版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023中考数学模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,△ABC中,DE∥BC,,AE=2cm,则AC的长是()A.2cm B.4cm C.6cm D.8cm2.下列运算正确的是()A. B. C. D.3.第四届济南国际旅游节期间,全市共接待游客686000人次.将686000用科学记数法表示为()A.686×104B.68.6×105C.6.86×106D.6.86×1054.某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是()A.10,15 B.13,15 C.13,20 D.15,155.关于的一元二次方程有两个不相等的实数根,则实数的取值范围是A. B. C. D.6.一元二次方程x2+x﹣2=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.只有一个实数根 D.没有实数根7.如图,点A是反比例函数y=的图象上的一点,过点A作AB⊥x轴,垂足为B.点C为y轴上的一点,连接AC,BC.若△ABC的面积为3,则k的值是()A.3 B.﹣3 C.6 D.﹣68.某校数学兴趣小组在一次数学课外活动中,随机抽查该校10名同学参加今年初中学业水平考试的体育成绩,得到结果如下表所示:下列说法正确的是()A.这10名同学体育成绩的中位数为38分B.这10名同学体育成绩的平均数为38分C.这10名同学体育成绩的众数为39分D.这10名同学体育成绩的方差为29.如图,在△ABC中,AB=AC,AD和CE是高,∠ACE=45°,点F是AC的中点,AD与FE,CE分别交于点G、H,∠BCE=∠CAD,有下列结论:①图中存在两个等腰直角三角形;②△AHE≌△CBE;③BC•AD=AE2;④S△ABC=4S△ADF.其中正确的个数有()A.1 B.2 C.3 D.410.下列四个几何体中,主视图与左视图相同的几何体有()A.1个 B.2个 C.3个 D.4个11.如图,数轴上有A,B,C,D四个点,其中表示互为倒数的点是()A.点A与点B B.点A与点D C.点B与点D D.点B与点C12.如图,四边形ABCD是平行四边形,点E在BA的延长线上,点F在BC的延长线上,连接EF,分别交AD,CD于点G,H,则下列结论错误的是()A. B. C. D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.计算:3﹣(﹣2)=____.14.已知数据x1,x2,…,xn的平均数是,则一组新数据x1+8,x2+8,…,xn+8的平均数是____.15.如图,将△AOB绕点按逆时针方向旋转后得到,若,则的度数是_______.16.已知平面直角坐标系中的点A(2,﹣4)与点B关于原点中心对称,则点B的坐标为_____17.已知关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,则m=_____.18.写出一个大于3且小于4的无理数:___________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图1,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于C点,点P是抛物线上在第一象限内的一个动点,且点P的横坐标为t.(1)求抛物线的表达式;(2)设抛物线的对称轴为l,l与x轴的交点为D.在直线l上是否存在点M,使得四边形CDPM是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.(3)如图2,连接BC,PB,PC,设△PBC的面积为S.①求S关于t的函数表达式;②求P点到直线BC的距离的最大值,并求出此时点P的坐标.20.(6分)2015年1月,市教育局在全市中小学中选取了63所学校从学生的思想品德、学业水平、学业负担、身心发展和兴趣特长五个维度进行了综合评价.评价小组在选取的某中学七年级全体学生中随机抽取了若干名学生进行问卷调查,了解他们每天在课外用于学习的时间,并绘制成如下不完整的统计图.根据上述信息,解答下列问题:(1)本次抽取的学生人数是______;扇形统计图中的圆心角α等于______;补全统计直方图;(2)被抽取的学生还要进行一次50米跑测试,每5人一组进行.在随机分组时,小红、小花两名女生被分到同一个小组,请用列表法或画树状图求出她俩在抽道次时抽在相邻两道的概率.21.(6分)如图,在△ABC中,D是AB边上任意一点,E是BC边中点,过点C作AB的平行线,交DE的延长线于点F,连接BF,CD.(1)求证:四边形CDBF是平行四边形;(2)若∠FDB=30°,∠ABC=45°,BC=4,求DF的长.22.(8分)如图1,在Rt△ABC中,∠ABC=90°,BA=BC,直线MN是过点A的直线CD⊥MN于点D,连接BD.(1)观察猜想张老师在课堂上提出问题:线段DC,AD,BD之间有什么数量关系.经过观察思考,小明出一种思路:如图1,过点B作BE⊥BD,交MN于点E,进而得出:DC+AD=BD.(2)探究证明将直线MN绕点A顺时针旋转到图2的位置写出此时线段DC,AD,BD之间的数量关系,并证明(3)拓展延伸在直线MN绕点A旋转的过程中,当△ABD面积取得最大值时,若CD长为1,请直接写BD的长.23.(8分)如图,半圆D的直径AB=4,线段OA=7,O为原点,点B在数轴的正半轴上运动,点B在数轴上所表示的数为m.当半圆D与数轴相切时,m=.半圆D与数轴有两个公共点,设另一个公共点是C.①直接写出m的取值范围是.②当BC=2时,求△AOB与半圆D的公共部分的面积.当△AOB的内心、外心与某一个顶点在同一条直线上时,求tan∠AOB的值.24.(10分)已知:如图,平行四边形ABCD中,E、F分别是边BC和AD上的点,且BE=DF,求证:AE=CF25.(10分)如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,作ED⊥EB交AB于点D,⊙O是△BED的外接圆.求证:AC是⊙O的切线;已知⊙O的半径为2.5,BE=4,求BC,AD的长.26.(12分)在平面直角坐标系xOy中,抛物线y=ax2﹣4ax+3a﹣2(a≠0)与x轴交于A,B两(点A在点B左侧).(1)当抛物线过原点时,求实数a的值;(2)①求抛物线的对称轴;②求抛物线的顶点的纵坐标(用含a的代数式表示);(3)当AB≤4时,求实数a的取值范围.27.(12分)如图,AD、BC相交于点O,AD=BC,∠C=∠D=90°.求证:△ACB≌△BDA;若∠ABC=36°,求∠CAO度数.
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【解析】
由∥可得△ADE∽△ABC,再根据相似三角形的性质即可求得结果.【详解】∵∥∴△ADE∽△ABC∴∵∴AC=6cm故选C.考点:相似三角形的判定和性质点评:解答本题的关键是熟练掌握相似三角形的对应边成比例,注意对应字母在对应位置上.2、D【解析】
根据幂的乘方:底数不变,指数相乘.合并同类项即可解答.【详解】解:A、B两项不是同类项,所以不能合并,故A、B错误,C、D考查幂的乘方运算,底数不变,指数相乘.,故D正确;【点睛】本题考查幂的乘方和合并同类项,熟练掌握运算法则是解题的关键.3、D【解析】根据科学记数法的表示形式(a×10n,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数)可得:686000=6.86×105,
故选:D.4、D【解析】
将五个答题数,从小打到排列,5个数中间的就是中位数,出现次数最多的是众数.【详解】将这五个答题数排序为:10,13,15,15,20,由此可得中位数是15,众数是15,故选D.【点睛】本题考查中位数和众数的概念,熟记概念即可快速解答.5、A【解析】
根据一元二次方程的根的判别式,建立关于m的不等式,求出m的取值范围即可.【详解】∵关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,∴△=b2﹣4ac=(﹣3)2﹣4×1×m>0,∴m<,故选A.【点睛】本题考查了根的判别式,解题的关键在于熟练掌握一元二次方程根的情况与判别式△的关系,即:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.6、A【解析】∵∆=12-4×1×(-2)=9>0,∴方程有两个不相等的实数根.故选A.点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.7、D【解析】试题分析:连结OA,如图,∵AB⊥x轴,∴OC∥AB,∴S△OAB=S△CAB=3,而S△OAB=|k|,∴|k|=3,∵k<0,∴k=﹣1.故选D.考点:反比例函数系数k的几何意义.8、C【解析】试题分析:10名学生的体育成绩中39分出现的次数最多,众数为39;第5和第6名同学的成绩的平均值为中位数,中位数为:=39;平均数==38.4方差=[(36﹣38.4)2+2×(37﹣38.4)2+(38﹣38.4)2+4×(39﹣38.4)2+2×(40﹣38.4)2]=1.64;∴选项A,B、D错误;故选C.考点:方差;加权平均数;中位数;众数.9、C【解析】
①图中有3个等腰直角三角形,故结论错误;②根据ASA证明即可,结论正确;③利用面积法证明即可,结论正确;④利用三角形的中线的性质即可证明,结论正确.【详解】∵CE⊥AB,∠ACE=45°,∴△ACE是等腰直角三角形,∵AF=CF,∴EF=AF=CF,∴△AEF,△EFC都是等腰直角三角形,∴图中共有3个等腰直角三角形,故①错误,∵∠AHE+∠EAH=90°,∠DHC+∠BCE=90°,∠AHE=∠DHC,∴∠EAH=∠BCE,∵AE=EC,∠AEH=∠CEB=90°,∴△AHE≌△CBE,故②正确,∵S△ABC=BC•AD=AB•CE,AB=AC=AE,AE=CE,∴BC•AD=CE2,故③正确,∵AB=AC,AD⊥BC,∴BD=DC,∴S△ABC=2S△ADC,∵AF=FC,∴S△ADC=2S△ADF,∴S△ABC=4S△ADF.故选C.【点睛】本题考查相似三角形的判定和性质、等腰直角三角形的判定和性质、三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题.10、D【解析】解:①正方体的主视图与左视图都是正方形;②球的主视图与左视图都是圆;③圆锥主视图与左视图都是三角形;④圆柱的主视图和左视图都是长方形;故选D.11、A【解析】
试题分析:主要考查倒数的定义和数轴,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.根据倒数定义可知,-2的倒数是-,有数轴可知A对应的数为-2,B对应的数为-,所以A与B是互为倒数.故选A.考点:1.倒数的定义;2.数轴.12、C【解析】试题解析:∵四边形ABCD是平行四边形,故选C.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、2+2【解析】
根据平面向量的加法法则计算即可.【详解】3﹣(﹣2)=3﹣+2=2+2,故答案为:2+2,【点睛】本题考查平面向量,熟练掌握平面向量的加法法则是解题的关键.14、【解析】
根据数据x1,x2,…,xn的平均数为=(x1+x2+…+xn),即可求出数据x1+1,x2+1,…,xn+1的平均数.【详解】数据x1+1,x2+1,…,xn+1的平均数=(x1+1+x2+1+…+xn+1)=(x1+x2+…+xn)+1=+1.故答案为+1.【点睛】本题考查了平均数的概念,平均数是指在一组数据中所有数据之和再除以数据的个数.平均数是表示一组数据集中趋势的量数,它是反映数据集中趋势的一项指标.15、60°【解析】
根据题意可得,根据已知条件计算即可.【详解】根据题意可得:,故答案为60°【点睛】本题主要考查旋转角的有关计算,关键在于识别那个是旋转角.16、(﹣2,4)【解析】
根据点P(x,y)关于原点对称的点为(-x,-y)即可得解.【详解】解:∵点A(2,-4)与点B关于原点中心对称,
∴点B的坐标为:(-2,4).
故答案为:(-2,4).【点睛】此题主要考查了关于原点对称点的性质,正确掌握横纵坐标的关系是解题关键.17、1【解析】【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m的方程,通过解关于m的方程求得m的值即可.【详解】∵关于x的一元二次方程mx1+5x+m1﹣1m=0有一个根为0,∴m1﹣1m=0且m≠0,解得,m=1,故答案是:1.【点睛】本题考查了一元二次方程ax1+bx+c=0(a≠0)的解的定义.解答该题时需注意二次项系数a≠0这一条件.18、如等,答案不唯一.【解析】
本题考查无理数的概念.无限不循环小数叫做无理数.介于和之间的无理数有无穷多个,因为,故而9和16都是完全平方数,都是无理数.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)y=﹣x2+2x+1.(2)当t=2时,点M的坐标为(1,6);当t≠2时,不存在,理由见解析;(1)y=﹣x+1;P点到直线BC的距离的最大值为,此时点P的坐标为(,).【解析】【分析】(1)由点A、B的坐标,利用待定系数法即可求出抛物线的表达式;(2)连接PC,交抛物线对称轴l于点E,由点A、B的坐标可得出对称轴l为直线x=1,分t=2和t≠2两种情况考虑:当t=2时,由抛物线的对称性可得出此时存在点M,使得四边形CDPM是平行四边形,再根据点C的坐标利用平行四边形的性质可求出点P、M的坐标;当t≠2时,不存在,利用平行四边形对角线互相平分结合CE≠PE可得出此时不存在符合题意的点M;(1)①过点P作PF∥y轴,交BC于点F,由点B、C的坐标利用待定系数法可求出直线BC的解析式,根据点P的坐标可得出点F的坐标,进而可得出PF的长度,再由三角形的面积公式即可求出S关于t的函数表达式;②利用二次函数的性质找出S的最大值,利用勾股定理可求出线段BC的长度,利用面积法可求出P点到直线BC的距离的最大值,再找出此时点P的坐标即可得出结论.【详解】(1)将A(﹣1,0)、B(1,0)代入y=﹣x2+bx+c,得,解得:,∴抛物线的表达式为y=﹣x2+2x+1;(2)在图1中,连接PC,交抛物线对称轴l于点E,∵抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(1,0)两点,∴抛物线的对称轴为直线x=1,当t=2时,点C、P关于直线l对称,此时存在点M,使得四边形CDPM是平行四边形,∵抛物线的表达式为y=﹣x2+2x+1,∴点C的坐标为(0,1),点P的坐标为(2,1),∴点M的坐标为(1,6);当t≠2时,不存在,理由如下:若四边形CDPM是平行四边形,则CE=PE,∵点C的横坐标为0,点E的横坐标为0,∴点P的横坐标t=1×2﹣0=2,又∵t≠2,∴不存在;(1)①在图2中,过点P作PF∥y轴,交BC于点F.设直线BC的解析式为y=mx+n(m≠0),将B(1,0)、C(0,1)代入y=mx+n,得,解得:,∴直线BC的解析式为y=﹣x+1,∵点P的坐标为(t,﹣t2+2t+1),∴点F的坐标为(t,﹣t+1),∴PF=﹣t2+2t+1﹣(﹣t+1)=﹣t2+1t,∴S=PF•OB=﹣t2+t=﹣(t﹣)2+;②∵﹣<0,∴当t=时,S取最大值,最大值为.∵点B的坐标为(1,0),点C的坐标为(0,1),∴线段BC=,∴P点到直线BC的距离的最大值为,此时点P的坐标为(,).【点睛】本题考查了待定系数法求一次(二次)函数解析式、平行四边形的判定与性质、三角形的面积、一次(二次)函数图象上点的坐标特征以及二次函数的性质,解题的关键是:(1)由点的坐标,利用待定系数法求出抛物线表达式;(2)分t=2和t≠2两种情况考虑;(1)①利用三角形的面积公式找出S关于t的函数表达式;②利用二次函数的性质结合面积法求出P点到直线BC的距离的最大值.20、(1)30;;(2).【解析】试题分析:(1)根据题意列式求值,根据相应数据画图即可;(2)根据题意列表,然后根据表中数据求出概率即可.解:(1)6÷20%=30,(30﹣3﹣7﹣6﹣2)÷30×360=12÷30×26=144°,答:本次抽取的学生人数是30人;扇形统计图中的圆心角α等于144°;故答案为30,144°;补全统计图如图所示:(2)根据题意列表如下:设竖列为小红抽取的跑道,横排为小花抽取的跑道,记小红和小花抽在相邻两道这个事件为A,∴.考点:列表法与树状图法;扇形统计图;利用频率估计概率.21、(1)证明见解析;(2)1.【解析】
(1)先证明出△CEF≌△BED,得出CF=BD即可证明四边形CDBF是平行四边形;(2)作EM⊥DB于点M,根据平行四边形的性质求出BE,DF的值,再根据三角函数值求出EM的值,∠EDM=30°,由此可得出结论.【详解】解:(1)证明:∵CF∥AB,∴∠ECF=∠EBD.∵E是BC中点,∴CE=BE.∵∠CEF=∠BED,∴△CEF≌△BED.∴CF=BD.∴四边形CDBF是平行四边形.(2)解:如图,作EM⊥DB于点M,∵四边形CDBF是平行四边形,BC=,∴,DF=2DE.在Rt△EMB中,EM=BE•sin∠ABC=2,在Rt△EMD中,∵∠EDM=30°,∴DE=2EM=4,∴DF=2DE=1.【点睛】本题考查了平行四边形的判定与全等三角形的判定与性质,解题的关键是熟练的掌握平行四边形的判定与全等三角形的判定与性质.22、(1);(2)AD﹣DC=BD;(3)BD=AD=+1.【解析】
(1)根据全等三角形的性质求出DC,AD,BD之间的数量关系(2)过点B作BE⊥BD,交MN于点E.AD交BC于O,证明,得到,,根据为等腰直角三角形,得到,再根据,即可解出答案.(3)根据A、B、C、D四点共圆,得到当点D在线段AB的垂直平分线上且在AB的右侧时,△ABD的面积最大.在DA上截取一点H,使得CD=DH=1,则易证,由即可得出答案.【详解】解:(1)如图1中,由题意:,∴AE=CD,BE=BD,∴CD+AD=AD+AE=DE,∵是等腰直角三角形,∴DE=BD,∴DC+AD=BD,故答案为.(2).证明:如图,过点B作BE⊥BD,交MN于点E.AD交BC于O.∵,∴,∴.∵,,,∴,∴.又∵,∴,∴,,∴为等腰直角三角形,.∵,∴.(3)如图3中,易知A、B、C、D四点共圆,当点D在线段AB的垂直平分线上且在AB的右侧时,△ABD的面积最大.此时DG⊥AB,DB=DA,在DA上截取一点H,使得CD=DH=1,则易证,∴.【点睛】本题主要考查全等三角形的性质,等腰直角三角形的性质以及图形的应用,正确作辅助线和熟悉图形特性是解题的关键.23、(1);(2)①;②△AOB与半圆D的公共部分的面积为;(3)tan∠AOB的值为或.【解析】
(1)根据题意由勾股定理即可解答(2)①根据题意可知半圆D与数轴相切时,只有一个公共点,和当O、A、B三点在数轴上时,求出两种情况m的值即可②如图,连接DC,得出△BCD为等边三角形,可求出扇形ADC的面积,即可解答(3)根据题意如图1,当OB=AB时,内心、外心与顶点B在同一条直线上,作AH⊥OB于点H,设BH=x,列出方程求解即可解答如图2,当OB=OA时,内心、外心与顶点O在同一条直线上,作AH⊥OB于点H,设BH=x,列出方程求解即可解答【详解】(1)当半圆与数轴相切时,AB⊥OB,由勾股定理得m=,故答案为.(2)①∵半圆D与数轴相切时,只有一个公共点,此时m=,当O、A、B三点在数轴上时,m=7+4=11,∴半圆D与数轴有两个公共点时,m的取值范围为.故答案为.②如图,连接DC,当BC=2时,∵BC=CD=BD=2,∴△BCD为等边三角形,∴∠BDC=60°,∴∠ADC=120°,∴扇形ADC的面积为,,∴△AOB与半圆D的公共部分的面积为;(3)如图1,当OB=AB时,内心、外心与顶点B在同一条直线上,作AH⊥OB于点H,设BH=x,则72﹣(4+x)2=42﹣x2,解得x=,OH=,AH=,∴tan∠AOB=,如图2,当OB=OA时,内心、外心与顶点O在同一条直线上,作AH⊥OB于点H,设BH=x,则72﹣(4﹣x)2=42﹣x2,解得x=,OH=,AH=,∴tan∠AOB=.综合以上,可得tan∠AOB的值为或.【点睛】此题此题考勾股定理,切线的性质,等边三角形的判定和性质,三角形的内心和外心,解题关键在于作辅助线24、详见解析【解析】
根据平行四边形的性质和已知条件证明△ABE≌△CDF,再利用全等三角形的性质:即可得到AE=CF.【详解】证:∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠D,又∵BE=DF,∴△ABE≌△CDF,∴AE=CF.(其他证法也可)25、(1)证明见解析;(2)BC=,AD=.【解析】分析:(1)连接OE,由OB=OE知∠OBE=∠OEB、由BE平分∠ABC知∠OBE=∠CBE,据此得∠OEB=∠CBE,从而得出OE∥BC,进一步即可得证;(2)证△BDE∽△BEC得,据此可求得BC的长度,再证△AOE∽△ABC得,据此可得AD的长.详解:(1)如图,连接OE,∵OB=OE,∴∠OBE=∠OEB,∵BE平分∠ABC,∴∠OBE=∠CBE,∴∠OEB=∠CBE,∴OE∥BC,又∵∠C=90°,∴∠AEO=90°,即OE⊥AC,∴AC为⊙O的切线;(2)∵ED⊥BE,∴∠BED=∠C=90°,又∵∠DBE=∠EBC,∴△BDE∽△BEC,∴,即,∴BC=;∵∠A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广州卫生职业技术学院《食用菌栽培技术》2023-2024学年第一学期期末试卷
- 2025湖南省安全员-C证考试题库
- 2025山东省安全员B证考试题库附答案
- 2025年湖北省建筑安全员知识题库
- 【语文课件】《我的信念》课件
- 《壶口瀑布》课件
- 单位管理制度展示选集【人员管理篇】
- 单位管理制度展示合集【职员管理】十篇
- 电力天然气周报:多省2025年长协电价落地11月我国天然气表观消费量同比下降0.3
- 2024年上海市县乡教师选调考试《教育学》真题汇编带解析含完整答案(各地真题)
- GB/T 42437-2023南红鉴定
- 购房屋贷款合同协议书
- 洛栾高速公路薄壁空心墩施工方案爬模施工
- 事业单位公开招聘工作人员政审表
- GB/T 35199-2017土方机械轮胎式装载机技术条件
- GB/T 28591-2012风力等级
- 思博安根测仪热凝牙胶尖-说明书
- 出院小结模板
- HITACHI (日立)存储操作说明书
- (新版教材)苏教版二年级下册科学全册教案(教学设计)
- 61850基础技术介绍0001
评论
0/150
提交评论