




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022高考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知椭圆,直线与直线相交于点,且点在椭圆内恒成立,则椭圆的离心率取值范围为()A. B. C. D.2.已知函数()的部分图象如图所示.则()A. B.C. D.3.已知定义在上的函数满足,且在上是增函数,不等式对于恒成立,则的取值范围是A. B. C. D.4.下列四个图象可能是函数图象的是()A. B. C. D.5.已知边长为4的菱形,,为的中点,为平面内一点,若,则()A.16 B.14 C.12 D.86.设复数满足,则()A. B. C. D.7.执行如图所示的程序框图,若输出的,则①处应填写()A. B. C. D.8.集合的真子集的个数为()A.7 B.8 C.31 D.329.在的展开式中,的系数为()A.-120 B.120 C.-15 D.1510.已知是双曲线的左、右焦点,若点关于双曲线渐近线的对称点满足(为坐标原点),则双曲线的渐近线方程为()A. B. C. D.11.对于正在培育的一颗种子,它可能1天后发芽,也可能2天后发芽,….下表是20颗不同种子发芽前所需培育的天数统计表,则这组种子发芽所需培育的天数的中位数是()发芽所需天数1234567种子数43352210A.2 B.3 C.3.5 D.412.函数的大致图像为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知,则展开式中的系数为__14.函数的单调增区间为__________.15.如图,两个同心圆的半径分别为和,为大圆的一条直径,过点作小圆的切线交大圆于另一点,切点为,点为劣弧上的任一点(不包括两点),则的最大值是__________.16.已知,则_____。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知,且满足,证明:.18.(12分)如图,在四棱锥中,是边长为的正方形的中心,平面,为的中点.(Ⅰ)求证:平面平面;(Ⅱ)若,求二面角的余弦值.19.(12分)在直角坐标系中,已知点,的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为.(1)求的普通方程和的直角坐标方程;(2)设曲线与曲线相交于,两点,求的值.20.(12分)已知数列的前项和为,且满足.(1)求数列的通项公式;(2)若,,且数列前项和为,求的取值范围.21.(12分)已知椭圆C:(a>b>0)过点(0,),且满足a+b=3.(1)求椭圆C的方程;(2)若斜率为的直线与椭圆C交于两个不同点A,B,点M坐标为(2,1),设直线MA与MB的斜率分别为k1,k2,试问k1+k2是否为定值?并说明理由.22.(10分)在某社区举行的2020迎春晚会上,张明和王慧夫妻俩参加该社区的“夫妻蒙眼击鼓”游戏,每轮游戏中张明和王慧各蒙眼击鼓一次,每个人击中鼓则得积分100分,没有击中鼓则扣积分50分,最终积分以家庭为单位计分.已知张明每次击中鼓的概率为,王慧每次击中鼓的概率为;每轮游戏中张明和王慧击中与否互不影响,假设张明和王慧他们家庭参加两轮蒙眼击鼓游戏.(1)若家庭最终积分超过200分时,这个家庭就可以领取一台全自动洗衣机,问张明和王慧他们家庭可以领取一台全自动洗衣机的概率是多少?(2)张明和王慧他们家庭两轮游戏得积分之和的分布列和数学期望.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【解析】
先求得椭圆焦点坐标,判断出直线过椭圆的焦点.然后判断出,判断出点的轨迹方程,根据恒在椭圆内列不等式,化简后求得离心率的取值范围.【详解】设是椭圆的焦点,所以.直线过点,直线过点,由于,所以,所以点的轨迹是以为直径的圆.由于点在椭圆内恒成立,所以椭圆的短轴大于,即,所以,所以双曲线的离心率,所以.故选:A【点睛】本小题主要考查直线与直线的位置关系,考查动点轨迹的判断,考查椭圆离心率的取值范围的求法,属于中档题.2.C【解析】
由图象可知,可解得,利用三角恒等变换化简解析式可得,令,即可求得.【详解】依题意,,即,解得;因为所以,当时,.故选:C.【点睛】本题主要考查了由三角函数的图象求解析式和已知函数值求自变量,考查三角恒等变换在三角函数化简中的应用,难度一般.3.A【解析】
根据奇偶性定义和性质可判断出函数为偶函数且在上是减函数,由此可将不等式化为;利用分离变量法可得,求得的最大值和的最小值即可得到结果.【详解】为定义在上的偶函数,图象关于轴对称又在上是增函数在上是减函数,即对于恒成立在上恒成立,即的取值范围为:本题正确选项:【点睛】本题考查利用函数的奇偶性和单调性求解函数不等式的问题,涉及到恒成立问题的求解;解题关键是能够利用函数单调性将函数值的大小关系转化为自变量的大小关系,从而利用分离变量法来处理恒成立问题.4.C【解析】
首先求出函数的定义域,其函数图象可由的图象沿轴向左平移1个单位而得到,因为为奇函数,即可得到函数图象关于对称,即可排除A、D,再根据时函数值,排除B,即可得解.【详解】∵的定义域为,其图象可由的图象沿轴向左平移1个单位而得到,∵为奇函数,图象关于原点对称,∴的图象关于点成中心对称.可排除A、D项.当时,,∴B项不正确.故选:C【点睛】本题考查函数的性质与识图能力,一般根据四个选择项来判断对应的函数性质,即可排除三个不符的选项,属于中档题.5.B【解析】
取中点,可确定;根据平面向量线性运算和数量积的运算法则可求得,利用可求得结果.【详解】取中点,连接,,,即.,,,则.故选:.【点睛】本题考查平面向量数量积的求解问题,涉及到平面向量的线性运算,关键是能够将所求向量进行拆解,进而利用平面向量数量积的运算性质进行求解.6.D【解析】
根据复数运算,即可容易求得结果.【详解】.故选:D.【点睛】本题考查复数的四则运算,属基础题.7.B【解析】
模拟程序框图运行分析即得解.【详解】;;.所以①处应填写“”故选:B【点睛】本题主要考查程序框图,意在考查学生对这些知识的理解掌握水平.8.A【解析】
计算,再计算真子集个数得到答案.【详解】,故真子集个数为:.故选:.【点睛】本题考查了集合的真子集个数,意在考查学生的计算能力.9.C【解析】
写出展开式的通项公式,令,即,则可求系数.【详解】的展开式的通项公式为,令,即时,系数为.故选C【点睛】本题考查二项式展开的通项公式,属基础题.10.B【解析】
先利用对称得,根据可得,由几何性质可得,即,从而解得渐近线方程.【详解】如图所示:由对称性可得:为的中点,且,所以,因为,所以,故而由几何性质可得,即,故渐近线方程为,故选B.【点睛】本题考查了点关于直线对称点的知识,考查了双曲线渐近线方程,由题意得出是解题的关键,属于中档题.11.C【解析】
根据表中数据,即可容易求得中位数.【详解】由图表可知,种子发芽天数的中位数为,故选:C.【点睛】本题考查中位数的计算,属基础题.12.D【解析】
通过取特殊值逐项排除即可得到正确结果.【详解】函数的定义域为,当时,,排除B和C;当时,,排除A.故选:D.【点睛】本题考查图象的判断,取特殊值排除选项是基本手段,属中档题.二、填空题:本题共4小题,每小题5分,共20分。13.1.【解析】
由题意求定积分得到的值,再根据乘方的意义,排列组合数的计算公式,求出展开式中的系数.【详解】∵已知,则,
它表示4个因式的乘积.
故其中有2个因式取,一个因式取,剩下的一个因式取1,可得的项.
故展开式中的系数.
故答案为:1.【点睛】本题主要考查求定积分,乘方的意义,排列组合数的计算公式,属于中档题.14.【解析】
先求出导数,再在定义域上考虑导数的符号为正时对应的的集合,从而可得函数的单调增区间.【详解】函数的定义域为.,令,则,故函数的单调增区间为:.故答案为:.【点睛】本题考查导数在函数单调性中的应用,注意先考虑函数的定义域,再考虑导数在定义域上的符号,本题属于基础题.15.【解析】
以为坐标原点,所在的直线为轴,的垂直平分线为轴,建立平面直角坐标系,从而可得、,,,然后利用向量数量积的坐标运算可得,再根据辅助角公式以及三角函数的性质即可求解.【详解】以为坐标原点,所在的直线为轴,的垂直平分线为轴,建立平面直角坐标系,则、,由,且,所以,所以,即又平分,所以,则,设,则,,所以,所以,,所以的最大值是.故答案为:【点睛】本题考查了向量数量积的坐标运算、利用向量解决几何问题,同时考查了辅助角公式以及三角函数的性质,属于中档题.16.【解析】
由已知求,再利用和角正切公式,求得,【详解】因为所以cos因此.【点睛】本题考查了同角三角函数基本关系式与和角的正切公式。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.证明见解析【解析】
将化简可得,由柯西不等式可得证明.【详解】解:因为,,所以,又,所以,当且仅当时取等号.【点睛】本题主要考查柯西不等式的应用,相对不难,注意已知条件的化简及柯西不等式的灵活运用.18.(Ⅰ)详见解析;(Ⅱ).【解析】
(Ⅰ)由正方形的性质得出,由平面得出,进而可推导出平面,再利用面面垂直的判定定理可证得结论;(Ⅱ)取的中点,连接、,以、、所在直线分别为、、轴建立空间直角坐标系,利用空间向量法能求出二面角的余弦值.【详解】(Ⅰ)是正方形,,平面,平面,、平面,且,平面,又平面,平面平面;(Ⅱ)取的中点,连接、,是正方形,易知、、两两垂直,以点为坐标原点,以、、所在直线分别为、、轴建立如图所示的空间直角坐标系,在中,,,,、、、,设平面的一个法向量,,,由,得,令,则,,.设平面的一个法向量,,,由,得,取,得,,得.,二面角为钝二面角,二面角的余弦值为.【点睛】本题考查面面垂直的证明,同时也考查了利用空间向量法求解二面角,考查推理能力与计算能力,属于中等题.19.(1);(2)【解析】
(1)消去参数方程中的参数,求得的普通方程,利用极坐标和直角坐标的转化公式,求得的直角坐标方程.(2)求得曲线的标准参数方程,代入的直角坐标方程,写出韦达定理,根据直线参数中参数的几何意义,求得的值.【详解】(1)由的参数方程(为参数),消去参数可得,由曲线的极坐标方程为,得,所以的直角坐方程为,即.(2)因为在曲线上,故可设曲线的参数方程为(为参数),代入化简可得.设,对应的参数分别为,,则,,所以.【点睛】本小题主要考查参数方程化为普通方程,考查极坐标方程化为直角坐标方程,考查利用利用和直线参数方程中参数的几何意义进行计算,属于中档题.20.(1)(2)【解析】
(1)由,可求,然后由时,可得,根据等比数列的通项可求(2)由,而,利用裂项相消法可求.【详解】(1)当时,,解得,当时,①②②①得,即,数列是以2为首项,2为公比的等比数列,;(2)∴,∴,,.【点睛】本题考查递推公式在数列的通项求解中的应用,等比数列的通项公式、裂项求和方法,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.21.(1)(2)k1+k2为定值0,见解析【解析】
(1)利用已知条件直接求解,得到椭圆的方程;(2)设直线在轴上的截距为,推出直线方程,然后将直线与椭圆联立,设,利用韦达定理求出,然后化简求解即可.【详解】(1)由椭圆过点(0,),则,又a+b=3,所以,故椭圆的方程为;(2),证明如下:设直线在轴上的截距为,所以直线的方程为:,由得:,由得,设,则,所以,又,所以,故.【点睛】本题主要考查了椭圆的标准方程的求解,直线与椭圆的位置关系的综合应用,考查了方程的思想,转化与化归的思想,考查了学生的运算求解能力.22.(1)(2)详见解析【解析】
(1)要积分超过分,则需两人共击中次,或者击中次,由此利用相互独立事件概率计算公式,计算出所求概率.(2)求得的所有可能取值,根据相互独立事件概率计算公式,计算出分布列并求得数学期望.【详解】(1)由题意,当家庭最
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 研发中心场委托招聘合作协议
- 茶具研发与生产合作协议
- 财务离职保密及竞业限制合同范本
- 餐饮连锁品牌特许经营区域保护协议书
- 特色餐厅厨房设计与施工承包合同
- 产业园区场合作经营与产业布局协议
- 跨境电商跨境支付反欺诈风险管理合同
- 旅游景区场地转租管理服务协议
- 回流洗肠护理操作规范
- 2025年企业安全协议
- 卫健系统2025年上半年安全生产工作总结
- 麻精药品规范化管理与使用
- 庐江县2024-2025学年四下数学期末达标测试试题含解析
- 湘教版地理中考总复习教案
- 高中英语新课标3000词汇表(新高考)
- 2025年个人房贷还款合同格式
- 2025年度老旧小区改造工程施工合同交底范本
- 2025年福建厦门市翔安市政集团水务管理有限公司招聘笔试参考题库附带答案详解
- 江苏2024年江苏海事职业技术学院招聘11人(第三批)笔试历年参考题库附带答案详解
- 2025年绵阳燃气集团有限公司招聘笔试参考题库含答案解析
- 各种奶茶配方资料
评论
0/150
提交评论