2022年山东省烟台市蓬莱潮水中学高二数学文联考试题含解析_第1页
2022年山东省烟台市蓬莱潮水中学高二数学文联考试题含解析_第2页
2022年山东省烟台市蓬莱潮水中学高二数学文联考试题含解析_第3页
2022年山东省烟台市蓬莱潮水中学高二数学文联考试题含解析_第4页
2022年山东省烟台市蓬莱潮水中学高二数学文联考试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年山东省烟台市蓬莱潮水中学高二数学文联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.“x2﹣4x<0”的一个充分不必要条件为()A.0<x<4 B.0<x<2 C.x>0 D.x<4参考答案:B【考点】2L:必要条件、充分条件与充要条件的判断.【分析】首先解不等式x2﹣4x<0,得其解集A,再根据充分必要条件的含义,可得使不等式x2﹣4x<0成立的充分不必要条件对应的x范围应该是集合A的真子集就不难得到正确答案.【解答】解:不等式x2﹣4x<0整理,得x(x﹣4)<0∴不等式的解集为A={x|0<x<4},因此,不等式x2﹣4x<0成立的一个充分不必要条件,对应的x范围应该是集合A的真子集.写出一个使不等式x2﹣4x<0成立的充分不必要条件可以是:0<x<2,故选:B.【点评】本题以一个不等式成立为例,通过讨论其解集,着重考查了充分必要条件的判定与证明和一元二次不等式的解法等知识点,属于基础题.2.如图:在平行六面体中,为与的交点。若,,则下列向量中与相等的向量是(

)A.

B.C.

D.参考答案:A略3.圆截直线所得弦长为()A.

B.

C.1

D.5参考答案:A4.已知平面α∩平面β=直线l,点A,C∈α,点B,D∈β,且A,B,C,D?l,点M,N分别是线段AB,CD的中点.()A.当|CD|=2|AB|时,M,N不可能重合B.M,N可能重合,但此时直线AC与l不可能相交C.当直线AB,CD相交,且AC∥l时,BD可与l相交D.当直线AB,CD异面时,MN可能与l平行参考答案:B【考点】空间中直线与直线之间的位置关系.【分析】对于A,当A,B,C,D四点共面且AC∥BD时,则M,N两点能重合;对于B,AC∥l,此时直线AC与直线l不可能相交;对于C,直线AC平行于l时,直线BD可以与l平行;对于D,当AB,CD是异面直线时,MN不可能与l平行.【解答】解:对于A,当|CD|=2|AB|时,若A,B,C,D四点共面且AC∥BD时,则M,N两点能重合.故A不对;对于B,若M,N两点可能重合,则AC∥BD,故AC∥l,此时直线AC与直线l不可能相交,故B对;对于C,当AB与CD相交,直线AC平行于l时,直线BD可以与l平行,故C不对;对于D,当AB,CD是异面直线时,MN不可能与l平行,故D不对.故选:B.5.已知复数,其中为0,1,2,…,9这10个数字中的两个不同的数,则不同的虚数的个数为(

)A.36

B.72

C.81

D.90参考答案:C6.已知命题p:?x∈R,使x2+2x+5≤4;命题q:当时,f(x)=sinx+的最小值为4.下列命题是真命题的是()A.p∧(¬q) B.(¬p)∧(¬q) C.(¬p)∧q D.p∧q参考答案:A【考点】2E:复合命题的真假.【分析】分别判断出p,q的真假,从而判断出复合命题的真假即可.【解答】解:关于命题p:?x∈R,使x2+2x+5≤4,当x=﹣1时:命题成立,故p正确;关于命题q:当时,sinx>0,∴f(x)=sinx+>2=4,取不到4,故命题q是假命题;故选:A.7.“”是“函数在区间上为增函数的

A.充分不必要条件

B.必要不充分条件

C.充要条件

D.既不充分也不必要条件参考答案:A8.关于x的不等式的解集不为,则实数m的取值范围是(

)A.(-2,6) B.(-∞,-2)∪(6,+∞)C.(-∞,-6)∪(2,+∞) D.(-6,2)参考答案:D【分析】关于x的不等式|x﹣m|+|x+2|<4的解集不为??(|x﹣m|+|x+2|)min<4,再根据绝对值不等式的性质求出最小值,解不等式可得.【详解】关于x的不等式|x﹣m|+|x+2|<4的解集不为??(|x﹣m|+|x+2|)min<4,∵|x﹣m|+|x+2|≥|(x﹣m)﹣(x+2)|=|m+2|,∴|m+2|<4,解得﹣6<m<2,故选:D.【点睛】本题考查了绝对值三角不等式的应用,考查了转化思想,属于基础题.

9.椭圆上一点到一个焦点的距离等于,则它到相应的准线的距离为A.

B.

C.

D.参考答案:C10.已知一个样本容量为的样本数据的频率分布直方图如图所示,则样本数据落在内的样本频数为A.

B.

C.

D.参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.学校将从4名男生和4名女生中选出4人分别担任辩论赛中的一、二、三、四辩手,其中男生甲不适合担任一辩手,女生乙不适合担任四辩手.现要求:如果男生甲入选,则女生乙必须入选.那么不同的组队形式有_________种.参考答案:930分析:分三种情况讨论,分别求出甲乙都入选、甲不入选,乙入选、甲乙都不入选,,相应的情况不同的组队形式的种数,然后求和即可得出结论.详解:若甲乙都入选,则从其余人中选出人,有种,男生甲不适合担任一辩手,女生乙不适合担任四辩手,则有种,故共有种;若甲不入选,乙入选,则从其余人中选出人,有种,女生乙不适合担任四辩手,则有种,故共有种;若甲乙都不入选,则从其余6人中选出人,有种,再全排,有种,故共有种,综上所述,共有,故答案为.点睛:本题主要考查分类计数原理与分步计数原理及排列组合的应用,属于难题.有关排列组合的综合问题,往往是两个原理及排列组合问题交叉应用才能解决问题,解答这类问题理解题意很关键,一定多读题才能挖掘出隐含条件.解题过程中要首先分清“是分类还是分步”、“是排列还是组合”,在应用分类计数加法原理讨论时,既不能重复交叉讨论又不能遗漏,这样才能提高准确率.12.已知函数y=f(x)的图象在x=3处的切线方程为y=﹣2x+7,则f(3)+f′(3)的值是_________.参考答案:略13.参考答案:

6,0.4514.以为中点的抛物线的弦所在直线方程为:

.参考答案:15.定义集合运算AB=,则AB的所有元素之和为

参考答案:18略16.将全体正整数排成一个三角形数阵:按照以上排列的规律,第10行从左向右的第3个数为.参考答案:48【考点】84:等差数列的通项公式;8B:数列的应用.【分析】先找到数的分布规律,求出第n﹣1行结束的时候一共出现的数的个数,再求第n行从左向右的第3个数,代入n=10可得.【解答】解:由排列的规律可得,第n﹣1行结束的时候共排了1+2+3+…+(n﹣1)==个数,∴第n行从左向右的第3个数为+3=,把n=10代入可得第10行从左向右的第3个数为48故答案为:4817.函数的值域为

.参考答案:

三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(10分)如图所示,四棱锥P-ABCD的底面是边长为1的正方形,PA⊥CD,PA=1,PD=.(1)求证:PA⊥平面ABCD;(2)求四棱锥P-ABCD的体积.

参考答案:(1)证明:因为四棱锥P-ABCD的底面是边长为1的正方形,PA=1,PD=,所以PD2=PA2+AD2,所以PA⊥AD.又PA⊥CD,AD∩CD=D,所以PA⊥平面ABCD.(2)解:四棱锥P-ABCD的底面积为1,因为PA⊥平面ABCD,所以四棱锥P-ABCD的高为1,所以四棱锥P-ABCD的体积为.略19.为了研究高二阶段男生、女生对数学学科学习的差异性,在高二年级所有学生中随机抽取25名男生和25名女生,计算他们高二上学期期中、期末和下学期期中、期末的四次数学考试成绩的各自的平均分,并绘制成如图所示的茎叶图.(1)请根据茎叶图判断,男生组与女生组哪组学生的数学成绩较好?请用数据证明你的判断;(2)以样本中50名同学数学成绩的平均分x0(79.68分)为分界点,将各类人数填入如下的列联表:分数性别高于或等于x0低于x0合计男生

女生

合计

(3)请根据(2)中的列联表,判断能否有99%的把握认为数学学科学习能力与性别有关?附:K2=P(K2≥k0)0.0500.0250.0100.0050.001k03.8415.0246.6357.87910.828

参考答案:(1)男生组数学成绩比女生组数学成绩好.证明略(2)见解析;(3)没有99%的把握认为男生和女生对数学学习具有明显的差异.【分析】(1)根据男生成绩分布在的较多,其他分布关于茎具有初步对称性;女生成绩分布在的较多,其它分布茎70具有初步对称性,因此可判定男生成绩比女生成绩较好;(2)计算样本50个数据的平均值为,依次为分界点,将各类人数填入列联表即可;(3)根据公式,计算出的值,结合临界值表,即可得到结论.【详解】解:(1)男生组数学成绩比女生组数学成绩好.理由如下:①由茎叶图可知:男生成绩分布在的较多,其它分布关于茎80具有初步对称性;女生成绩分布在的较多,其它分布关于茎70具有初步对称性.因此男生成绩比女生成绩较好.②由茎叶图可知:男生组25人中,有17人(占68%)超过80分,女生组25人中,只有8人(占32%)超过80分,因此男生组成绩比女生组成绩好.③由茎叶图可知:男生组成绩的中位数是85分,女生组成绩的中位数是75分,85>75,由此初步判定男生组成绩比女生组成绩好.④用茎叶图数据估计:男生组成绩的平均分是83.4,女生组成绩的平均分是75.96分,因此男生组成绩比女生组成绩高.或者,由茎叶图直观发现,男生平均成绩必然高于80分,女生平均成绩必然低于80分,可以判断男生成绩高于女生成绩.(2)计算样本50个数据的平均值为,以此为分界点,将各类人数填入列联表如下:分数

性别高于或等于0低于合计男生17825女生81725合计252550

(3)计算得,所以没有99%的把握认为男生和女生对数学学习具有明显的差异.(或者回答为:没有充足的证据表明男生和女生对数学学习具有明显的差异.)【点睛】本题主要考查了独立性检验的应用,其中解答中认真审题,根据独立性检验的公式,准确计算是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.20.设数列{an}是公比为正数的等比数列,a1=2,a3﹣a2=12.(1)求数列{an}的通项公式;(2)设数列{bn}是首项为1,公差为2的等差数列,求数列{an+bn}的前n项和Sn.参考答案:【考点】数列的求和.【专题】计算题;等差数列与等比数列.【分析】(1)依题意,可求得等比数列{an}的公比q=3,又a1=2,于是可求数列{an}的通项公式;(2)可求得等差数列{bn}的通项公式,利用分组求和的方法即可求得数列{an+bn}的前n项和Sn.【解答】解:(1)设数列{an}的公比为q,由a1=2,a3﹣a2=12,得:2q2﹣2q﹣12=0,即q2﹣q﹣6=0.解得q=3或q=﹣2,∵q>0,∴q=﹣2不合题意,舍去,故q=3.∴an=2×3n﹣1;(2)∵数列{bn}是首项b1=1,公差d=2的等差数列,∴bn=2n﹣1,∴Sn=(a1+a2+…+an)+(b1+b2+…+bn)=+=3n﹣1+n2.【点评】本题考查数列的求和,着重考查等比数列与等差数列的通项公式与求和公式的应用,突出分组求和方法的应用,属于中档题.21.某年某省有万多文科考生参加高考,除去成绩为分(含分)以上的人与成绩为分(不含分)以下的人,还有约万文科考生的成绩集中在内,其成绩的频率分布如下表所示:分数段频率0.1080.1330.1610.183分数段频率0.1930.1540.0610.007(1)请估计该次高考成绩在内文科考生的平均分(精确到);(2)考生A填报志愿后,得知另外有4名同分数考生也填报了该志愿.若该志愿计划录取2人,并在同分数考生中随机录取,求考生A被该志愿录取的概率.(参考数据:610×0.061+570×0.154+530×0.193+490×0.183+450×0.161+410×0.133=443.93)参考答案:(1)约488.4分(2)0.4

略22.某公司2017年元旦晚会现场,为了活跃气氛,将在晚会节目表演过程中进行抽奖活动.(1)现需要从第一排就座的6位嘉宾A、B、C、D、E、F中随机抽取2人上台抽奖,求嘉宾A和嘉宾B至少有一人上台抽奖的概率;(2)抽奖活动的规则是:嘉宾通过操作按键使电脑自动产生两个[0,1]之间的随机数x,y,并按如图所示的程序框图执行.若电脑显示“中奖”,则该嘉宾中奖;若电脑显示“谢谢”,则不中奖.求该嘉宾中奖的概率.参考答案:【考点】程序框图;列举法计算基本事件数及事件发生的概率.【分析】(1)根据古典概型的概率公式,可得A和B至少有一人上台抽奖的概率;(2)确定满足0≤x≤1,0≤y≤1点的区域,由条件,到的区域为图中的阴影部分,计算面积,可求该代表中奖的概率.【解答】解:(1)6位嘉宾

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论