山西省临汾市侯马职业中专学校2021-2022学年高一数学理模拟试题含解析_第1页
山西省临汾市侯马职业中专学校2021-2022学年高一数学理模拟试题含解析_第2页
山西省临汾市侯马职业中专学校2021-2022学年高一数学理模拟试题含解析_第3页
山西省临汾市侯马职业中专学校2021-2022学年高一数学理模拟试题含解析_第4页
山西省临汾市侯马职业中专学校2021-2022学年高一数学理模拟试题含解析_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省临汾市侯马职业中专学校2021-2022学年高一数学理模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知,下列各式中正确的个数是(

)①;

②;③;

④.A.1

B.2

C.

3

D.4参考答案:C2.设、、是非零向量,则下列结论正确是(

)A.

B.若,则C.若,则

D.参考答案:B略3.一个棱长为2的正方体被一个平面截去一部分后,剩余几何体的三视图如图所示,则截去的几何体是A.三棱锥 B.三棱柱 C.四棱锥 D.四棱柱参考答案:B由三视图可知,剩余几何体是如图所示的四棱柱,则截去的部分是三棱柱,故选B.【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.4.下列各进制数中,最小的是()A.1002(3) B.210(6) C.1000(4) D.111111(2)参考答案:A【考点】进位制.【分析】利用其它进位制化为“+进制”的方法即可得出.【解答】解:A.1002(3)=1×33+0×32+0×31+2×30=29.B.210(6)=2×62+1×61+0×60=78.C.1000(4)=1×43+0×42+0×41+0×40=64.D.111111(2)=1×25+1×24+1×23+1×22+1×21+1×20=63.因此最小的是29.故选:A.5.设集合,,从到的对应法则不是映射的(

)A.

B.C.

D.参考答案:A6.已知一个扇形弧长为6,扇形圆心角为2rad,则扇形的面积为

A2

B3

C6

D9参考答案:D略7.若f(x)=x2,则对任意实数x1,x2,下列不等式总成立的是(

)A.f()≤ B.f()<C.f()≥ D.f()>参考答案:A【考点】二次函数的性质.【专题】计算题;数形结合.【分析】欲比较f(),的大小,分别考查这两个式子的几何意义,一方面,f()是x1,x2中点的函数值;另一方面,是图中梯形的中位线长,由图即可得出结论.【解答】解:如图,在图示的直角梯形中,其中位线的长度为:,中位线与抛物线的交点到x轴的距离为:f(),观察图形可得:f()≤.故选A.【点评】本小题主要考查二次函数的性质、二次函数的性质的应用等基础知识,考查数形结合思想、化归与转化思想.属于基础题.8.已知m,n表示两条不同直线,α表示平面,下列说法正确的是()A.若m∥α,n∥α,则m∥n B.若m⊥α,n?α,则m⊥nC.若m⊥α,m⊥n,则n∥α D.若m∥α,m⊥n,则n⊥α参考答案:B【考点】空间中直线与直线之间的位置关系.【分析】A.运用线面平行的性质,结合线线的位置关系,即可判断;B.运用线面垂直的性质,即可判断;C.运用线面垂直的性质,结合线线垂直和线面平行的位置即可判断;D.运用线面平行的性质和线面垂直的判定,即可判断.【解答】解:A.若m∥α,n∥α,则m,n相交或平行或异面,故A错;B.若m⊥α,n?α,则m⊥n,故B正确;C.若m⊥α,m⊥n,则n∥α或n?α,故C错;D.若m∥α,m⊥n,则n∥α或n?α或n⊥α,故D错.故选B.9.已知函数为减函数,则a的取值范围是(

)A.a≤3

B.0≤a≤3

C.a≥3

D.1<a≤3参考答案:D10.如图,在等腰梯形ABCD中,,E,F分别是底边AB,CD的中点,把四边形BEFC沿直线EF折起使得平面BEFC⊥平面ADFE.若动点平面ADFE,设PB,PC与平面ADFE所成的角分别为(均不为0).若,则动点P的轨迹围成的图形的面积为(

)A.

B.

C.

D.参考答案:D由题意,PE=BEcotθ1,PF=CFcotθ2,∵BE=CF,θ1=θ2,∴PE=PF.以EF所在直线为x轴,EF的垂直平分线为y轴建立坐标系,设E(﹣,0),F(,0),P(x,y),则(x+)2+y2=[(x﹣)2+y2],∴3x2+3y2+5ax+a2=0,即(x+a)2+y2=a2,轨迹为圆,面积为.故答案选:D.

二、填空题:本大题共7小题,每小题4分,共28分11.已知函数定义域为R,总有,若,则实数的取值范围是______.参考答案:略12.设函数,给出四个命题:①是偶函数;②是实数集上的增函数;③,函数的图像关于原点对称;④函数有两个零点.上述命题中,正确命题的序号是__________.(把所有正确命题的序号都填上)参考答案:②③①错,∵,,∴不是偶函数.②∵,由图象知在上单调递增,正确.③时,,关于原点对称,正确.④若时,只有一个零点,错误.综上,正确命题为②③.13.下列说法:①函数的单调增区间是;

②若函数定义域为且满足,则它的图象关于轴对称;③对于指数函数与幂函数,总存在,当时,有成立;④若关于x的方程恰有三个互不相等的实数根,则的取值范围是.其中正确的说法是

.参考答案:③④14.给定,定义乘积为整数的叫做希望数,则区间内的所有希望数之和为________.参考答案:202615.已知函数是定义在R上的奇函数,给出下列四个结论:①;②若在上有最小值,则在上有最大值1;③若在上为增函数,则在上为减函数;④若时,则时,;其中正确结论的序号为___________;参考答案:①②④16.函数的单调增区间为

.

参考答案:略17.过点A(-3,1)的直线中,与原点距离最远的直线方程为________________.参考答案:3x-y+10=0设原点为O,则所求直线过点A(-3,1)且与OA垂直,又kOA=-,∴所求直线的斜率为3,故其方程为y-1=3(x+3).即3x-y+10=0.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.设△ABC的三内角A、B、C的对边分别是a、b、c,且b(sinB﹣sinC)+(c﹣a)(sinA+sinC)=0(Ⅰ)求角A的大小;(Ⅱ)若a=,sinC=sinB,求△ABC的面积.参考答案:【考点】三角形中的几何计算.【分析】(Ⅰ)由正弦定理得b2+c2﹣a2=bc,由由余弦定理求角A的大小;(Ⅱ)若a=,sinC=sinB,利用三角形的面积公式,即可求△ABC的面积.【解答】解:(Ⅰ)因为b(sinB﹣sinC)+(c﹣a)(sinA+sinC)=0,由正弦定理得b(b﹣a)+(c﹣a)(a+c)=0,∴b2+c2﹣a2=bc,…∴由余弦定理得,∴在△ABC中,.…(Ⅱ)方法一:因为,且,∴∴,∴tanB=1,在△ABC中,又在△ABC中,由正弦定理得,∴∴△ABC的面积…方法二:因为,由正弦定理得而,,由余弦定理得b2+c2﹣bc=a2,∴∴b2=2,即,∴△ABC的面积S==…19.已知定义在R上的函数f(x)=(a∈R)是奇函数,函数g(x)=的定义域为(﹣1,+∞).(1)求a的值;(2)若g(x)=在(﹣1,+∞)上递减,根据单调性的定义求实数m的取值范围;(3)在(2)的条件下,若函数h(x)=f(x)+g(x)在区间(﹣1,1)上有且仅有两个不同的零点,求实数m的取值范围.参考答案:【考点】函数单调性的性质;函数奇偶性的性质.【分析】(1)根据函数的奇偶性,求出a的值即可;(2)根据单调性的定义判断m的范围即可;(3)根据根域系数的关系,通过讨论△的符号,求出m的范围即可.【解答】解:(1)∵函数是奇函数,∴f(﹣x)=﹣f(x),∴得a=0;(2)∵在(﹣1,+∞)上递减,∴任给实数x1,x2,当﹣1<x1<x2时,g(x1)>g(x2),∴,∴m<0;(3)由(1)得,令h(x)=0,即,化简得x(mx2+x+m+1)=0,∴x=0或mx2+x+m+1=0,若0是方程mx2+x+m+1=0的根,则m=﹣1,此时方程mx2+x+m+1=0的另一根为1,不符合题意,∴函数h(x)=f(x)+g(x)在区间(﹣1,1)上有且仅有两个不同的零点,等价于方程mx2+x+m+1=0(※)在区间(﹣1,1)上有且仅有一个非零的实根,①当△=12﹣4m(m+1)=0时,得,若,则方程(※)的根为,符合题意;若,则与(2)条件下m<0矛盾,不符合题意,∴,②当△>0时,令h(x)=mx2+x+m+1,由,得﹣1<m<0,综上所述,所求实数m的取值范围是.【点评】本题考查了函数的单调性问题、奇偶性问题,是一道中档题.20.已知关于x,y的方程.(1)若方程C表示圆,求m的取值范围;(2)若圆C与圆外切,求m的值;(3)若圆C与直线相交于M,N两点,且,求m的值.参考答案:(1);(2)4;(3)4.【分析】(1)根据圆的标准的方程条件列不等式求出的范围;

(2)利用垂径定理得出圆的半径,从而得出的值.(3)先求出圆心坐标和半径,圆心到直线的距离,利用弦长公式求出的值.【详解】(1)方程可化为

,显然

时方程表示圆.

(2)由(1)知圆的圆心为,半径为,可化为,故圆心为,半径为4.又两圆外切,所以,即,可得.

(3)圆的圆心到直线的距离为,由则,又,所以得

.【点睛】本题考查圆的标准方程的特征,圆与圆外切的性质,点到直线的距离公式、弦长公式的应用.属于基础题.21.(本小题满分12分)

已知函数为奇函数(1)判断函数的奇偶性;(2)若时,,求当时,函数的解析式。参考答案:22.在△ABC中,内角A、B、C所对的边分别为a、b、c.已知,.(Ⅰ

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论