![2022-2023学年江苏省扬州江都区六校联考中考数学押题试卷含解析_第1页](http://file4.renrendoc.com/view/3a4485719ebacc1b7137795e5a631b73/3a4485719ebacc1b7137795e5a631b731.gif)
![2022-2023学年江苏省扬州江都区六校联考中考数学押题试卷含解析_第2页](http://file4.renrendoc.com/view/3a4485719ebacc1b7137795e5a631b73/3a4485719ebacc1b7137795e5a631b732.gif)
![2022-2023学年江苏省扬州江都区六校联考中考数学押题试卷含解析_第3页](http://file4.renrendoc.com/view/3a4485719ebacc1b7137795e5a631b73/3a4485719ebacc1b7137795e5a631b733.gif)
![2022-2023学年江苏省扬州江都区六校联考中考数学押题试卷含解析_第4页](http://file4.renrendoc.com/view/3a4485719ebacc1b7137795e5a631b73/3a4485719ebacc1b7137795e5a631b734.gif)
![2022-2023学年江苏省扬州江都区六校联考中考数学押题试卷含解析_第5页](http://file4.renrendoc.com/view/3a4485719ebacc1b7137795e5a631b73/3a4485719ebacc1b7137795e5a631b735.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年中考数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1.如图,,,则的大小是A. B. C. D.2.在一个不透明的盒子里有2个红球和n个白球,这些球除颜色外其余完全相同,摇匀后随机摸出一个,摸到红球的概率是,则n的值为()A.10 B.8 C.5 D.33.若数a使关于x的不等式组有解且所有解都是2x+6>0的解,且使关于y的分式方程+3=有整数解,则满足条件的所有整数a的个数是()A.5 B.4 C.3 D.24.下列计算正确的是()A.a²+a²=a4 B.(-a2)3=a6C.(a+1)2=a2+1 D.8ab2÷(-2ab)=-4b5.如图,在矩形ABCD中,AD=AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正确的有()A.2个 B.3个 C.4个 D.5个6.一次函数y=kx+k(k≠0)和反比例函数在同一直角坐标系中的图象大致是()A. B. C. D.7.如图,AB∥CD,DB⊥BC,∠2=50°,则∠1的度数是()A.40° B.50° C.60° D.140°8.如图是二次函数y=ax2+bx+cy1>y1.其中说法正确的是()A.①②B.②③C.①②④D.②③④9.若,则3(x-2)2A.﹣6B.6C.18D.3010.夏新同学上午卖废品收入13元,记为+13元,下午买旧书支出9元,记为()元.A.+4B.﹣9C.﹣4D.+9二、填空题(本大题共6个小题,每小题3分,共18分)11.某种药品原来售价100元,连续两次降价后售价为81元,若每次下降的百分率相同,则这个百分率是.12.请看杨辉三角(1),并观察下列等式(2):根据前面各式的规律,则(a+b)6=.13.如图,四边形ACDF是正方形,和都是直角,且点三点共线,,则阴影部分的面积是__________.14.某校组织“优质课大赛”活动,经过评比有两名男教师和两名女教师获得一等奖,学校将从这四名教师中随机挑选两位教师参加市教育局组织的决赛,挑选的两位教师恰好是一男一女的概率为____.15.不等式1﹣2x<6的负整数解是___________.16.如图,点P(3a,a)是反比例函(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的表达式为______.三、解答题(共8题,共72分)17.(8分)如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?18.(8分)如图,在平面直角坐标系xOy中,直线y=x+b与双曲线y=相交于A,B两点,已知A(2,5).求:b和k的值;△OAB的面积.19.(8分)如图,△ABC三个顶点的坐标分别为A(1,1)、B(4,2)、C(3,4).(1)画出△ABC关于y轴的对称图形△A1B1C1,并写出B1点的坐标;(2)画出△ABC绕原点O旋转180°后得到的图形△A2B2C2,并写出B2点的坐标;(3)在x轴上求作一点P,使△PAB的周长最小,并直接写出点P的坐标.20.(8分)已知抛物线y=ax2+bx+2过点A(5,0)和点B(﹣3,﹣4),与y轴交于点C.(1)求抛物线y=ax2+bx+2的函数表达式;(2)求直线BC的函数表达式;(3)点E是点B关于y轴的对称点,连接AE、BE,点P是折线EB﹣BC上的一个动点,①当点P在线段BC上时,连接EP,若EP⊥BC,请直接写出线段BP与线段AE的关系;②过点P作x轴的垂线与过点C作的y轴的垂线交于点M,当点M不与点C重合时,点M关于直线PC的对称点为点M′,如果点M′恰好在坐标轴上,请直接写出此时点P的坐标.21.(8分)如图,在四边形ABCD中,∠A=∠BCD=90°,,CE⊥AD于点E.(1)求证:AE=CE;(2)若tanD=3,求AB的长.22.(10分)为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”这批单车分为A,B两种不同款型,其中A型车单价400元,B型车单价320元.今年年初,“共享单车”试点投放在某市中心城区正式启动.投放A,B两种款型的单车共100辆,总价值36800元.试问本次试点投放的A型车与B型车各多少辆?试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开.按照试点投放中A,B两车型的数量比进行投放,且投资总价值不低于184万元.请问城区10万人口平均每100人至少享有A型车与B型车各多少辆?23.(12分)珠海某企业接到加工“无人船”某零件5000个的任务.在加工完500个后,改进了技术,每天加工的零件数量是原来的1.5倍,整个加工过程共用了35天完成.求技术改进后每天加工零件的数量.24.计算:|﹣|﹣﹣(2﹣π)0+2cos45°.解方程:=1﹣
参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】
依据,即可得到,再根据,即可得到.【详解】解:如图,,,又,,故选:D.【点睛】本题主要考查了平行线的性质,两直线平行,同位角相等.2、B【解析】∵摸到红球的概率为,∴,解得n=8,故选B.3、D【解析】
由不等式组有解且满足已知不等式,以及分式方程有整数解,确定出满足题意整数a的值即可.【详解】不等式组整理得:,由不等式组有解且都是2x+6>0,即x>-3的解,得到-3<a-1≤3,即-2<a≤4,即a=-1,0,1,2,3,4,分式方程去分母得:5-y+3y-3=a,即y=,由分式方程有整数解,得到a=0,2,共2个,故选:D.【点睛】本题考查了分式方程的解,解一元一次不等式,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.4、D【解析】
各项计算得到结果,即可作出判断.【详解】A、原式=2a2,不符合题意;B、原式=-a6,不符合题意;C、原式=a2+2ab+b2,不符合题意;D、原式=-4b,符合题意,故选:D.【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.5、C【解析】
试题分析:∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴AE=AB,∵AD=AB,∴AE=AD,又∠ABE=∠AHD=90°∴△ABE≌△AHD(AAS),∴BE=DH,∴AB=BE=AH=HD,∴∠ADE=∠AED=(180°﹣45°)=67.5°,∴∠CED=180°﹣45°﹣67.5°=67.5°,∴∠AED=∠CED,故①正确;∵∠AHB=(180°﹣45°)=67.5°,∠OHE=∠AHB(对顶角相等),∴∠OHE=∠AED,∴OE=OH,∵∠OHD=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°,∴∠OHD=∠ODH,∴OH=OD,∴OE=OD=OH,故②正确;∵∠EBH=90°﹣67.5°=22.5°,∴∠EBH=∠OHD,又BE=DH,∠AEB=∠HDF=45°∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故③正确;由上述①、②、③可得CD=BE、DF=EH=CE,CF=CD-DF,∴BC-CF=(CD+HE)-(CD-HE)=2HE,所以④正确;∵AB=AH,∠BAE=45°,∴△ABH不是等边三角形,∴AB≠BH,∴即AB≠HF,故⑤错误;综上所述,结论正确的是①②③④共4个.故选C.【点睛】考点:1、矩形的性质;2、全等三角形的判定与性质;3、角平分线的性质;4、等腰三角形的判定与性质6、C【解析】A、由反比例函数的图象在一、三象限可知k>0,由一次函数的图象过二、四象限可知k<0,两结论相矛盾,故选项错误;B、由反比例函数的图象在二、四象限可知k<0,由一次函数的图象与y轴交点在y轴的正半轴可知k>0,两结论相矛盾,故选项错误;C、由反比例函数的图象在二、四象限可知k<0,由一次函数的图象过二、三、四象限可知k<0,两结论一致,故选项正确;D、由反比例函数的图象在一、三象限可知k>0,由一次函数的图象与y轴交点在y轴的负半轴可知k<0,两结论相矛盾,故选项错误,故选C.7、A【解析】试题分析:根据直角三角形两锐角互余求出∠3,再根据两直线平行,同位角相等解答.解:∵DB⊥BC,∠2=50°,∴∠3=90°﹣∠2=90°﹣50°=40°,∵AB∥CD,∴∠1=∠3=40°.故选A.8、C【解析】∵二次函数的图象的开口向上,∴a>0。∵二次函数的图象y轴的交点在y轴的负半轴上,∴c<0。∵二次函数图象的对称轴是直线x=﹣1,∴-b∴abc<0,因此说法①正确。∵1a﹣b=1a﹣1a=0,因此说法②正确。∵二次函数y=∴图象与x轴的另一个交点的坐标是(1,0)。∴把x=1代入y=ax1+bx+c得:y=4a+1b+c>0,因此说法③错误。∵二次函数y=∴点(﹣5,y1)关于对称轴的对称点的坐标是(3,y1),∵当x>﹣1时,y随x的增大而增大,而52∴y1<y1,因此说法④正确。综上所述,说法正确的是①②④。故选C。9、B【解析】试题分析:∵,即x2+4x=4,∴原式=3(x=-3x2-12x+18考点:整式的混合运算—化简求值;整体思想;条件求值.10、B【解析】
收入和支出是两个相反的概念,故两个数字分别为正数和负数.【详解】收入13元记为+13元,那么支出9元记作-9元【点睛】本题主要考查了正负数的运用,熟练掌握正负数的概念是本题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、10%.【解析】
设平均每次降价的百分率为,那么第一次降价后的售价是原来的,那么第二次降价后的售价是原来的,根据题意列方程解答即可.【详解】设平均每次降价的百分率为,根据题意列方程得,,解得,(不符合题意,舍去),答:这个百分率是.故答案为.【点睛】本题考查一元二次方程的应用,要掌握求平均变化率的方法.若设变化前的量为,变化后的量为,平均变化率为,则经过两次变化后的数量关系为.12、a2+2a5b+25a4b2+20a3b3+25a2b4+2ab5+b2.【解析】
通过观察可以看出(a+b)2的展开式为2次7项式,a的次数按降幂排列,b的次数按升幂排列,各项系数分别为2、2、25、20、25、2、2.【详解】通过观察可以看出(a+b)2的展开式为2次7项式,a的次数按降幂排列,b的次数按升幂排列,各项系数分别为2、2、25、20、25、2、2.所以(a+b)2=a2+2a5b+25a4b2+20a3b3+25a2b4+2ab5+b2.13、8【解析】【分析】证明△AEC≌△FBA,根据全等三角形对应边相等可得EC=AB=4,然后再利用三角形面积公式进行求解即可.【详解】∵四边形ACDF是正方形,∴AC=FA,∠CAF=90°,∴∠CAE+∠FAB=90°,∵∠CEA=90°,∴∠CAE+∠ACE=90°,∴∠ACE=∠FAB,又∵∠AEC=∠FBA=90°,∴△AEC≌△FBA,∴CE=AB=4,∴S阴影==8,故答案为8.【点睛】本题考查了正方形的性质、全等三角形的判定与性质,三角形面积等,求出CE=AB是解题的关键.14、【解析】
根据列表法求出所有可能及可得出挑选的两位教师恰好是一男一女的结果数而利用概率公式计算可得.【详解】解:所有可能的结果如下表:男1男2女1女2男1(男1,男2)(男1,女1)(男1,女2)男2(男2,男1)(男2,女1)(男2,女2)女1(女1,男1)(女1,男2)(女1,女2)女2(女2,男1)(女2,男2)(女2,女1)由表可知总共有12种结果,每种结果出现的可能性相同.挑选的两位教师恰好是一男一女的结果有8种,所以其概率为挑选的两位教师恰好是一男一女的概率为=,故答案为.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.15、﹣2,﹣1【解析】试题分析:根据不等式的性质求出不等式的解集,找出不等式的整数解即可.解:1﹣2x<6,移项得:﹣2x<6﹣1,合并同类项得:﹣2x<5,不等式的两边都除以﹣2得:x>﹣,∴不等式的负整数解是﹣2,﹣1,故答案为:﹣2,﹣1.点评:本题主要考查对解一元一次不等式,一元一次不等式的整数解,不等式的性质等知识点的理解和掌握,能根据不等式的性质求出不等式的解集是解此题的关键.16、y=【解析】设圆的半径是r,根据圆的对称性以及反比例函数的对称性可得:πr2=10π解得:r=.∵点P(3a,a)是反比例函y=(k>0)与O的一个交点,∴3a2=k.∴a2==4.∴k=3×4=12,则反比例函数的解析式是:y=.故答案是:y=.点睛:本题主要考查了反比例函数图象的对称性,正确根据对称性求得圆的半径是解题的关键.三、解答题(共8题,共72分)17、10,1.【解析】试题分析:可以设矩形猪舍垂直于住房墙一边长为m,可以得出平行于墙的一边的长为m,由题意得出方程求出边长的值.试题解析:设矩形猪舍垂直于住房墙一边长为m,可以得出平行于墙的一边的长为m,由题意得化简,得,解得:当时,(舍去),当时,,答:所围矩形猪舍的长为10m、宽为1m.考点:一元二次方程的应用题.18、(1)b=3,k=10;(2)S△AOB=.【解析】(1)由直线y=x+b与双曲线y=相交于A、B两点,A(2,5),即可得到结论;(2)过A作AD⊥x轴于D,BE⊥x轴于E,根据y=x+3,y=,得到(-5,-2),C(-3,0).求出OC=3,然后根据三角形的面积公式即可得到结论.解:()把代入.∴∴.把代入,∴,∴.()∵,.∴时,,∴,.∴.又∵,∴.19、(1)画图见解析;(2)画图见解析;(3)画图见解析.【解析】
试题分析:(1)、根据网格结构找出点A、B、C平移后的对应点A1、B1、C1的位置,然后顺次连接即可;(2)、根据网格结构找出点A、B、C关于原点的对称点A2、B2、C2的位置,然后顺次连接即可;(3)、找出点A关于x轴的对称点A′,连接A′B与x轴相交于一点,根据轴对称确定最短路线问题,交点即为所求的点P的位置,然后连接AP、BP并根据图象写出点P的坐标即可.试题解析:(1)、△A1B1C1如图所示;B1点的坐标(-4,2)(2)、△A2B2C2如图所示;B2点的坐标:(-4,-2)(3)、△PAB如图所示,P(2,0).考点:(1)、作图-旋转变换;(2)、轴对称-最短路线问题;(3)、作图-平移变换.20、(1)y=﹣310x2+1110x+2;(2)y=2x+2;(3)①线段BP与线段AE的关系是相互垂直;②点P的坐标为:(﹣4+23,﹣8+43)或(﹣4﹣23,﹣8﹣43)或(0,﹣4)或(﹣【解析】
(1)将A(5,0)和点B(﹣3,﹣4)代入y=ax2+bx+2,即可求解;(2)C点坐标为(0,2),把点B、C的坐标代入直线方程y=kx+b即可求解;(3)①AE直线的斜率kAE=2,而直线BC斜率的kAE=2即可求解;②考虑当P点在线段BC上时和在线段BE上时两种情况,利用PM′=PM即可求解.【详解】(1)将A(5,0)和点B(﹣3,﹣4)代入y=ax2+bx+2,解得:a=﹣,b=,故函数的表达式为y=﹣x2+x+2;(2)C点坐标为(0,2),把点B、C的坐标代入直线方程y=kx+b,解得:k=2,b=2,故:直线BC的函数表达式为y=2x+2,(3)①E是点B关于y轴的对称点,E坐标为(3,﹣4),则AE直线的斜率kAE=2,而直线BC斜率的kAE=2,∴AE∥BC,而EP⊥BC,∴BP⊥AE而BP=AE,∴线段BP与线段AE的关系是相互垂直;②设点P的横坐标为m,当P点在线段BC上时,P坐标为(m,2m+2),M坐标为(m,2),则PM=2m,直线MM′⊥BC,∴kMM′=﹣,直线MM′的方程为:y=﹣x+(2+m),则M′坐标为(0,2+m)或(4+m,0),由题意得:PM′=PM=2m,PM′2=42+m2=(2m)2,此式不成立,或PM′2=m2+(2m+2)2=(2m)2,解得:m=﹣4±2,故点P的坐标为(﹣4±2,﹣8±4);当P点在线段BE上时,点P坐标为(m,﹣4),点M坐标为(m,2),则PM=6,直线MM′的方程不变,为y=﹣x+(2+m),则M′坐标为(0,2+m)或(4+m,0),PM′2=m2+(6+m)2=(2m)2,解得:m=0,或﹣;或PM′2=42+42=(6)2,无解;故点P的坐标为(0,﹣4)或(﹣,﹣4);综上所述:点P的坐标为:(﹣4+2,﹣8+4)或(﹣4﹣2,﹣8﹣4)或(0,﹣4)或(﹣,﹣4).【点睛】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.21、(1)见解析;(2)AB=4【解析】
(1)过点B作BF⊥CE于F,根据同角的余角相等求出∠BCF=∠D,再利用“角角边”证明△BCF和△CDE全等,根据全等三角形对应边相等可得BF=CE,再证明四边形AEFB是矩形,根据矩形的对边相等可得AE=BF,从而得证;(2)由(1)可知:CF=DE,四边形AEFB是矩形,从而求得AB=EF,利用锐角三角函数的定义得出DE和CE的长,即可求得AB的长.【详解】(1)证明:过点B作BH⊥CE于H,如图1.∵CE⊥AD,∴∠BHC=∠CED=90°,∠1+∠D=90°.∵∠BCD=90°,∴∠1+∠2=90°,∴∠2=∠D.又BC=CD∴△BHC≌△CED(AAS).∴BH=CE.∵BH⊥CE,CE⊥AD,∠A=90°,∴四边形ABHE是矩形,∴AE=BH.∴AE=CE.(2)∵四边形ABHE是矩形,∴AB=HE.∵在Rt△CED中,,设DE=x,CE=3x,∴.∴x=2.∴DE=2,CE=3.∵CH=DE=2.∴AB=HE=3-2=4.【点睛】本题考查了全等三角形的判定与性质,矩形的判定与性质,锐角三角函数的定义,难度中等,作辅助线构造出全等三角形与矩形是解题的关键.22、(1)本次试点投放的A型车60辆、B型车40辆;(2)3辆;2辆【解析】分析:(1)设本
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2020五年级下册应用题
- 2025年个人聘请合同(三篇)
- 2025年二氧化碳气体保护焊设备租赁合同范文(2篇)
- 2025年个人的私有土地转让合同(2篇)
- 2025年个人工程承包合同范例(2篇)
- 2025年个人的抵押借款合同标准版本(2篇)
- 2025年二手房购房协议参考模板(2篇)
- 2025年人离婚协议例文(4篇)
- 2025年中介租赁合同(三篇)
- 湖南咖啡厅装修合同范本
- 肩周炎康复护理
- 2022年安徽管子文化旅游集团有限公司招聘笔试试题及答案解析
- SAPPM设备管理解决方案
- Q-HN-1-0000.08.004《风力发电场电能质量监督技术标准》
- 多指畸形-课件
- 宗教与社会课件
- 3人-机-环-管理本质安全化措施课件
- 生殖医学中心建设验收标准分析-讲座课件PPT
- 庆阳煤炭资源开发调研报告
- 桥博常见问题
- 贵州省电梯日常维护保养合同范本
评论
0/150
提交评论