2022年浙江省杭州八校联盟高三下第一次测试数学试题含解析_第1页
2022年浙江省杭州八校联盟高三下第一次测试数学试题含解析_第2页
2022年浙江省杭州八校联盟高三下第一次测试数学试题含解析_第3页
2022年浙江省杭州八校联盟高三下第一次测试数学试题含解析_第4页
2022年浙江省杭州八校联盟高三下第一次测试数学试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021-2022高考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某程序框图如图所示,若输出的,则判断框内为()A. B. C. D.2.正方体,是棱的中点,在任意两个中点的连线中,与平面平行的直线有几条()A.36 B.21 C.12 D.63.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是A. B. C. D.4.已知角的顶点与原点重合,始边与轴的正半轴重合,终边经过点,则()A. B. C. D.5.已知函数在上有两个零点,则的取值范围是()A. B. C. D.6.设、是两条不同的直线,、是两个不同的平面,则的一个充分条件是()A.且 B.且 C.且 D.且7.三棱锥的各个顶点都在求的表面上,且是等边三角形,底面,,,若点在线段上,且,则过点的平面截球所得截面的最小面积为()A. B. C. D.8.已知函数,若,使得,则实数的取值范围是()A. B.C. D.9.已知等差数列的前n项和为,且,则()A.4 B.8 C.16 D.210.设为虚数单位,为复数,若为实数,则()A. B. C. D.11.如图,圆的半径为,,是圆上的定点,,是圆上的动点,点关于直线的对称点为,角的始边为射线,终边为射线,将表示为的函数,则在上的图像大致为()A. B. C. D.12.已知集合,,若,则()A.或 B.或 C.或 D.或二、填空题:本题共4小题,每小题5分,共20分。13.给出下列四个命题,其中正确命题的序号是_____.(写出所有正确命题的序号)因为所以不是函数的周期;对于定义在上的函数若则函数不是偶函数;“”是“”成立的充分必要条件;若实数满足则.14.已知过点的直线与函数的图象交于、两点,点在线段上,过作轴的平行线交函数的图象于点,当∥轴,点的横坐标是15.设的内角的对边分别为,,.若,,,则_____________16.已知,则的值为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)随着现代社会的发展,我国对于环境保护越来越重视,企业的环保意识也越来越强.现某大型企业为此建立了5套环境监测系统,并制定如下方案:每年企业的环境监测费用预算定为1200万元,日常全天候开启3套环境监测系统,若至少有2套系统监测出排放超标,则立即检查污染源处理系统;若有且只有1套系统监测出排放超标,则立即同时启动另外2套系统进行1小时的监测,且后启动的这2套监测系统中只要有1套系统监测出排放超标,也立即检查污染源处理系统.设每个时间段(以1小时为计量单位)被每套系统监测出排放超标的概率均为,且各个时间段每套系统监测出排放超标情况相互独立.(1)当时,求某个时间段需要检查污染源处理系统的概率;(2)若每套环境监测系统运行成本为300元/小时(不启动则不产生运行费用),除运行费用外,所有的环境监测系统每年的维修和保养费用需要100万元.现以此方案实施,问该企业的环境监测费用是否会超过预算(全年按9000小时计算)?并说明理由.18.(12分)已知函数.(1)当时,求不等式的解集;(2)若的解集包含,求的取值范围.19.(12分)已知函数.(1)当时,求函数的值域;(2)的角的对边分别为且,,求边上的高的最大值.20.(12分)我国在2018年社保又出新的好消息,之前流动就业人员跨地区就业后,社保转移接续的手续往往比较繁琐,费时费力.社保改革后将简化手续,深得流动就业人员的赞誉.某市社保局从2018年办理社保的人员中抽取300人,得到其办理手续所需时间(天)与人数的频数分布表:时间人数156090754515(1)若300名办理社保的人员中流动人员210人,非流动人员90人,若办理时间超过4天的人员里非流动人员有60人,请完成办理社保手续所需时间与是否流动人员的列联表,并判断是否有95%的把握认为“办理社保手续所需时间与是否流动人员”有关.列联表如下流动人员非流动人员总计办理社保手续所需时间不超过4天办理社保手续所需时间超过4天60总计21090300(2)为了改进工作作风,提高效率,从抽取的300人中办理时间为流动人员中利用分层抽样,抽取12名流动人员召开座谈会,其中3人要求交书面材料,3人中办理的时间为的人数为,求出分布列及期望值.附:0.100.050.0100.0052.7063.8416.6357.87921.(12分)已知函数.(1)设,求函数的单调区间,并证明函数有唯一零点.(2)若函数在区间上不单调,证明:.22.(10分)在直角坐标系中,是过定点且倾斜角为的直线;在极坐标系(以坐标原点为极点,以轴非负半轴为极轴,取相同单位长度)中,曲线的极坐标方程为.(1)写出直线的参数方程,并将曲线的方程化为直角坐标方程;(2)若曲线与直线相交于不同的两点,求的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【解析】程序在运行过程中各变量值变化如下表:KS是否继续循环循环前11第一圈24是第二圈311是第三圈426是第四圈557是第五圈6120否故退出循环的条件应为k>5?本题选择C选项.点睛:使用循环结构寻数时,要明确数字的结构特征,决定循环的终止条件与数的结构特征的关系及循环次数.尤其是统计数时,注意要统计的数的出现次数与循环次数的区别.2.B【解析】

先找到与平面平行的平面,利用面面平行的定义即可得到.【详解】考虑与平面平行的平面,平面,平面,共有,故选:B.【点睛】本题考查线面平行的判定定理以及面面平行的定义,涉及到了简单的组合问题,是一中档题.3.A【解析】

详解:由题意知,题干中所给的是榫头,是凸出的几何体,求得是卯眼的俯视图,卯眼是凹进去的,即俯视图中应有一不可见的长方形,且俯视图应为对称图形故俯视图为故选A.点睛:本题主要考查空间几何体的三视图,考查学生的空间想象能力,属于基础题。4.A【解析】

由已知可得,根据二倍角公式即可求解.【详解】角的顶点与原点重合,始边与轴的正半轴重合,终边经过点,则,.故选:A.【点睛】本题考查三角函数定义、二倍角公式,考查计算求解能力,属于基础题.5.C【解析】

对函数求导,对a分类讨论,分别求得函数的单调性及极值,结合端点处的函数值进行判断求解.【详解】∵,.当时,,在上单调递增,不合题意.当时,,在上单调递减,也不合题意.当时,则时,,在上单调递减,时,,在上单调递增,又,所以在上有两个零点,只需即可,解得.综上,的取值范围是.故选C.【点睛】本题考查了利用导数解决函数零点的问题,考查了函数的单调性及极值问题,属于中档题.6.B【解析】由且可得,故选B.7.A【解析】

由题意画出图形,求出三棱锥S-ABC的外接球的半径,再求出外接球球心到D的距离,利用勾股定理求得过点D的平面截球O所得截面圆的最小半径,则答案可求.【详解】如图,设三角形ABC外接圆的圆心为G,则外接圆半径AG=,设三棱锥S-ABC的外接球的球心为O,则外接球的半径R=取SA中点E,由SA=4,AD=3SD,得DE=1,所以OD=.则过点D的平面截球O所得截面圆的最小半径为所以过点D的平面截球O所得截面的最小面积为故选:A【点睛】本题考查三棱锥的外接球问题,还考查了求截面的最小面积,属于较难题.8.C【解析】试题分析:由题意知,当时,由,当且仅当时,即等号是成立,所以函数的最小值为,当时,为单调递增函数,所以,又因为,使得,即在的最小值不小于在上的最小值,即,解得,故选C.考点:函数的综合问题.【方法点晴】本题主要考查了函数的综合问题,其中解答中涉及到基本不等式求最值、函数的单调性及其应用、全称命题与存在命题的应用等知识点的综合考查,试题思维量大,属于中档试题,着重考查了学生分析问题和解答问题的能力,以及转化与化归思想的应用,其中解答中转化为在的最小值不小于在上的最小值是解答的关键.9.A【解析】

利用等差的求和公式和等差数列的性质即可求得.【详解】.故选:.【点睛】本题考查等差数列的求和公式和等差数列的性质,考查基本量的计算,难度容易.10.B【解析】

可设,将化简,得到,由复数为实数,可得,解方程即可求解【详解】设,则.由题意有,所以.故选:B【点睛】本题考查复数的模长、除法运算,由复数的类型求解对应参数,属于基础题11.B【解析】

根据图象分析变化过程中在关键位置及部分区域,即可排除错误选项,得到函数图象,即可求解.【详解】由题意,当时,P与A重合,则与B重合,所以,故排除C,D选项;当时,,由图象可知选B.故选:B【点睛】本题主要考查三角函数的图像与性质,正确表示函数的表达式是解题的关键,属于中档题.12.B【解析】

因为,所以,所以或.若,则,满足.若,解得或.若,则,满足.若,显然不成立,综上或,选B.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】

对①,根据周期的定义判定即可.对②,根据偶函数满足的性质判定即可.对③,举出反例判定即可.对④,求解不等式再判定即可.【详解】解:因为当时,所以由周期函数的定义知不是函数的周期,故正确;对于定义在上的函数,若,由偶函数的定义知函数不是偶函数,故正确;当时不满足则“”不是“”成立的充分不必要条件,故错误;若实数满足则所以成立,故正确.正确命题的序号是.故答案为:.【点睛】本题主要考查了命题真假的判定,属于基础题.14.【解析】

通过设出A点坐标,可得C点坐标,通过∥轴,可得B点坐标,于是再利用可得答案.【详解】根据题意,可设点,则,由于∥轴,故,代入,可得,即,由于在线段上,故,即,解得.15.或【解析】试题分析:由,则可运用同角三角函数的平方关系:,已知两边及其对角,求角.用正弦定理;,则;可得.考点:运用正弦定理解三角形.(注意多解的情况判断)16.【解析】

先求,再根据的范围求出即可.【详解】由题可知,故.故答案为:.【点睛】本题考查分段函数函数值的求解,涉及对数的运算,属基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1);(2)不会超过预算,理由见解析【解析】

(1)求出某个时间段在开启3套系统就被确定需要检查污染源处理系统的概率为,某个时间段在需要开启另外2套系统才能确定需要检查污染源处理系统的概率为,可得某个时间段需要检查污染源处理系统的概率;(2)设某个时间段环境监测系统的运行费用为元,则的可能取值为900,1500.求得,,求得其分布列和期望,对其求导,研究函数的单调性,可得期望的最大值,从而得出结论.【详解】(1)某个时间段在开启3套系统就被确定需要检查污染源处理系统的概率为,某个时间段在需要开启另外2套系统才能确定需要检查污染源处理系统的概率为某个时间段需要检查污染源处理系统的概率为.(2)设某个时间段环境监测系统的运行费用为元,则的可能取值为900,1500.,令,则当时,,在上单调递增;当时,,在上单调递减,的最大值为,实施此方案,最高费用为(万元),,故不会超过预算.【点睛】本题考查独立重复事件发生的概率、期望,及运用求导函数研究期望的最值,由根据期望值确定方案,此类题目解决的关键在于将生活中的量转化为数学中和量,属于中档题.18.(1);(2).【解析】

(1)对范围分类整理得:,分类解不等式即可.(2)利用已知转化为“当时,”恒成立,利用绝对值不等式的性质可得:,问题得解.【详解】当时,,当时,由得,解得;当时,无解;当时,由得,解得,所以的解集为(2)的解集包含等价于在上恒成立,当时,等价于恒成立,而,∴,故满足条件的的取值范围是【点睛】本题主要考查了含绝对值不等式的解法,还考查了转化能力及绝对值不等式的性质,考查计算能力,属于中档题.19.(1).(2)【解析】

(1)由题意利用三角恒等变换化简函数的解析式,再利用正弦函数的定义域和值域,得出结论.(2)由题意利用余弦定理、三角形的面积公式、基本不等式求得的最大值,可得边上的高的最大值.【详解】解:(1)∵函数,当时,,.(2)中,,∴.由余弦定理可得,当且仅当时,取等号,即的最大值为3.再根据,故当取得最大值3时,取得最大值为.【点睛】本题考查降幂公式、两角和的正弦公式,考查正弦函数的性质,余弦定理,三角形面积公式,所用公式较多,选用恰当的公式是解题关键,本题属于中档题.20.(1)列联表见解析,有;(2)分布列见解析,.【解析】

(1)根据题意,结合已知数据即可填写列联表,计算出的观测值,即可进行判断;(2)先计算出时间在和选取的人数,再求出的可取值,根据古典概型的概率计算公式求得分布列,结合分布列即可求得数学期望.【详解】(1)因为样本数据中有流动人员210人,非流动人员90人,所以办理社保手续所需时间与是否流动人员列联表如下:办理社保手续所需时间与是否流动人员列联表流动人员非流动人员总计办理社保手续所需时间不超过4天453075办理社保手续所需时间超过4天16560225总计21090300结合列联表可算得.有95%的把握认为“办理社保手续所需时间与是否流动人员”有关.(2)根据分层抽样可知时间在可选9人,时间在可以选3名,故,则,,,,可知分布列为0123可知.【点睛】本题考查独立性检验中的计算,以及离散型随机变量的分布列以及数学期望,涉及分层抽样,属综合性中档题.21.(1)为增区间;为减区间.见解析(2)见解析【解析】

(1)先求得的定义域,然后利用导数求得的单调区间,结合零点存在性定理判断出有唯一零点.(2)求得的导函数,结合在区间上不单调,证得,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论