下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022高考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知f(x)=是定义在R上的奇函数,则不等式f(x-3)<f(9-x2)的解集为()A.(-2,6) B.(-6,2) C.(-4,3) D.(-3,4)2.已知直线与直线则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件3.根据最小二乘法由一组样本点(其中),求得的回归方程是,则下列说法正确的是()A.至少有一个样本点落在回归直线上B.若所有样本点都在回归直线上,则变量同的相关系数为1C.对所有的解释变量(),的值一定与有误差D.若回归直线的斜率,则变量x与y正相关4.使得的展开式中含有常数项的最小的n为()A. B. C. D.5.设正项等比数列的前n项和为,若,,则公比()A. B.4 C. D.26.函数在上单调递减,且是偶函数,若,则的取值范围是()A.(2,+∞) B.(﹣∞,1)∪(2,+∞)C.(1,2) D.(﹣∞,1)7.已知集合,,则A. B.C. D.8.已知函数为奇函数,且,则()A.2 B.5 C.1 D.39.据国家统计局发布的数据,2019年11月全国CPI(居民消费价格指数),同比上涨4.5%,CPI上涨的主要因素是猪肉价格的上涨,猪肉加上其他畜肉影响CPI上涨3.27个百分点.下图是2019年11月CPI一篮子商品权重,根据该图,下列结论错误的是()A.CPI一篮子商品中所占权重最大的是居住B.CPI一篮子商品中吃穿住所占权重超过50%C.猪肉在CPI一篮子商品中所占权重约为2.5%D.猪肉与其他畜肉在CPI一篮子商品中所占权重约为0.18%10.已知函数与的图象有一个横坐标为的交点,若函数的图象的纵坐标不变,横坐标变为原来的倍后,得到的函数在有且仅有5个零点,则的取值范围是()A. B.C. D.11.设不等式组表示的平面区域为,若从圆:的内部随机选取一点,则取自的概率为()A. B. C. D.12.已知集合,,若,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在的二项展开式中,所有项的系数的和为________14.已知函数在处的切线与直线平行,则为________.15.的展开式中的系数为____.16.等腰直角三角形内有一点P,,,,,则面积为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)对于很多人来说,提前消费的认识首先是源于信用卡,在那个工资不高的年代,信用卡绝对是神器,稍微大件的东西都是可以选择用信用卡来买,甚至于分期买,然后慢慢还!现在银行贷款也是很风靡的,从房贷到车贷到一般的现金贷.信用卡“忽如一夜春风来”,遍布了各大小城市的大街小巷.为了解信用卡在市的使用情况,某调查机构借助网络进行了问卷调查,并从参与调查的网友中随机抽取了100人进行抽样分析,得到如下列联表(单位:人)经常使用信用卡偶尔或不用信用卡合计40岁及以下15355040岁以上203050合计3565100(1)根据以上数据,能否在犯错误的概率不超过0.10的前提下认为市使用信用卡情况与年龄有关?(2)①现从所抽取的40岁及以下的网民中,按“经常使用”与“偶尔或不用”这两种类型进行分层抽样抽取10人,然后,再从这10人中随机选出4人赠送积分,求选出的4人中至少有3人偶尔或不用信用卡的概率;②将频率视为概率,从市所有参与调查的40岁以上的网民中随机抽取3人赠送礼品,记其中经常使用信用卡的人数为,求随机变量的分布列、数学期望和方差.参考公式:,其中.参考数据:0.150.100.050.0250.0102.0722.7063.8415.0246.63518.(12分)在直角坐标系中,直线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,圆的极坐标方程为.(1)求直线和圆的普通方程;(2)已知直线上一点,若直线与圆交于不同两点,求的取值范围.19.(12分)已知函数,,且.(1)当时,求函数的减区间;(2)求证:方程有两个不相等的实数根;(3)若方程的两个实数根是,试比较,与的大小,并说明理由.20.(12分)已知函数(1)若,试讨论的单调性;(2)若,实数为方程的两不等实根,求证:.21.(12分)已知是等腰直角三角形,.分别为的中点,沿将折起,得到如图所示的四棱锥.(Ⅰ)求证:平面平面.(Ⅱ)当三棱锥的体积取最大值时,求平面与平面所成角的正弦值.22.(10分)如图,已知椭圆的右焦点为,,为椭圆上的两个动点,周长的最大值为8.(Ⅰ)求椭圆的标准方程;(Ⅱ)直线经过,交椭圆于点,,直线与直线的倾斜角互补,且交椭圆于点,,,求证:直线与直线的交点在定直线上.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【解析】
由奇函数的性质可得,进而可知在R上为增函数,转化条件得,解一元二次不等式即可得解.【详解】因为是定义在R上的奇函数,所以,即,解得,即,易知在R上为增函数.又,所以,解得.故选:C.【点睛】本题考查了函数单调性和奇偶性的应用,考查了一元二次不等式的解法,属于中档题.2.B【解析】
利用充分必要条件的定义可判断两个条件之间的关系.【详解】若,则,故或,当时,直线,直线,此时两条直线平行;当时,直线,直线,此时两条直线平行.所以当时,推不出,故“”是“”的不充分条件,当时,可以推出,故“”是“”的必要条件,故选:B.【点睛】本题考查两条直线的位置关系以及必要不充分条件的判断,前者应根据系数关系来考虑,后者依据两个条件之间的推出关系,本题属于中档题.3.D【解析】
对每一个选项逐一分析判断得解.【详解】回归直线必过样本数据中心点,但样本点可能全部不在回归直线上﹐故A错误;所有样本点都在回归直线上,则变量间的相关系数为,故B错误;若所有的样本点都在回归直线上,则的值与相等,故C错误;相关系数r与符号相同,若回归直线的斜率,则,样本点分布应从左到右是上升的,则变量x与y正相关,故D正确.故选D.【点睛】本题主要考查线性回归方程的性质,意在考查学生对该知识的理解掌握水平和分析推理能力.4.B【解析】二项式展开式的通项公式为,若展开式中有常数项,则,解得,当r取2时,n的最小值为5,故选B【考点定位】本题考查二项式定理的应用.5.D【解析】
由得,又,两式相除即可解出.【详解】解:由得,又,∴,∴,或,又正项等比数列得,∴,故选:D.【点睛】本题主要考查等比数列的性质的应用,属于基础题.6.B【解析】
根据题意分析的图像关于直线对称,即可得到的单调区间,利用对称性以及单调性即可得到的取值范围。【详解】根据题意,函数满足是偶函数,则函数的图像关于直线对称,若函数在上单调递减,则在上递增,所以要使,则有,变形可得,解可得:或,即的取值范围为;故选:B.【点睛】本题考查偶函数的性质,以及函数单调性的应用,有一定综合性,属于中档题。7.D【解析】
因为,,所以,,故选D.8.B【解析】
由函数为奇函数,则有,代入已知即可求得.【详解】.故选:.【点睛】本题考查奇偶性在抽象函数中的应用,考查学生分析问题的能力,难度较易.9.D【解析】
A.从第一个图观察居住占23%,与其他比较即可.B.CPI一篮子商品中吃穿住所占23%+8%+19.9%=50.9%,再判断.C.食品占19.9%,再看第二个图,分清2.5%是在CPI一篮子商品中,还是在食品中即可.D.易知猪肉与其他畜肉在CPI一篮子商品中所占权重约为2.1%+2.5%=4.6%.【详解】A.CPI一篮子商品中居住占23%,所占权重最大的,故正确.B.CPI一篮子商品中吃穿住所占23%+8%+19.9%=50.9%,权重超过50%,故正确.C.食品占中19.9%,分解后后可知猪肉是占在CPI一篮子商品中所占权重约为2.5%,故正确.D.猪肉与其他畜肉在CPI一篮子商品中所占权重约为2.1%+2.5%=4.6%,故错误.故选:D【点睛】本题主要考查统计图的识别与应用,还考查了理解辨析的能力,属于基础题.10.A【解析】
根据题意,,求出,所以,根据三角函数图像平移伸缩,即可求出的取值范围.【详解】已知与的图象有一个横坐标为的交点,则,,,,,若函数图象的纵坐标不变,横坐标变为原来的倍,则,所以当时,,在有且仅有5个零点,,.故选:A.【点睛】本题考查三角函数图象的性质、三角函数的平移伸缩以及零点个数问题,考查转化思想和计算能力.11.B【解析】
画出不等式组表示的可行域,求得阴影部分扇形对应的圆心角,根据几何概型概率计算公式,计算出所求概率.【详解】作出中在圆内部的区域,如图所示,因为直线,的倾斜角分别为,,所以由图可得取自的概率为.故选:B【点睛】本小题主要考查几何概型的计算,考查线性可行域的画法,属于基础题.12.A【解析】
由,得,代入集合B即可得.【详解】,,,即:,故选:A【点睛】本题考查了集合交集的含义,也考查了元素与集合的关系,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.1【解析】
设,令,的值即为所有项的系数之和。【详解】设,令,所有项的系数的和为。【点睛】本题主要考查二项式展开式所有项的系数的和的求法─赋值法。一般地,对于,展开式各项系数之和为,注意与“二项式系数之和”区分。14.【解析】
根据题意得出,由此可得出实数的值.【详解】,,直线的斜率为,由于函数在处的切线与直线平行,则.故答案为:.【点睛】本题考查利用函数的切线与直线平行求参数,解题时要结合两直线的位置关系得出两直线斜率之间的关系,考查计算能力,属于基础题.15.28【解析】
将已知式转化为,则的展开式中的系数中的系数,根据二项式展开式可求得其值.【详解】,所以的展开式中的系数就是中的系数,而中的系数为,展开式中的系数为故答案为:28.【点睛】本题考查二项式展开式中的某特定项的系数,关键在于将原表达式化简将三项的幂的形式转化为可求的二项式的形式,属于基础题.16.【解析】
利用余弦定理计算,然后根据平方关系以及三角形面积公式,可得结果.【详解】设由题可知:由,,,所以化简可得:则或,即或由,所以所以故答案为:【点睛】本题主要考查余弦定理解三角形,仔细观察,细心计算,属基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)不能在犯错误的概率不超过0.10的前提下认为市使用信用卡情况与年龄有关;(2)①;②分布列见解析,,【解析】
(1)计算再对照表格分析即可.(2)①根据分层抽样的方法可得经常使用信用卡的有人,偶尔或不用信用卡的有人,再根据超几何分布的方法计算3人或4人偶尔或不用信用卡的概率即可.②利用二项分布的特点求解变量的分布列、数学期望和方差即可.【详解】(1)由列联表可知,,因为,所以不能在犯错误的概率不超过0.10的前提下认为市使用信用卡情况与年龄有关.(2)①依题意,可知所抽取的10名40岁及以下网民中,经常使用信用卡的有(人),偶尔或不用信用卡的有(人).则选出的4人中至少有3人偶尔或不用信用卡的概率.②由列联表,可知40岁以上的网民中,抽到经常使用信用卡的频率为,将频率视为概率,即从市市民中任意抽取1人,恰好抽到经常使用信用卡的市民的概率为.由题意得,则,,,.故随机变量的分布列为:0123故随机变量的数学期望为,方差为.【点睛】本题主要考查了独立性检验以及超几何分布与二项分布的知识点,包括分类讨论以及二项分布的数学期望与方差公式等.属于中档题.18.(1),;(2)【解析】分析:(1)用代入法消参数可得直线的普通方程,由公式可化极坐标方程为直角坐标方程;(2)把直线的参数方程代入曲线的直角坐标方程,其中参数的绝对值表示直线上对应点到的距离,因此有,,直接由韦达定理可得,注意到直线与圆相交,因此判别式>0,这样可得满足的不等关系,由此可求得的取值范围.详解:(1)直线的参数方程为,普通方程为,将代入圆的极坐标方程中,可得圆的普通方程为,(2)解:直线的参数方程为代入圆的方程为可得:(*),且由题意,,.因为方程(*)有两个不同的实根,所以,即,又,所以.因为,所以所以.点睛:(1)参数方程化为普通方程,一般用消参数法,而消参法有两种选择:一是代入法,二是用公式;(2)极坐标方程与直角坐标方程互化一般利用公式;(3)过的直线的参数方程为(为参数)中参数具有几何意义:直线上任一点对应参数,则.19.(1)(2)详见解析(3)【解析】
试题分析:(1)当时,,由得减区间;(2)因为,所以,因为所以,方程有两个不相等的实数根;(3)因为,,所以试题解析:(1)当时,,由得减区间;(2)法1:,,,所以,方程有两个不相等的实数根;法2:,,是开口向上的二次函数,所以,方程有两个不相等的实数根;(3)因为,,又在和增,在减,所以.考点:利用导数求函数减区间,二次函数与二次方程关系20.(1)答案不唯一,具体见解析(2)证明见解析【解析】
(1)根据题意得,分与讨论即可得到函数的单调性;(2)根据题意构造函数,得,参变分离得,分析不等式,即转化为,设,再构造函数,利用导数得单调性,进而得证.【详解】(1)依题意,当时,,①当时,恒成立,此时在定义域上单调递增;②当时,若,;若,;故此时的单调递增区间为,单调递减区间为.(2)方法1:由得令,则,依题意有,即,要证,只需证(不妨设),即证,令,设,则,在单调递减,即,从而有.方法2:由得令,则,当时,时,故在上单调递增,在上单调递减,不妨设,则,要证,只需证,易知,故只需证,即证令,(),则==,(也可代入后再求导)在上单调递减,,故对于时,总有.由此得【点睛】本题考查了函数的单调性、最值问题,考查
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 茶叶营销合同范本
- 批发行业服务标准提升
- 餐馆隔断改造方案
- 账务核算合同范本
- 基于虚拟现实的模拟实践教学
- 非碘盐的危害
- 《XZ房地产公司销售人员流失现状与对策研究》
- 敏捷开发方法在软件工程中的应用
- 领导力与团队建设
- 2024年度烧烤店独家配方转让合同
- 赔偿树苗协议书范本
- 国家开放大学本科《纳税筹划》在线形考(形考任务三)试题及答案
- 财政投资工程项目评审面临的问题及其对策
- 周围神经病变(课件)
- CR300BF型动车组网络设备及列车控制讲解
- 2024年全国中小学教师职业道德知识竞赛试题库及答案
- 【110kv水电站电气一次部分设计17000字(论文)】
- 2024医疗机构重大事故隐患判定清单(试行)学习课件
- 高压电缆高频局部放电带电检测技术导则
- 外贸基础知识及常用外贸术语
- 《抗心律失常药物临床应用中国专家共识2023》解读
评论
0/150
提交评论