版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年中考数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列天气预报中的图标,其中既是轴对称图形又是中心对称图形的是()A. B. C. D.2.如图,是的直径,弦,,,则阴影部分的面积为()A.2π B.π C. D.3.一个几何体的三视图如图所示,则该几何体的形状可能是()A.B.C.D.4.在解方程-1=时,两边同时乘6,去分母后,正确的是()A.3x-1-6=2(3x+1) B.(x-1)-1=2(x+1)C.3(x-1)-1=2(3x+1) D.3(x-1)-6=2(3x+1)5.下列生态环保标志中,是中心对称图形的是()A.B.C.D.6.已知线段AB=8cm,点C是直线AB上一点,BC=2cm,若M是AB的中点,N是BC的中点,则线段MN的长度为()A.5cm B.5cm或3cm C.7cm或3cm D.7cm7.如图,将RtABC绕直角项点C顺时针旋转90°,得到A'B'C,连接AA',若∠1=20°,则∠B的度数是()A.70° B.65° C.60° D.55°8.等腰三角形一边长等于5,一边长等于10,它的周长是()A.20 B.25 C.20或25 D.159.下列计算正确的是()A.a6÷a2=a3 B.(﹣2)﹣1=2C.(﹣3x2)•2x3=﹣6x6 D.(π﹣3)0=110.已知A(,),B(2,)两点在双曲线上,且,则m的取值范围是()A. B. C. D.11.实数a,b,c在数轴上对应点的位置如图所示,则下列结论中正确的是()A.a+c>0 B.b+c>0 C.ac>bc D.a﹣c>b﹣c12.如果一组数据6、7、x、9、5的平均数是2x,那么这组数据的方差为()A.4 B.3 C.2 D.1二、填空题:(本大题共6个小题,每小题4分,共24分.)13.正五边形的内角和等于______度.14.一组“数值转换机”按下面的程序计算,如果输入的数是36,则输出的结果为106,要使输出的结果为127,则输入的最小正整数是__________.15.已知抛物线y=x2上一点A,以A为顶点作抛物线C:y=x2+bx+c,点B(2,yB)为抛物线C上一点,当点A在抛物线y=x2上任意移动时,则yB的取值范围是_________.16.已知a2+a=1,则代数式3﹣a﹣a2的值为_____.17.如图,在矩形ABCD中,过点A的圆O交边AB于点E,交边AD于点F,已知AD=5,AE=2,AF=1.如果以点D为圆心,r为半径的圆D与圆O有两个公共点,那么r的取值范围是______.18.4=.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某服装店用4000元购进一批某品牌的文化衫若干件,很快售完,该店又用6300元钱购进第二批这种文化衫,所进的件数比第一批多40%,每件文化衫的进价比第一批每件文化衫的进价多10元,请解答下列问题:(1)求购进的第一批文化衫的件数;(2)为了取信于顾客,在这两批文化衫的销售中,售价保持了一致.若售完这两批文化衫服装店的总利润不少于4100元钱,那么服装店销售该品牌文化衫每件的最低售价是多少元?20.(6分)(1)如图1,在矩形ABCD中,点O在边AB上,∠AOC=∠BOD,求证:AO=OB;(2)如图2,AB是⊙O的直径,PA与⊙O相切于点A,OP与⊙O相交于点C,连接CB,∠OPA=40°,求∠ABC的度数.21.(6分)某地铁站口的垂直截图如图所示,已知∠A=30°,∠ABC=75°,AB=BC=4米,求C点到地面AD的距离(结果保留根号).22.(8分)如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB,于点E求证:△ACD≌△AED;若∠B=30°,CD=1,求BD的长.23.(8分)如图1,在四边形ABCD中,AB=AD.∠B+∠ADC=180°,点E,F分别在四边形ABCD的边BC,CD上,∠EAF=∠BAD,连接EF,试猜想EF,BE,DF之间的数量关系.图1图2图3(1)思路梳理将△ABE绕点A逆时针旋转至△ADG,使AB与AD重合.由∠B+∠ADC=180°,得∠FDG=180°,即点F,D,G三点共线.易证△AFG,故EF,BE,DF之间的数量关系为;(2)类比引申如图2,在图1的条件下,若点E,F由原来的位置分别变到四边形ABCD的边CB,DC的延长线上,∠EAF=∠BAD,连接EF,试猜想EF,BE,DF之间的数量关系,并给出证明.(3)联想拓展如图3,在△ABC中,∠BAC=90°,AB=AC,点D,E均在边BC上,且∠DAE=45°.若BD=1,EC=2,则DE的长为.24.(10分)已知:如图,在半径是4的⊙O中,AB、CD是两条直径,M是OB的中点,CM的延长线交⊙O于点E,且EM>MC,连接DE,DE=.(1)求证:△AMC∽△EMB;(2)求EM的长;(3)求sin∠EOB的值.25.(10分)关于x的一元二次方程ax2+bx+1=1.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.26.(12分)如图所示,某校九年级(3)班的一个学习小组进行测量小山高度的实践活动.部分同学在山脚A点处测得山腰上一点D的仰角为30°,并测得AD的长度为180米.另一部分同学在山顶B点处测得山脚A点的俯角为45°,山腰D点的俯角为60°,请你帮助他们计算出小山的高度BC.(计算过程和结果都不取近似值)27.(12分)(2016湖南省株洲市)某市对初二综合素质测评中的审美与艺术进行考核,规定如下:考核综合评价得分由测试成绩(满分100分)和平时成绩(满分100分)两部分组成,其中测试成绩占80%,平时成绩占20%,并且当综合评价得分大于或等于80分时,该生综合评价为A等.(1)孔明同学的测试成绩和平时成绩两项得分之和为185分,而综合评价得分为91分,则孔明同学测试成绩和平时成绩各得多少分?(2)某同学测试成绩为70分,他的综合评价得分有可能达到A等吗?为什么?(3)如果一个同学综合评价要达到A等,他的测试成绩至少要多少分?
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、A【解析】
根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,也是中心对称图形,符合题意;B、是轴对称图形,不是中心对称图形,不合题意;C、不是轴对称图形,也不是中心对称图形,不合题意;D、不是轴对称图形,不是中心对称图形,不合题意.故选:A.【点睛】此题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2、D【解析】分析:连接OD,则根据垂径定理可得出CE=DE,继而将阴影部分的面积转化为扇形OBD的面积,代入扇形的面积公式求解即可.详解:连接OD,∵CD⊥AB,∴(垂径定理),故即可得阴影部分的面积等于扇形OBD的面积,又∵∴(圆周角定理),∴OC=2,故S扇形OBD=即阴影部分的面积为.故选D.点睛:考查圆周角定理,垂径定理,扇形面积的计算,熟记扇形的面积公式是解题的关键.3、D【解析】试题分析:由主视图和左视图可得此几何体上面为台,下面为柱体,由俯视图为圆环可得几何体为.故选D.考点:由三视图判断几何体.视频4、D【解析】解:,∴3(x﹣1)﹣6=2(3x+1),故选D.点睛:本题考查了等式的性质,解题的关键是正确理解等式的性质,本题属于基础题型.5、B【解析】试题分析:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选B.【考点】中心对称图形.6、B【解析】(1)如图1,当点C在点A和点B之间时,∵点M是AB的中点,点N是BC的中点,AB=8cm,BC=2cm,∴MB=AB=4cm,BN=BC=1cm,∴MN=MB-BN=3cm;(2)如图2,当点C在点B的右侧时,∵点M是AB的中点,点N是BC的中点,AB=8cm,BC=2cm,∴MB=AB=4cm,BN=BC=1cm,∴MN=MB+BN=5cm.综上所述,线段MN的长度为5cm或3cm.故选B.点睛:解本题时,由于题目中告诉的是点C在直线AB上,因此根据题目中所告诉的AB和BC的大小关系要分点C在线段AB上和点C在线段AB的延长线上两种情况分析解答,不要忽略了其中任何一种.7、B【解析】
根据图形旋转的性质得AC=A′C,∠ACA′=90°,∠B=∠A′B′C,从而得∠AA′C=45°,结合∠1=20°,即可求解.【详解】∵将RtABC绕直角项点C顺时针旋转90°,得到A'B'C,∴AC=A′C,∠ACA′=90°,∠B=∠A′B′C,∴∠AA′C=45°,∵∠1=20°,∴∠B′A′C=45°-20°=25°,∴∠A′B′C=90°-25°=65°,∴∠B=65°.故选B.【点睛】本题主要考查旋转的性质,等腰三角形和直角三角形的性质,掌握等腰三角形和直角三角形的性质定理,是解题的关键.8、B【解析】
题目中没有明确腰和底,故要分情况讨论,再结合三角形的三边关系分析即可.【详解】当5为腰时,三边长为5、5、10,而,此时无法构成三角形;当5为底时,三边长为5、10、10,此时可以构成三角形,它的周长故选B.9、D【解析】解:A.a6÷a2=a4,故A错误;B.(﹣2)﹣1=﹣,故B错误;C.(﹣3x2)•2x3=﹣6x5,故C错;D.(π﹣3)0=1,故D正确.故选D.10、D【解析】
∵A(,),B(2,)两点在双曲线上,∴根据点在曲线上,点的坐标满足方程的关系,得.∵,∴,解得.故选D.【详解】请在此输入详解!11、D【解析】分析:根据图示,可得:c<b<0<a,,据此逐项判定即可.详解:∵c<0<a,|c|>|a|,∴a+c<0,∴选项A不符合题意;∵c<b<0,∴b+c<0,∴选项B不符合题意;∵c<b<0<a,c<0,∴ac<0,bc>0,∴ac<bc,∴选项C不符合题意;∵a>b,∴a﹣c>b﹣c,∴选项D符合题意.故选D.点睛:此题考查了数轴,考查了有理数的大小比较关系,考查了不等关系与不等式.熟记有理数大小比较法则,即正数大于0,负数小于0,正数大于一切负数.12、A【解析】分析:先根据平均数的定义确定出x的值,再根据方差公式进行计算即可求出答案.详解:根据题意,得:=2x解得:x=3,则这组数据为6、7、3、9、5,其平均数是6,所以这组数据的方差为[(6﹣6)2+(7﹣6)2+(3﹣6)2+(9﹣6)2+(5﹣6)2]=4,故选A.点睛:此题考查了平均数和方差的定义.平均数是所有数据的和除以数据的个数.方差是一组数据中各数据与它们的平均数的差的平方的平均数.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、540【解析】
过正五边形五个顶点,可以画三条对角线,把五边形分成3个三角形∴正五边形的内角和=3180=540°14、15【解析】
分析:设输出结果为y,观察图形我们可以得出x和y的关系式为:,将y的值代入即可求得x的值.详解:∵当y=127时,解得:x=43;当y=43时,解得:x=15;当y=15时,解得不符合条件.则输入的最小正整数是15.故答案为15.点睛:考查一元一次方程的应用,熟练掌握一元一次方程的应用是解题的关键.15、ya≥1【解析】
设点A的坐标为(m,n),由题意可知n=m1,从而可知抛物线C为y=(x-m)1+n,化简为y=x1-1mx+1m1,将x=1代入y=x1-1mx+1m1,利用二次函数的性质即可求出答案.【详解】设点A的坐标为(m,n),m为全体实数,
由于点A在抛物线y=x1上,
∴n=m1,
由于以A为顶点的抛物线C为y=x1+bx+c,
∴抛物线C为y=(x-m)1+n
化简为:y=x1-1mx+m1+n=x1-1mx+1m1,
∴令x=1,
∴ya=4-4m+1m1=1(m-1)1+1≥1,
∴ya≥1,
故答案为ya≥1【点睛】本题考查了二次函数的性质,解题的关键是根据题意求出ya=4-4m+1m1=1(m-1)1+1.16、2【解析】∵,∴,故答案为2.17、【解析】
因为以点D为圆心,r为半径的圆D与圆O有两个公共点,则圆D与圆O相交,圆心距满足关系式:|R-r|<d<R+r,求得圆D与圆O的半径代入计算即可.【详解】连接OA、OD,过O点作ON⊥AE,OM⊥AF.AN=AE=1,AM=AF=2,MD=AD-AM=3∵四边形ABCD是矩形∴∠BAD=∠ANO=∠AMO=90°,∴四边形OMAN是矩形∴OM=AN=1∴OA=,OD=∵以点D为圆心,r为半径的圆D与圆O有两个公共点,则圆D与圆O相交∴【点睛】本题考查了圆与圆相交的条件,熟记圆与圆相交时圆的半径与圆心距的关系是关键.18、2【解析】试题分析:根据算术平方根的定义,求数a的算术平方根,也就是求一个正数x,使得x2=a,则x就是a的算术平方根,特别地,规定0的算术平方根是0.∵22=4,∴4=2.考点:算术平方根.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)50件;(2)120元.【解析】
(1)设第一批购进文化衫x件,根据数量=总价÷单价结合第二批每件文化衫的进价比第一批每件文化衫的进价多10元,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)根据第二批购进的件数比第一批多40%,可求出第二批的进货数量,设该服装店销售该品牌文化衫每件的售价为y元,根据利润=销售单价×销售数量-进货总价,即可得出关于y的一元一次不等式,解之取其内的最小值即可得出结论.【详解】解:(1)设第一批购进文化衫x件,根据题意得:+10=,解得:x=50,经检验,x=50是原方程的解,且符合题意,答:第一批购进文化衫50件;(2)第二批购进文化衫(1+40%)×50=70(件),设该服装店销售该品牌文化衫每件的售价为y元,根据题意得:(50+70)y﹣4000﹣6300≥4100,解得:y≥120,答:该服装店销售该品牌文化衫每件最低售价为120元.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式.20、(1)证明见解析;(2)25°.【解析】试题分析:(1)根据等量代换可求得∠AOD=∠BOC,根据矩形的对边相等,每个角都是直角,可知∠A=∠B=90°,AD=BC,根据三角形全等的判定AAS证得△AOD≌△BOC,从而得证结论.(2)利用切线的性质和直角三角形的两个锐角互余的性质得到圆心角∠POA的度数,然后利用圆周角定理来求∠ABC的度数.试题解析:(1)∵∠AOC=∠BOD∴∠AOC-∠COD=∠BOD-∠COD即∠AOD=∠BOC∵四边形ABCD是矩形∴∠A=∠B=90°,AD=BC∴∴AO=OB(2)解:∵AB是的直径,PA与相切于点A,∴PA⊥AB,∴∠A=90°.又∵∠OPA=40°,∴∠AOP=50°,∵OB=OC,∴∠B=∠OCB.又∵∠AOP=∠B+∠OCB,∴.21、C点到地面AD的距离为:(2+2)m.【解析】
直接构造直角三角形,再利用锐角三角函数关系得出BE,CF的长,进而得出答案.【详解】过点B作BE⊥AD于E,作BF∥AD,过C作CF⊥BF于F,在Rt△ABE中,∵∠A=30°,AB=4m,∴BE=2m,由题意可得:BF∥AD,则∠FBA=∠A=30°,在Rt△CBF中,∵∠ABC=75°,∴∠CBF=45°,∵BC=4m,∴CF=sin45°•BC=∴C点到地面AD的距离为:【点睛】考查解直角三角形,熟练掌握锐角三角函数是解题的关键.22、(1)见解析(2)BD=2【解析】解:(1)证明:∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=ED,∠DEA=∠C=90°.∵在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL).(2)∵Rt△ACD≌Rt△AED,CD=1,∴DC=DE=1.∵DE⊥AB,∴∠DEB=90°.∵∠B=30°,∴BD=2DE=2.(1)根据角平分线性质求出CD=DE,根据HL定理求出另三角形全等即可.(2)求出∠DEB=90°,DE=1,根据含30度角的直角三角形性质求出即可.23、(1)△AFE.EF=BE+DF.(2)BF=DF-BE,理由见解析;(3)【解析】试题分析:(1)先根据旋转得:计算即点共线,再根据SAS证明△AFE≌△AFG,得EF=FG,可得结论EF=DF+DG=DF+AE;
(2)如图2,同理作辅助线:把△ABE绕点A逆时针旋转至△ADG,证明△EAF≌△GAF,得EF=FG,所以EF=DF−DG=DF−BE;
(3)如图3,同理作辅助线:把△ABD绕点A逆时针旋转至△ACG,证明△AED≌△AEG,得,先由勾股定理求的长,从而得结论.试题解析:(1)思路梳理:如图1,把△ABE绕点A逆时针旋转至△ADG,可使AB与AD重合,即AB=AD,由旋转得:∠ADG=∠A=,BE=DG,∠DAG=∠BAE,AE=AG,∴∠FDG=∠ADF+∠ADG=+=,即点F.D.
G共线,∵四边形ABCD为矩形,∴∠BAD=,∵∠EAF=,∴∴∴在△AFE和△AFG中,∵∴△AFE≌△AFG(SAS),∴EF=FG,∴EF=DF+DG=DF+AE;故答案为:△AFE,EF=DF+AE;(2)类比引申:如图2,EF=DF−BE,理由是:把△ABE绕点A逆时针旋转至△ADG,可使AB与AD重合,则G在DC上,由旋转得:BE=DG,∠DAG=∠BAE,AE=AG,∵∠BAD=,∴∠BAE+∠BAG=,∵∠EAF=,∴∠FAG=−=,∴∠EAF=∠FAG=,在△EAF和△GAF中,∵∴△EAF≌△GAF(SAS),∴EF=FG,∴EF=DF−DG=DF−BE;(3)联想拓展:如图3,把△ABD绕点A逆时针旋转至△ACG,可使AB与AC重合,连接EG,由旋转得:AD=AG,∠BAD=∠CAG,BD=CG,∵∠BAC=,AB=AC,∴∠B=∠ACB=,∴∠ACG=∠B=,∴∠BCG=∠ACB+∠ACG=+=,∵EC=2,CG=BD=1,由勾股定理得:∵∠BAD=∠CAG,∠BAC=,∴∠DAG=,∵∠BAD+∠EAC=,∴∠CAG+∠EAC==∠EAG,∴∠DAE=,∴∠DAE=∠EAG=,∵AE=AE,∴△AED≌△AEG,∴24、(1)证明见解析;(2)EM=4;(3)sin∠EOB=.【解析】
(1)连接A、C,E、B点,那么只需要求出△AMC和△EMB相似,即可求出结论,根据圆周角定理可推出它们的对应角相等,即可得△AMC∽△EMB;
(2)根据圆周角定理,结合勾股定理,可以推出EC的长度,根据已知条件推出AM、BM的长度,然后结合(1)的结论,很容易就可求出EM的长度;
(3)过点E作EF⊥AB,垂足为点F,通过作辅助线,解直角三角形,结合已知条件和(1)(2)所求的值,可推出Rt△EOF各边的长度,根据锐角三角函数的定义,便可求得sin∠EOB的值.【详解】(1)证明:连接AC、EB,如图1,∵∠A=∠BEC,∠B=∠ACM,∴△AMC∽△EMB;(2)解:∵DC是⊙O的直径,∴∠DEC=90°,∴DE2+EC2=DC2,∵DE=,CD=8,且EC为正数,∴EC=7,∵M为OB的中点,∴BM=2,AM=6,∵AM•BM=EM•CM=EM(EC﹣EM)=EM(7﹣EM)=12,且EM>MC,∴EM=4;(3)解:过点E作EF⊥AB,垂足为点F,如图2,∵OE=4,EM=4,∴OE=EM,∴OF=FM=1,∴EF=,∴sin∠EOB=.【点睛】本题考查了圆心角、弧、弦、弦心距的关系与相似三角形的判定与性质,解题的关键是熟练的掌
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大学物理机械波
- 2024至2030年中国吸尘器塑料件数据监测研究报告
- 2024至2030年中国印刷机器行业投资前景及策略咨询研究报告
- 2024至2030年中国EVE眼镜盒数据监测研究报告
- 2024年中国造纸机械市场调查研究报告
- 2024年中国灯管市场调查研究报告
- 2024年中国四层镀金豪华海鲜塔市场调查研究报告
- 2024年中国室外防爆扩音对讲话机市场调查研究报告
- 金锐家具新华店开业典礼仪式策划方案
- 美术教学中的问题解决策略计划
- 新能源汽车全国运输服务协议样本版
- 期中测试卷(1-4单元)(试题)-2024- 2025学年六年级上册数学人教版
- 期中试卷-2024-2025学年统编版语文五年级上册
- 2024-2030年中国盾构机行业发展趋势与投资策略建议报告
- 泵站改造新建工程施工组织设计方案
- 2024年重庆高考化学试题卷(含答案解析)
- 坚持人民至上以人民为中心心得体会三篇
- 2025届四川省绵阳市高三第一次调研测试物理试卷含解析
- 初中足球运球技术教案
- 2024-2030年中国原油行业发展趋势及发展前景研究报告
- BOT模式合作协议2024年
评论
0/150
提交评论