿水平方向的应力分布结果的适用性:(1)当坝的横截面变化时,不再为平面应变问题,其结果误差较大。(2)假定坝下端无限延伸,可自由变形。而实际坝高有限,底部与基础相连,有地基约束,故底部处结果误差较大。(3)实际坝顶非尖顶,坝顶处有其它载荷,故坝顶处结果误差较大。——三角形重力坝的精确分析,常借助于有限元数值方法求解。工程应用:——求使坝稳定时的角度,称为安息角。因次分析法(量纲分析法):xyO楔形体,下部可无限延伸。侧面受水压作用:(水的溶重);自重作用:(楔形体的溶重);求:楔形体应力分布规律。分析思路:(a)∵的量纲为:∴的形式应为:的线性组合。
的量纲为:(b)由推理得:应为x、y的三次函数。应力函数可假设为:本节课内容回顾:(1)根据问题的条件(几何形状、受力特点、边界条件等),假设部分应力分量的某种函数形式;(2)根据与应力函数φ(x,y)的关系及,求出φ(x,y)
的形式;(3)最后利用式(2-26)计算出并让其满足边界条件和位移单值条件。——半逆解法的数学基础:数理方程中分离变量法。半逆解法位移分量求解:(1)将已求得的应力分量(2)(3)代入物理方程,求得应变分量将应变分量代入几何方程,并积分求得位移分量表达式;由位移边界条件确定表达式中常数,得最终结果。(1)(2)(3)根据问题的条件:几何特点、受力特点、约束特点(面力分布规律、对称性等),估计某个应力分量()的变化形式。由与应力函数的关系式,求得应力函数的具体形式(具有待定函数)。(4)(5)将具有待定函数的应力函数代入相容方程:确定中的待定函数形式。由与应力函数的关系式,求得应力分量。由边界条件确定中的待定常数。用半逆解法求解梁、矩形长板类弹性力学平面问题的基本步骤:因次分析法(量纲分析法):xyO楔形体,下部可无限延伸。侧面受水压作用:(水的溶重);自重作用:(楔形体的溶重);求:楔形体应力分布规律。分析思路:(a)∵的量纲为:∴的形式应为:的线性组合。
的量纲为:(b)由推理得:应为x、y的三次函数。应力函数可假设为:例:图示矩形截面简支梁,长为l
,高为h,受有三角形分布载荷作用,体力不计。试求其应力分布。解:(1)应力函数形式的确定梁截面上弯矩和剪力为:由材料力学方法可确定应力分量的分离变量形式:取应力分量分析,取应力分量与应力函数的关系:对此式积分:对此式积分:——为待定函数(2)由相容方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度离婚咨询与调解服务协议2篇
- 二零二四年度房地产买卖合同及附属设施转让2篇
- 二零二四年度仓储环境维护合同
- 2024年度仓库租赁合同样本
- 二零二四年度物业服务合同:商业综合体物业管理服务协议
- 二零二四年度融资租赁合同:甲乙双方就融资租赁事宜达成的一致协议
- 2024年度版权登记保护合同
- 二零二四年度技术开发合同的技术指标要求3篇
- 2024年度员工福利与代加工生产协议
- 2024年度牛奶品牌推广与合作合同
- 北京市朝阳区2024-2025学年九年级上学期期末模拟考试化学试卷(含解析)
- 金融时间序列
- 网络安全防护策略与指南
- 农产品溯源体系构建
- 2024全新物业服务培训
- 装饰图案(第2版)课件 李健婷 模块7、8 装饰图案的组织形式装饰图案在现代设计中的应用
- 风电场消防管理标准
- 企业宣传视频拍摄制作方案
- 2024年初中信息科技测试题及答案1
- 2024陕西省西安国际港务区定向招聘历年高频难、易错点500题模拟试题附带答案详解
- 脑出血课件完整版本
评论
0/150
提交评论