版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
多边形的内角和
说课人扬教材分析学情分析教学重难点教学目标课后反思教学过程一、教材分析
《多边形的内角和》选自新人教版义务教育课程标准教科书《数学》七年级下册第七章第三节《多边形及其内角和》的第二课。教学内容是多边形的内角和及外角和定理的推导和应用。在教学中要运用转化思想,观察图形和运用代数方法计算的数形结合思想。
二、学情分析
学生已经学习了求三角形的内角和的方法,掌握了多边形有关概念,理解了多边形的对角线。这为本节课的学习打下了一定的基础。在设计推导多边形内角和定理时首先采用作对角线将多边形划分为若干三角形的方法,然后再探索其他方法,这样比较符合学生的认知规律。另外,在以往的学习中,学生的动手实践、自主探究能力都得到一定的训练,本节课将进一步培养学生这些方面的能力。1、知识与技能:
①探索并了解多边形的内角和公式。
②能对多边形的内角和公式进行应用,解决实际问题。
③掌握多边形的外角和定理,并能运用。三、教学目标2、过程与方法:
①经历探索多边形内角和定理的过程,进一步发展学生的合情推理意识和主动探究习惯,进一步体会数学与现实生活的紧密联系。
②通过学生自己动手操作,积极参加数学活动的“做数学”的过程,让学生亲身体验数学发现,增强动手能力。
③在对多边形的内角和公式进行应用,解决实际问题过程中,培养学生“用数学”的能力。3、情感态度与价值观:①通过师生共同活动,培养学生创新精神,增强学生对数学的好奇心与求知欲。②向学生渗透类比、转化的数学思想,并使学生学会与他人合作。四、教学重难点
重点:多边形内角和定理与外角和定理的推导及运用。难点:将多边形的内角和转化为三角形的内角和,找出它们之间的关系.五、教学过程
(一)创设问题情境,导入新课
同学们,让我们再次走进多彩的图形世界,进一步探究有关多边形的问题。p走进多彩的多边形世界
1、以直观设情境,回忆旧知识。①请你看一看,图形就在生活中:展示室内设计、钻石戒指、各种螺母、多边形水果盘等多边形实物。②请你说一说,图中有哪些多边形。p你对多边形有多少了解2、以复习做铺垫,产生新问题。请你想一想:①三角形的内角和定理。三角形的外角和。②多边形的对角线概念。请你猜一猜:③躲藏在花丛后面的角的度数。演示flash动画片。3、以问题引思考,导入新课题。
①我们知道三角形的内角和等于180度,正方形,长方形的内角和等于360度,那么其他四边形呢?②那么,五边形、六边形呢?今天,老师想和同学们一起走进多边形的家园去揭开多边形的内角和的奥秘。”(二)引导探究内角和,合作交流u智慧第一站
问题:任意四边形的内角和是多少度?
1、动手试一试,就会有收获。①请同学们设计数学实验:方案一:任意画一个四边形,量一量它的四个内角,算一算它们的和,你能得出什么结论?方案二:请同学们拿出准备好的四边形纸卡纸,标上字母,然后把其中的三个内角剪下,拼到最后一个内角上,看看会有什么结果?(我们发现任意四边形的内角和都是360度。)②提出问题:能否利用三角形的内角和?怎样进行转化呢?(可以利用三角形的内角和。过四边形一个顶点,作四边形的一条对角线,把四边形分成两个三角形,这样进行转化得到结论四边形的内角和为:2×180°=360°。)u精彩第二站
2、动笔画一画,就会有发现。四人一个小组,讨论一下五边形的内角和应该怎样计算呢?探究:你知道将五边形如何分割,来求它的内角和吗?可以利用三角形的内角和。过五边形一个顶点,作五边形的两条对角线,把五边形分成三个三角形,这样进行转化得到结论。3、启迪思维,拓展创新我们利用数学转化思想,把求多边形的内角和的问题转化为求若干三角形的内角和,关键是将n边形分割转化为三角形。再进一步想一想,就会有更多方法:如果点在多边形的其他位置呢?(多边形的内部或者在多边形的一条边上,你还能得出同样的结论吗?在外部呢?)(以五边形为例探究)(同桌讨论,登台演示)
探索一:在五边形内部任意取一个点P,与各个顶点连接,从而把五边形分成五个三角形,容易发现,这五个三角形的内角和比五边形的内角和多了360度
探索二:在五边形一条边上任意取一个点P,与不相邻的顶点连接,从而把五边形分成四个三角形,容易发现,这四个三角形的内角和比五边形的内角和多了180度
探索三:在五边形外部任意取一个点P,与各个顶点连接,从而图中有五个三角形,容易发现,原五边形的内角和等于四个三角形的内角和减去最底下的三角形的内角和。还可以过五边形一个顶点,作五边形的一条对角线,把五边形分成一个三角形和一个四边形,这样进行转化得到结论。u闪亮第三站
4、小试牛刀:你能想出六边形和七边形的内角和各是多少吗?①六边形的内角和:4×180°=720°②七边形的内角和:5×180°=900°u幸运第四站
5、合作议一议,就会找到规律。多边形的内角和与多边形的边数有什么关系?学生主动实验,积极思考,踊跃交流。①从五边形、六边形一个顶点作对角线,可引多少条对角线?可把多边形分成多少个三角形?内角和是多少?②分成的三角形的个数与多边形的边数有什么关系?③n边形从一个顶点可作多少条对角线?可构成多少个三角形?内角和怎样求?为什么?④你能得出求n边形内角和的公式吗?归纳结论:n边形的内角和等于(n-2)×180°(n是大于等于3的整数)。规律探究:u成功第五站
6、认真做练习,就会有发展:①例1:一个四边形的一组对角和为180°,这个四边形另一组对角有什么关系?②开心果:
为了迎接奥运,小明想设计一个内角和是2008°的多边形图案,他能实现吗?
一个多边形的木板,锯去一个角后,内角和为540度。聪明的你能猜想出来这个木板原来的边数是多少吗?用你们的学具剪一剪,看看有几种情况吧!
求出图中未知数的值,说一说你是根据什么原理得到的?
有六个等圆,按甲、乙、丙三种摆放,它们圆心连线分别构成正六边形、平行四边形、正三角形,圆心连线外侧的阴影部分面积和依次记为A、B、C。试找出面积最大的。(三)引导探究外角和,合作交流
1、提出问题:在六边形的每个顶点处各取一个外角,这些外角的和叫做六边形的外角和。六边形的外角和等于多少度?2、解决问题:思考并讨论:如果将六边形换成n边形(n是大于等于3的整数),结果还相同吗?上述猜想能证明出来吗?把你的想法说出来。考虑以下问题:任何一个外角与同它相邻的内角有什么关系?n边形外角加上内角总和是多少?上述总和与n边形的内角和、外角和有什么关系?多边形任何一个外角与同它相邻的内角互为邻补角,因此,n边形外角加上内角总和是180°×n。上述总和=n边形内角和+n边形外角和。故n边形外角和=180°×n-180°×(n-2)=180°×n-180°×n+180°×2=360°3、综合运用:①例2:一个多边形每个内角都等于120°,它是几边形?②智慧树:一个多边形的内角和与外角和相等,它是几边形?一个多边形的内角和等于1800°,它是几边形?一个五边形的外角比为1:2:3:4:5,有可能吗?一个多边形除去一个内角后的内角和1000°,它是几边形?(四)回顾概括
通过本节课的探究与学习,你有哪些收获与体会?①多边形内角和定理及外角和定理的内容、推导和应用。②体会数学中的类比和转化的数学思想。(五)课后延伸
1、设计一个拼图实验,说明四边形的内角和是360°。2、制作一个七巧板,完成创意作品,下节课进行展示。六、课后反思1、整个教学设计,着手于教材,着眼于学生的认知实际,注重过程教学,活动教学,发展教学,体现“以知识教学为主线,能力培养为中心”的思想。在整个教学过程中,利用学生“好奇,敏锐,活跃,敢想,敢试”的心理特征,为学生创造一个开放的学习环境。在教学中,我始终坚持以教师为主导,学生为主体,致力启用学生已有的经验知识,充分调动学生的兴趣和积极性,使他们最大限度地参与到课堂的活动中,以便更好地发挥学生的主动性,自主性,加强创新意识的培养。2、教师通过提问,参与讨论,巡视学生练习,观察学生情绪等渠道,及时反馈信息,做适当调控,使教学过程不断优化。3、在教学活动中,我通过精心设置的一个个问题链,激发学生的求知欲,使学生在老师的引导与合作下,通过自主探索、合作交流、发现问题、解决问题。4、我倡导学生自主参与数学实践活动,在活动中通过动手探索,参与实践,密切数学与生活实际的联系,掌握数学知识的发生、形成过程和数学建模方法,形成用数学的意识。学生在实验中,不再被动接受知识,俨然成为了主动发现的科学家。运用实验探究法引出问题,是引导学生从特殊到一般,从具体到抽象,实现从“看得见摸得着”到“抽象理论”的飞跃,促进了学生的逻辑思维能力的充分开发。5、人的认识能力的形成,在时间上经历了一个从动作思维、形象思维到抽象思维的建构过程,而在成熟的思维中,这三种思维形式同时存在并相互发生作用,“抽象的道理是重要的,但要用一切办法使它们能看得见摸得着”。实验探究法就是让学生通过自己动手实验,从实验中引导学生发现问题,探索规律,解决问题;培养学生自主学习的意识及动手能力;使抽象晦涩的数学学习变成生动活泼的游戏过程,通过实践,使问题在实验观察中自然而然地被揭示出来,并引向深
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 快递业务合作协议样板
- 湖北艺术职业学院《建筑工程与技术》2023-2024学年第一学期期末试卷
- 湖北孝感美珈职业学院《幼儿园活动指导社会》2023-2024学年第一学期期末试卷
- 湖北文理学院《汉语第二语言教学法》2023-2024学年第一学期期末试卷
- 湖北水利水电职业技术学院《工程结构荷载与结构可靠度》2023-2024学年第一学期期末试卷
- 2025年度旋钻机及配件生产加工合同2篇
- 2025年摄影师与影视剧本创作合同3篇
- 2025年房产抵押品保管合同3篇
- 2025年度鸡粪处理与农业废弃物回收合同3篇
- 2025年度智慧城市景观照明系统安装与维护合同3篇
- 北京市朝阳区2024-2025学年高二上学期期末考试生物试卷(含答案)
- 2025年西藏拉萨市柳梧新区城市投资建设发展集团有限公司招聘笔试参考题库附带答案详解
- 2025年部编版一年级语文上册期末复习计划
- 2024年新高考II卷数学高考试卷(原卷+答案)
- 储罐维护检修施工方案
- 地理2024-2025学年人教版七年级上册地理知识点
- 2024 消化内科专业 药物临床试验GCP管理制度操作规程设计规范应急预案
- 2024-2030年中国电子邮箱行业市场运营模式及投资前景预测报告
- 基础设施零星维修 投标方案(技术方案)
- 人力资源 -人效评估指导手册
- 大疆80分钟在线测评题
评论
0/150
提交评论