版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
海南省海口市第九中学2022年度高一数学文期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知,且与的夹角为,则在上的投影是------------(
)A.
B.1
C.3
D.6参考答案:C2.下列关于向量的命题,正确的是(A)零向量是长度为零,且没有方向的向量(B)若b=-2a(a0),则a是b的相反向量(C)若b=-2a,则|b|=2|a|(D)在同一平面上,单位向量有且仅有一个参考答案:C略3.已知
则a,b,c的大小关系是(
)参考答案:D4.要得到的图象只需将y=3sin2x的图象(
)
A.向左平移个单位 B.向右平移个单位C.向左平移个单位
D.向右平移个单位参考答案:C5.由表格中的数据可以判定方程ex﹣x﹣2=0的一个零点所在的区间(k,k+1)(k∈N),则k的值为()x﹣10123ex0.3712.727.3920.09x+212345A.0 B.1 C.2 D.3参考答案:B【考点】函数零点的判定定理.【专题】图表型.【分析】设f(x)=ex﹣x﹣2.根据表格中的数据,可以判定函数f(x)=ex﹣x﹣2中,自变量x分别取﹣1,0,1,2,3时,函数的值,然后根据零点存在定理,我们易分析出函数零点所在的区间,进而求出k的值.【解答】解:设f(x)=ex﹣x﹣2.根据表格中的数据,我们可以判断f(﹣1)<0;f(0)<0;f(1)<0;f(2)>0;f(3)>0;根据零点存在定理得在区间(1,2)上函数存在一个零点此时k的值为1故选B.【点评】本题考查的知识点是函数的零点,其中根据表格中数据判断自变量x分别取﹣1,0,1,2,3时函数的值的符号,是解答本题的关键.6.函数f(x)=lnx﹣的零点所在的大致区间是()A. B.(1,2) C.(2,3) D.(e,+∞)参考答案:C【考点】函数零点的判定定理.【分析】由函数的解析式求得f(2)<0,f(3)>0,可得f(2)f(3)<0,根据函数零点的判定定理可得函数的零点所在的大致区间.【解答】解:∵函数,∴f(2)=ln2﹣1<0,f(3)=ln3﹣>0,故有f(2)f(3)<0,根据函数零点的判定定理可得函数的零点所在的大致区间为(2,3),故选:C.7.函数的值域是(
)(A)
(B)
(C)
(D)参考答案:B略8.在△ABC中,已知,,则△ABC为(
)A.等腰直角三角形 B.等边三角形C.锐角非等边三角形 D.钝角三角形参考答案:A【分析】已知第一个等式利用正弦定理化简,再利用诱导公式及内角和定理表示,根据两角和与差的正弦函数公式化简,得到A=B,第二个等式左边前两个因式利用积化和差公式变形,右边利用二倍角的余弦函数公式化简,将A+B=C,A﹣B=0代入计算求出cosC的值为0,进而确定出C为直角,即可确定出三角形形状.【详解】将已知等式2acosB=c,利用正弦定理化简得:2sinAcosB=sinC,∵sinC=sin(A+B)=sinAcosB+cosAsinB,∴2sinAcosB=sinAcosB+cosAsinB,即sinAcosB﹣cosAsinB=sin(A﹣B)=0,∵A与B都为△ABC的内角,∴A﹣B=0,即A=B,已知第二个等式变形得:sinAsinB(2﹣cosC)=(1﹣cosC)+=1﹣cosC,﹣[cos(A+B)﹣cos(A﹣B)](2﹣cosC)=1﹣cosC,∴﹣(﹣cosC﹣1)(2﹣cosC)=1﹣cosC,即(cosC+1)(2﹣cosC)=2﹣cosC,整理得:cos2C﹣2cosC=0,即cosC(cosC﹣2)=0,∴cosC=0或cosC=2(舍去),∴C=90°,则△ABC为等腰直角三角形.故选:A.【点睛】此题考查了正弦定理,两角和与差的正弦公式,二倍角的余弦函数公式,熟练掌握正弦定理是解本题的关键.9.已知函数,则的值为(
)A.
B.
C.
D.3参考答案:A10.已知锐角△ABC中,角A,B,C所对的边分别为a,b,c,若,则的取值范围是(
)A. B. C. D.参考答案:B【分析】利用余弦定理化简后可得,再利用正弦定理把边角关系化为角的三角函数的关系式,从而得到,因此,结合的范围可得所求的取值范围.【详解】,因为为锐角三角形,所以,,,故,选B.【点睛】在解三角形中,如果题设条件是关于边的二次形式,我们可以利用余弦定理化简该条件,如果题设条件是关于边的齐次式或是关于内角正弦的齐次式,那么我们可以利用正弦定理化简该条件,如果题设条件是边和角的混合关系式,那么我们也可把这种关系式转化为角的关系式或边的关系式.二、填空题:本大题共7小题,每小题4分,共28分11.不等式2|x﹣1|﹣1<0的解集是
.参考答案:【考点】绝对值不等式的解法.【分析】先去掉绝对值然后再根据绝对值不等式的解法进行求解.【解答】解:①若x≥1,∴2(x﹣1)﹣1<0,∴x<;②若x<1,∴2(1﹣x)﹣1<0,∴x>;综上<x<.故答案为:<x<.12.已知是单位圆上(圆心在坐标原点)任一点,将射线绕点逆时针旋转到交单位圆于点,则的最大值为
.参考答案:
13.函数y=ln(2x﹣1)的定义域是.参考答案:{x|x>}【考点】函数的定义域及其求法.【分析】根据负数和0没有对数得到2x﹣1大于0,求出不等式的解集即为函数的定义域.【解答】解:由对数函数的定义域可得到:2x﹣1>0,解得:x>,则函数的定义域为{x|x>}.故答案为:{x|x>}.14.已知函数的值域为,则实数的取值范围是________.参考答案:15.用过球心的平面将一个球分成两个半球,则一个半球的表面积与原来整球的表面积之比为
。参考答案:3:4
16.定义在R上的函数,对任意x∈R都有,当时,,则___▲_____。参考答案:17.已知等比数列为递增数列,且,,则数列的通项公式_________.参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分10分)设集合(1)若,使求的取值范围;(2)若,使求的取值范围。参考答案:(1)故的取值范围(2)因为,19.如图,某海面上有O、A、B三个小岛(面积大小忽略不计),A岛在O岛的北偏东45°方向处,B岛在O岛的正东方向处.(1)以O为坐标原点,O的正东方向为轴正方向,为单位长度,建立平面直角坐标系,写出A、B的坐标,并求A、B两岛之间的距离;(2)已知在经过O、A、B三个点的圆形区域内有未知暗礁,现有一船在O岛的南偏西30°方向距O岛处,正沿着北偏东45°行驶,若不改变方向,试问该船有没有触礁的危险?参考答案:(1)、,()(2)该船有触礁的危险.详见解析【分析】(1)根据两点距离公式求解;(2)先用待定系数法求出圆方程和直线方程,再根据点到直线的距离公式判断直线与圆的位置关系.【详解】解:(1)如图所示,在的东北方向,在的正东方向,、,由两点间的距离公式得();(2)设过、、三点的圆的方程为,将、、代入上式得,解得、、,所以圆的方程为,圆心为,半径.设船起初所在的位置为点,则,且该船航线所在直线的斜率为,由点斜式得船航行方向为直线,圆心到的距离为,所以该船有触礁的危险.【点睛】本题考查直线与圆的实际应用,点到直线的距离公式是常用方法;用待定系数法求圆方程时注意选用一般方程,能降低计算难度.20.从某校参加数学竞赛的试卷中抽取一个样本,考查竞赛的成绩分布,将样本分成6组,得到频率分布直方图如图,从左到右各小组的小长方形的高的比为1:1:3:6:4:2,最右边的一组的频数是8.请结合直方图的信息,解答下列问题:(1)样本容量是多少?(2)成绩落在哪个范围的人数最多?并求出该小组的频数和频率.(3)估计这次数学竞赛成绩的平均数.参考答案:解(1)从左到右各小组的频率分别为,,,,,样本容量为(2)成绩落在70~80之间的人数最多;频率为;频数为(3)平均数的估计值是略21.(1)判断函数f(x)=在上的单调性并证明你的结论?(2)猜想函数在上的单调性?(只需写出结论,不用证明)(3)利用题(2)的结论,求使不等式在上恒成立时的实数m的取值范围?参考答案:(1)在上是减函数,在上是增函数。证明:设任意,则(2)由上及f(x)是奇函数,可猜想:f(x)在和上是增函数,f(x)在和上是减函数,(3)∵在上恒成立∴在上恒成立.由(2)中结论,可知函数在上的最大值为10,此时x=1,要使原命题成立,当且仅当∴
解得.∴实数的取值范围是22.设,且,且(1)求的值及的定义域;(2)求在区间上的最大
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度企业融资反担保合同范本3篇
- 2024年高端医疗设备采购与维修合同
- 2025年度包装盒印刷材料环保认证采购合同3篇
- 2025版空压机设备租赁与租赁期设备定期检查服务合同2篇
- 2024版国际航空货物运输代理协议
- 学校学生军训发言稿
- 二零二五年度国际技术贸易第四章:新能源风电设备进出口合同2篇
- 学前消防安全心得体会范文500字(6篇)
- 2024年采石工程承包标准合同书版B版
- 二零二五年度Wi-Fi移动支付服务合同2篇
- DLT 5434-2021 电力建设工程监理规范表格
- 2024年房屋交接确认书
- 拓展低空经济应用场景实施方案
- 北京市东城区2023-2024学年八年级上学期期末生物试题【含答案解析】
- 天疱疮临床分期与治疗方案研究
- 开放系统10861《理工英语(4)》期末机考真题及答案(第102套)
- 综合技能训练实训报告学前教育
- 2024年国家能源集团招聘笔试参考题库含答案解析
- MOOC 管理学-郑州轻工业大学 中国大学慕课答案
- 军事理论智慧树知到期末考试答案2024年
- 2024年贵州贵安发展集团有限公司招聘笔试参考题库附带答案详解
评论
0/150
提交评论