![2021-2022学年北京科兴实验中学高三数学理联考试题含解析_第1页](http://file4.renrendoc.com/view/d836bed3293e642d4ef80eb01224eeb4/d836bed3293e642d4ef80eb01224eeb41.gif)
![2021-2022学年北京科兴实验中学高三数学理联考试题含解析_第2页](http://file4.renrendoc.com/view/d836bed3293e642d4ef80eb01224eeb4/d836bed3293e642d4ef80eb01224eeb42.gif)
![2021-2022学年北京科兴实验中学高三数学理联考试题含解析_第3页](http://file4.renrendoc.com/view/d836bed3293e642d4ef80eb01224eeb4/d836bed3293e642d4ef80eb01224eeb43.gif)
![2021-2022学年北京科兴实验中学高三数学理联考试题含解析_第4页](http://file4.renrendoc.com/view/d836bed3293e642d4ef80eb01224eeb4/d836bed3293e642d4ef80eb01224eeb44.gif)
![2021-2022学年北京科兴实验中学高三数学理联考试题含解析_第5页](http://file4.renrendoc.com/view/d836bed3293e642d4ef80eb01224eeb4/d836bed3293e642d4ef80eb01224eeb45.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022学年北京科兴实验中学高三数学理联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.等差数列{an}前n项和为Sn,若a10+a11=10,则=()A.l B.2 C.一l D.一2参考答案:D考点:等差数列的前n项和.专题:函数的性质及应用;等差数列与等比数列.分析:由已知结合等差数列的性质求得S20,代入再由换底公式求得答案.解答:解:在等差数列{an}中,由a10+a11=10,得=10(a10+a11)=100,∴=.故选:D.点评:本题考查了等差数列的前n项和,考查了对数的运算性质,是基础题.2.已知抛物线C:y2=16x,焦点为F,直线l:x=﹣1,点A∈l,线段AF与抛物线C的交点为B,若,则|AB|=()A. B.35 C.28 D.40参考答案:C【考点】K8:抛物线的简单性质.【分析】设A(﹣1,a),B(m,n),且n2=16m,利用向量共线的坐标表示,由,确定A,B的坐标,即可求得|AB|.【解答】解:由抛物线C:y2=16x,可得F(4,0),设A(﹣1,a),B(m,n),且n2=16m,∵,∴﹣1﹣4=5(m﹣4),∴m=3,∴n=±4,∵a=5n,∴a=±20,∴|AB|==28.故选:C.【点评】本题考查抛物线的性质,考查向量知识的运用,考查学生的计算能力,属于基础题.3.宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.下图是源于其思想的一个程序框图,若输入的a,b分别为5,2,则输出的n=()A.2 B.3 C.4 D.5参考答案:C【考点】EF:程序框图.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:当n=1时,a=,b=4,满足进行循环的条件,当n=2时,a=,b=8满足进行循环的条件,当n=3时,a=,b=16满足进行循环的条件,当n=4时,a=,b=32不满足进行循环的条件,故输出的n值为4,故选C.4.中国历法推测遵循以测为辅、以算为主的原则.例如《周髀算经》和《易经》里对二十四节气的晷(guǐ)影长的记录中,冬至和夏至的晷影长是实测得到的,其它节气的晷影长则是按照等差数列的规律计算得出的.下表为《周髀算经》对二十四节气晷影长的记录,其中115.1寸表示115寸1分(1寸=10分).节气冬至小寒(大雪)大寒(小雪)立春(立冬)雨水(霜降)惊蛰(寒露)春分(秋分)清明(白露)谷雨(处暑)立夏(立秋)小满(大暑)芒种(小暑)夏至晷影长(寸)135125115.1105.295.375.566.545.735.825.916.0已知《易经》中记录的冬至晷影长为130.0寸,夏至晷影长为14.8寸,那么《易经》中所记录的惊蛰的晷影长应为()A.72.4寸 B.81.4寸 C.82.0寸 D.91.6寸参考答案:C【考点】函数与方程的综合运用.【分析】设晷影长为等差数列{an},公差为d,a1=130.0,a13=14.8,利用等差数列的通项公式即可得出.【解答】解:设晷影长为等差数列{an},公差为d,a1=130.0,a13=14.8,则130.0+12d=14.8,解得d=﹣9.6.∴a6=130.0﹣9.6×5=82.0.∴《易经》中所记录的惊蛰的晷影长是82.0寸.故选:C.【点评】本题考查了函数的性质、等差数列的通项公式及其应用,考查了推理能力与计算能力,属于中档题.5.将函数的图象向左平移个单位,再向上平移1个单位,得到g(x)的图象.若g(x1)g(x2)=9,且x1,x2∈,则2x1﹣x2的最大值为()A. B. C. D.参考答案:A【考点】3H:函数的最值及其几何意义;3O:函数的图象.【分析】由已知可得g(x)=+1,若g(x1)g(x2)=9,且x1,x2∈,则g(x1)=g(x2)=3,则,结合x1,x2∈,可得答案.【解答】解:函数的图象向左平移个单位,可得y=的图象,再向上平移1个单位,得到g(x)=+1的图象.若g(x1)g(x2)=9,且x1,x2∈,则g(x1)=g(x2)=3,则,即,由x1,x2∈,得:x1,x2∈{﹣,﹣,,},当x1=,x2=﹣时,2x1﹣x2取最大值,故选:A6.已知双曲线﹣y2=1(a>0)的实轴长2,则该双曲线的离心率为() A. B. C. D. 参考答案:B7.某几何体的三视图如图所示,图中三个正方形的边长均为2,则该几何体的表面积为(
)A.
B.C.
D.参考答案:D8.已知函数,若且,则的取值范围(
)A.
B.
C.
D.参考答案:C略9.两位同学去某大学参加自主招生考试,根据右图学校负责人与他们两人的对话,可推断出参加考试的人数为
A.19
B.20
C.21
D.22参考答案:答案:B10.已知都是负实数,则的最小值是(
)A.
B.
C.
D.参考答案:B
【知识点】函数的最值及其几何意义.B3直接通分相加得,因为都是负实数,所以都为正实数,那么上式分母中的分母可以利用基本不等式求出最小值,最小值为为,分母有最小值,即有最大值,那么可得最小值,最小值:,故选B.【思路点拨】把所给的式子直接通分相加,把分子整理出含有分母的形式,做到分子常数化,分子和分母同除以分母,把原式的分母变化成具有基本不等式的形式,求出最小值.二、填空题:本大题共7小题,每小题4分,共28分11.下列四个命题:①圆与直线相交,所得弦长为2;②直线与圆恒有公共点;③若棱长为3的正方体的顶点都在同一球面上,则该球的表面积为;④若棱长为的正四面体的顶点都在同一球面上,则该球的体积为。其中,正确命题的序号为______________(写出所有正确命题的序号)。参考答案:答案:②④12.若双曲线﹣=1的一条渐近线经过点(3,﹣4),则此双曲线的离心率为.参考答案:【考点】双曲线的简单性质.【分析】求出双曲线的渐近线方程,代入点(3,﹣4),可得b=a,再由c=,e=,即可得到所求值.【解答】解:双曲线﹣=1的渐近线方程为y=±x,由渐近线过点(3,﹣4),可得﹣4=﹣,即b=a,c===a,可得e==.故答案为:.13.在四边形ABCD中,AD∥BC,,AD=5,,点E在线段CB的延长线上,且AE=BE,则__________.参考答案:-1【分析】可利用向量的线性运算,也可以建立坐标系利用向量的坐标运算求解。【详解】详解:解法一:如图,过点作的平行线交于,因为,故四边形为菱形。因为,,所以,即.因为,所以.解法二:建立如图所示的直角坐标系,则,。因为∥,,所以,因为,所以,所以直线的斜率为,其方程为,直线的斜率为,其方程为。由得,,所以。所以.【点睛】平面向量问题有两大类解法:基向量法和坐标法,在便于建立坐标系的问题中使用坐标方法更为方便。
14.定义在R上的偶函数在[0,+∞)为单调递增,则不等式的解集是_________.参考答案:【分析】由偶函数的性质,再结合函数的单调性可得,再解绝对值不等式即可得解.【详解】解:因为函数为定义在R上的偶函数,则由可得,又函数在为单调递增,则,解得,故不等式的解集是:.【点睛】本题考查了偶函数的性质及利用函数的单调性求参数的范围,重点考查了函数思想,属基础题.15.垂直于直线2x-6y+1=0且与曲线y=x3+3x2-5相切的直线方程是_______.参考答案:答案:3x+y+6=016.已知函数,如果对任意的,定义,例如:,那么的值为
参考答案:2考点:函数求值;分段函数;函数的周期性.【名师点睛】对于分段函数结合复合函数的求值问题,一定要先求内层函数的值,因为内层函数的函数值就是外层函数的自变量的值.另外,要注意自变量的取值对应着哪一段区间,就使用哪一段解析式,体现考纲中要求了解简单的分段函数并能应用,来年需要注意分段函数的分段区间及其对应区间上的解析式,千万别代错解析式.17.2017年1月27日,哈尔滨地铁3号线一期开通运营,甲、乙、丙、丁四位同学决定乘坐地铁去城乡路、哈西站和哈尔滨大街.每人只能去一个地方,哈西站一定要有人去,则不同的游览方案为.参考答案:65【考点】D8:排列、组合的实际应用.【分析】根据题意,先由分步计数原理计算可得四人选择3个地方的全部情况数目,再计算哈西站没人去的情况数目,分析可得哈西站一定要有人去的游览方案数目,即可得答案.【解答】解:根据题意,甲、乙、丙、丁四位同学决定乘坐地铁去城乡路、哈西站和哈尔滨大街.每人只能去一个地方,则每人有3种选择,则4人一共有3×3×3×3=81种情况,若哈西站没人去,即四位同学选择了城乡路和哈尔滨大街.每人有2种选择方法,则4人一共有2×2×2×2=16种情况,故哈西站一定要有人去有81﹣16=65种情况,即哈西站一定有人去的游览方案有65种;故答案为:65.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分分)选修4-5:不等式证明选讲.已知函数.(1)求的解集;(2)设函数,若对任意的都成立,求的取值范围.参考答案:(1)∴即∴①或②或③解得不等式①:;②:无解③:所以的解集为或.………5分(2)即的图象恒在图象的上方图象为恒过定点,且斜率变化的一条直线作函数图象如图,其中,,∴由图可知,要使得的图象恒在图象的上方∴实数的取值范围为.
………10分19.成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列中的.(1)求数列的通项公式;(2)数列{bn}的前n项和为Sn,求证:数列是等比数列.参考答案:20.设正项数列{an}的前n项和Sn,且满足Sn=a+(n∈N*).(Ⅰ)计算a1,a2,a3的值,猜想{an}的通项公式,并证明你的结论;(Ⅱ)设Tn是数列{}的前n项和,证明:Tn<.参考答案:【考点】数列的求和.【专题】等差数列与等比数列.【分析】(Ⅰ)由已知条件利用递推导思想求出a1=1,a2=2,a3=3.由此猜想an=n,再用数学归纳法进行证明.(Ⅱ)证法一:由,利用裂项求和法和放缩法进行证明.证法二:利用用数学归纳法进行证明.【解答】(Ⅰ)解:当n=1时,,解得a1=1,,解得a2=2,,解得a3=3.猜想an=n….3分,证明:(ⅰ)当n=1时,显然成立.(ⅱ)假设当n=k时,ak=k….4分,则当n=k+1时,,结合an>0,解得ak+1=k+1…..6分,于是对于一切的自然数n∈N*,都有an=n…7分.(Ⅱ)证法一:∵,…10分∴.…14分证法二:用数学归纳法证明:(ⅰ)当n=1时,,,….8分(ⅱ)假设当n=k时,…9分则当n=k+1时,要证:只需证:由于所以…13分于是对于一切的自然数n∈N*,都有….14分【点评】本题考查数列的通项公式的求法和证明,考查不等式的证明,解题时要认真审题,注意数学归纳法的合理运用.21.(本小题满分14分)设函数.(1)证明:存在唯一实数,使;(2)定义数列
①对(1)中的,求证:对任意正整数都有;②当时,若,证明:对任意都有参考答案:(1)解:有令由所以有且只有一个实数,使;
………………5分(1)(Ⅰ)(数学归纳法)先证:证明:①;②假设
由递减性得:
即又所以时命题成立
所以对成立.…………9分
(2)(Ⅱ)解:当时,为减函数,且
由
………………14分
略22.有甲乙两个班进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩后,得到如下列联表.
优秀非优秀总计甲班10
乙班
30
合计
105已知在全部105人中随机抽取1人为优秀的概率为.(1)请完成上面的联表;(2)根据列联表的数据,若按95%的可靠性要求,能否认为“成绩与班级有关系”;(3)若按下面的方法从甲班优秀的学生抽取一人:把甲班10优秀的学生按2到11进行编号,先后两次抛掷一枚骰子,出现的点数之和为被抽取的序号.试求抽到6号或10号的概率.参考公式:K2=,其中n=a+b+c+d.概率表P(K2≥k0)0.150.100.050.0250.010k02.0722.7063.8415.0246.635参考答案:解:(1)
优秀非优秀总计甲班104555乙班203050合计3075105(2)根据列联表中的数据,得到k2=≈6.109>3.841因此有95%的把握认为“成绩与班级有关系”.(3)设“抽到6或10号”为事件A,先后两次抛掷一枚均匀的骰子,出现的点数为(x,y).所有的基本事件有(1,1)、(1,2)、(1,3)、(6,6),共36个.事件A包含的基本事件有:(1,5)、(2,4)、(3,3)、(4,2)、(5,1)(4,6)、(5,5)、(6
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 英语-河南金太阳2024-2025学年高二上学期第二次月考
- 加强学校实验室的安全教育
- 2025年高性能覆铜箔板原纸项目建议书
- 项目落地执行综合解决方案手册
- 大学生夏季安全教育
- 影视行业拍摄安全须知
- 格林童话中的教育意义与价值分析
- 课本里的历史人物读后感
- 景观仿木护栏安装施工方案
- 山东畜牧养殖温室施工方案
- 产品结构设计概述课件
- 八年级下综合实践教案全套
- 第8课《山山水水》教学设计(新人教版小学美术六年级上册)
- word 公章 模板
- Python程序设计ppt课件完整版
- T∕ZSQX 008-2020 建设工程全过程质量行为导则
- 质量管理体系基础知识培训-2016
- 《腹膜透析》ppt课件
- 甲醇催化剂说明书
- 北京课改版(2021年春修订版)数学四年级下册全册教学课件
- 汽车标准法规(课堂PPT)
评论
0/150
提交评论