2022-2023学年江苏省盐城市中学中考数学押题试卷含解析_第1页
2022-2023学年江苏省盐城市中学中考数学押题试卷含解析_第2页
2022-2023学年江苏省盐城市中学中考数学押题试卷含解析_第3页
2022-2023学年江苏省盐城市中学中考数学押题试卷含解析_第4页
2022-2023学年江苏省盐城市中学中考数学押题试卷含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年中考数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.已知x2+mx+25是完全平方式,则m的值为()A.10 B.±10 C.20 D.±202.若代数式2x2+3x﹣1的值为1,则代数式4x2+6x﹣1的值为()A.﹣3 B.﹣1 C.1 D.33.不等式组的解在数轴上表示为()A. B. C. D.4.计算﹣2+3的结果是()A.1 B.﹣1 C.﹣5 D.﹣65.2017年,全国参加汉语考试的人数约为6500000,将6500000用科学记数法表示为()A.6.5×105B.6.5×106C.6.5×107D.65×1056.如图,已知在Rt△ABC中,∠ABC=90°,点D是BC边的中点,分别以B、C为圆心,大于线段BC长度一半的长为半径圆弧,两弧在直线BC上方的交点为P,直线PD交AC于点E,连接BE,则下列结论:①ED⊥BC;②∠A=∠EBA;③EB平分∠AED;④ED=AB中,一定正确的是()A.①②③ B.①②④ C.①③④ D.②③④7.在“大家跳起来”的乡村学校舞蹈比赛中,某校10名学生参赛成绩统计如图所示.对于这10名学生的参赛成绩,下列说法中错误的是()A.众数是90 B.中位数是90 C.平均数是90 D.极差是158.下列命题中,错误的是()A.三角形的两边之和大于第三边B.三角形的外角和等于360°C.等边三角形既是轴对称图形,又是中心对称图形D.三角形的一条中线能将三角形分成面积相等的两部分9.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.90° B.60° C.45° D.30°10.小带和小路两个人开车从A城出发匀速行驶至B城.在整个行驶过程中,小带和小路两人车离开A城的距离y(km)与行驶的时间t(h)之间的函数关系如图所示.有下列结论;①A,B两城相距300km;②小路的车比小带的车晚出发1h,却早到1h;③小路的车出发后2.5h追上小带的车;④当小带和小路的车相距50km时,t=或t=.其中正确的结论有()A.①②③④ B.①②④C.①② D.②③④二、填空题(共7小题,每小题3分,满分21分)11.如图,在平面直角坐标系中,已知抛物线y=x2+bx+c过A,B,C三点,点A的坐标是(3,0),点C的坐标是(0,-3),动点P在抛物线上.b=_________,c=_________,点B的坐标为_____________;(直接填写结果)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;过动点P作PE垂直y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.12.如图所示,四边形ABCD中,,对角线AC、BD交于点E,且,,若,,则CE的长为_____.13.如图,D,E分别是△ABC的边AB、BC上的点,且DE∥AC,AE、CD相交于点O,若S△DOE:S△COA=1:16,则S△BDE与S△CDE的比是___________.14.中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五,羊二,值金十两.牛二,羊五,值金八两。问牛羊各值金几何?”译文:今有牛5头,羊2头,共值金10两,牛2头,羊5头,共值金8两.问牛、羊每头各值金多少?设牛、羊每头各值金两、两,依题意,可列出方程为___________________.15.若点M(1,m)和点N(4,n)在直线y=﹣x+b上,则m___n(填>、<或=)16.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为_________元.17.如图,AB为圆O的直径,弦CD⊥AB,垂足为点E,连接OC,若OC=5,CD=8,则AE=______.三、解答题(共7小题,满分69分)18.(10分)如图,用细线悬挂一个小球,小球在竖直平面内的A、C两点间来回摆动,A点与地面距离AN=14cm,小球在最低点B时,与地面距离BM=5cm,∠AOB=66°,求细线OB的长度.(参考数据:sin66°≈0.91,cos66°≈0.40,tan66°≈2.25)19.(5分)如图,△ABC内接于⊙O,且AB为⊙O的直径,OD⊥AB,与AC交于点E,与过点C的⊙O的切线交于点D.若AC=4,BC=2,求OE的长.试判断∠A与∠CDE的数量关系,并说明理由.20.(8分)如图:求作一点P,使,并且使点P到的两边的距离相等.21.(10分)“绿水青山就是金山银山”的理念已融入人们的日常生活中,因此,越来越多的人喜欢骑自行车出行.某自行车店在销售某型号自行车时,以高出进价的50%标价.已知按标价九折销售该型号自行车8辆与将标价直降100元销售7辆获利相同.求该型号自行车的进价和标价分别是多少元?若该型号自行车的进价不变,按(1)中的标价出售,该店平均每月可售出51辆;若每辆自行车每降价20元,每月可多售出3辆,求该型号自行车降价多少元时,每月获利最大?最大利润是多少?22.(10分)如图,在平行四边形ABCD中,BD为对角线,AE⊥BD,CF⊥BD,垂足分别为E、F,连接AF、CE,求证:AF=CE.23.(12分)如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.若∠ABC=70°,则∠NMA的度数是度.若AB=8cm,△MBC的周长是14cm.①求BC的长度;②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.24.(14分)如图,在平面直角坐标系中,直线y=kx+3与轴、轴分别相交于点A、B,并与抛物线的对称轴交于点,抛物线的顶点是点.(1)求k和b的值;(2)点G是轴上一点,且以点、C、为顶点的三角形与△相似,求点G的坐标;(3)在抛物线上是否存在点E:它关于直线AB的对称点F恰好在y轴上.如果存在,直接写出点E的坐标,如果不存在,试说明理由.

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】

根据完全平方式的特点求解:a2±2ab+b2.【详解】∵x2+mx+25是完全平方式,∴m=±10,故选B.【点睛】本题考查了完全平方公式:a2±2ab+b2,其特点是首平方,尾平方,首尾积的两倍在中央,这里首末两项是x和1的平方,那么中间项为加上或减去x和1的乘积的2倍.2、D【解析】

由2x2+1x﹣1=1知2x2+1x=2,代入原式2(2x2+1x)﹣1计算可得.【详解】解:∵2x2+1x﹣1=1,∴2x2+1x=2,则4x2+6x﹣1=2(2x2+1x)﹣1=2×2﹣1=4﹣1=1.故本题答案为:D.【点睛】本题主要考查代数式的求值,运用整体代入的思想是解题的关键.3、C【解析】

先解每一个不等式,再根据结果判断数轴表示的正确方法.【详解】解:由不等式①,得3x>5-2,解得x>1,由不等式②,得-2x≥1-5,解得x≤2,∴数轴表示的正确方法为C.故选C.【点睛】考核知识点:解不等式组.4、A【解析】

根据异号两数相加的法则进行计算即可.【详解】解:因为-2,3异号,且|-2|<|3|,所以-2+3=1.故选A.【点睛】本题主要考查了异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值.5、B【解析】

科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】将6500000用科学记数法表示为:6.5×106.故答案选B.【点睛】本题考查了科学计数法,解题的关键是熟练的掌握科学计数法的表示形式.6、B【解析】

解:根据作图过程,利用线段垂直平分线的性质对各选项进行判断:根据作图过程可知:PB=CP,∵D为BC的中点,∴PD垂直平分BC,∴①ED⊥BC正确.∵∠ABC=90°,∴PD∥AB.∴E为AC的中点,∴EC=EA,∵EB=EC.∴②∠A=∠EBA正确;③EB平分∠AED错误;④ED=AB正确.∴正确的有①②④.故选B.考点:线段垂直平分线的性质.7、C【解析】

由统计图中提供的数据,根据众数、中位数、平均数、极差的定义分别列出算式,求出答案:【详解】解:∵90出现了5次,出现的次数最多,∴众数是90;∵共有10个数,∴中位数是第5、6个数的平均数,∴中位数是(90+90)÷2=90;∵平均数是(80×1+85×2+90×5+95×2)÷10=89;极差是:95﹣80=1.∴错误的是C.故选C.8、C【解析】

根据三角形的性质即可作出判断.【详解】解:A、正确,符合三角形三边关系;B、正确;三角形外角和定理;C、错误,等边三角形既是轴对称图形,不是中心对称图形;D、三角形的一条中线能将三角形分成面积相等的两部分,正确.故选:C.【点睛】本题考查了命题真假的判断,属于基础题.根据定义:符合事实真理的判断是真命题,不符合事实真理的判断是假命题,不难选出正确项.9、C【解析】试题分析:根据勾股定理即可得到AB,BC,AC的长度,进行判断即可.试题解析:连接AC,如图:根据勾股定理可以得到:AC=BC=,AB=.∵()1+()1=()1.∴AC1+BC1=AB1.∴△ABC是等腰直角三角形.∴∠ABC=45°.故选C.考点:勾股定理.10、C【解析】

观察图象可判断①②,由图象所给数据可求得小带、小路两车离开A城的距离y与时间t的关系式,可求得两函数图象的交点,可判断③,再令两函数解析式的差为50,可求得t,可判断④,可得出答案.【详解】由图象可知A,B两城市之间的距离为300km,小带行驶的时间为5h,而小路是在小带出发1h后出发的,且用时3h,即比小带早到1h,∴①②都正确;设小带车离开A城的距离y与t的关系式为y小带=kt,把(5,300)代入可求得k=60,∴y小带=60t,设小路车离开A城的距离y与t的关系式为y小路=mt+n,把(1,0)和(4,300)代入可得解得∴y小路=100t-100,令y小带=y小路,可得60t=100t-100,解得t=2.5,即小带和小路两直线的交点横坐标为t=2.5,此时小路出发时间为1.5h,即小路车出发1.5h后追上甲车,∴③不正确;令|y小带-y小路|=50,可得|60t-100t+100|=50,即|100-40t|=50,当100-40t=50时,可解得t=,当100-40t=-50时,可解得t=,又当t=时,y小带=50,此时小路还没出发,当t=时,小路到达B城,y小带=250.综上可知当t的值为或或或时,两车相距50km,∴④不正确.故选C.【点睛】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,特别注意t是甲车所用的时间.二、填空题(共7小题,每小题3分,满分21分)11、(1),,(-1,0);(2)存在P的坐标是或;(1)当EF最短时,点P的坐标是:(,)或(,)【解析】

(1)将点A和点C的坐标代入抛物线的解析式可求得b、c的值,然后令y=0可求得点B的坐标;(2)分别过点C和点A作AC的垂线,将抛物线与P1,P2两点先求得AC的解析式,然后可求得P1C和P2A的解析式,最后再求得P1C和P2A与抛物线的交点坐标即可;(1)连接OD.先证明四边形OEDF为矩形,从而得到OD=EF,然后根据垂线段最短可求得点D的纵坐标,从而得到点P的纵坐标,然后由抛物线的解析式可求得点P的坐标.【详解】解:(1)∵将点A和点C的坐标代入抛物线的解析式得:,解得:b=﹣2,c=﹣1,∴抛物线的解析式为.∵令,解得:,,∴点B的坐标为(﹣1,0).故答案为﹣2;﹣1;(﹣1,0).(2)存在.理由:如图所示:①当∠ACP1=90°.由(1)可知点A的坐标为(1,0).设AC的解析式为y=kx﹣1.∵将点A的坐标代入得1k﹣1=0,解得k=1,∴直线AC的解析式为y=x﹣1,∴直线CP1的解析式为y=﹣x﹣1.∵将y=﹣x﹣1与联立解得,(舍去),∴点P1的坐标为(1,﹣4).②当∠P2AC=90°时.设AP2的解析式为y=﹣x+b.∵将x=1,y=0代入得:﹣1+b=0,解得b=1,∴直线AP2的解析式为y=﹣x+1.∵将y=﹣x+1与联立解得=﹣2,=1(舍去),∴点P2的坐标为(﹣2,5).综上所述,P的坐标是(1,﹣4)或(﹣2,5).(1)如图2所示:连接OD.由题意可知,四边形OFDE是矩形,则OD=EF.根据垂线段最短,可得当OD⊥AC时,OD最短,即EF最短.由(1)可知,在Rt△AOC中,∵OC=OA=1,OD⊥AC,∴D是AC的中点.又∵DF∥OC,∴DF=OC=,∴点P的纵坐标是,∴,解得:x=,∴当EF最短时,点P的坐标是:(,)或(,).12、【解析】

此题有等腰三角形,所以可作BH⊥CD,交EC于点G,利用三线合一性质及邻补角互补可得∠BGD=120°,根据四边形内角和360°,得到∠ABG+∠ADG=180°.此时再延长GB至K,使AK=AG,构造出等边△AGK.易证△ABK≌△ADG,从而说明△ABD是等边三角形,BD=AB=,根据DG、CG、GH线段之间的关系求出CG长度,在Rt△DBH中利用勾股定理及三角函数知识得到∠EBG的正切值,然后作EF⊥BG,求出EF,在Rt△EFG中解出EG长度,最后CE=CG+GE求解.【详解】如图,作于H,交AC于点G,连接DG.∵,∴BH垂直平分CD,∴,∴,∴,∴,延长GB至K,连接AK使,则是等边三角形,∴,又,∴≌(),∴,∴是等边三角形,∴,设,则,,∴,∴,在中,,解得,,当时,,所以,∴,,,作,设,,,,,∴,,∴,则,故答案为【点睛】本题主要考查了等腰三角形的性质及等边三角形、全等三角形的判定和性质以及勾股定理的运用,综合性较强,正确作出辅助线是解题的关键.13、1:3【解析】根据相似三角形的判定,由DE∥AC,可知△DOE∽△COA,△BDE∽△BCA,然后根据相似三角形的面积比等于相似比的平方,可由,求得DE:AC=1:4,即BE:BC=1:4,因此可得BE:EC=1:3,最后根据同高不同底的三角形的面积可知与的比是1:3.故答案为1:3.14、【解析】【分析】牛、羊每头各值金两、两,根据等量关系:“牛5头,羊2头,共值金10两”,“牛2头,羊5头,共值金8两”列方程组即可.【详解】牛、羊每头各值金两、两,由题意得:,故答案为:.【点睛】本题考查了二元一次方程组的应用,弄清题意,找出等量关系列出方程组是关键.15、>【解析】

根据一次函数的性质,k<0时,y随x的增大而减小.【详解】因为k=﹣<0,所以函数值y随x的增大而减小,因为1<4,所以,m>n.故答案为:>【点睛】本题考核知识点:一次函数.解题关键点:熟记一次函数的性质.16、1【解析】试题分析:设该商品每件的进价为x元,则150×80%-10-x=x×10%,解得x=1.即该商品每件的进价为1元.故答案为1.点睛:此题主要考查了一元一次方程的应用,解决本题的关键是得到商品售价的等量关系.17、2【解析】试题解析:∵AB为圆O的直径,弦CD⊥AB,垂足为点E.在直角△OCE中,则AE=OA−OE=5−3=2.故答案为2.三、解答题(共7小题,满分69分)18、15cm【解析】试题分析:设细线OB的长度为xcm,作AD⊥OB于D,证出四边形ANMD是矩形,得出AN=DM=14cm,求出OD=x-9,在Rt△AOD中,由三角函数得出方程,解方程即可.试题解析:设细线OB的长度为xcm,作AD⊥OB于D,如图所示:∴∠ADM=90°,∵∠ANM=∠DMN=90°,∴四边形ANMD是矩形,∴AN=DM=14cm,∴DB=14﹣5=9cm,∴OD=x﹣9,在Rt△AOD中,cos∠AOD=,∴cos66°==0.40,解得:x=15,∴OB=15cm.19、(1);(2)∠CDE=2∠A.【解析】

(1)在Rt△ABC中,由勾股定理得到AB的长,从而得到半径AO.再由△AOE∽△ACB,得到OE的长;(2)连结OC,得到∠1=∠A,再证∠3=∠CDE,从而得到结论.【详解】(1)∵AB是⊙O的直径,∴∠ACB=90°,在Rt△ABC中,由勾股定理得:AB==,∴AO=AB=.∵OD⊥AB,∴∠AOE=∠ACB=90°,又∵∠A=∠A,∴△AOE∽△ACB,∴,∴OE==.(2)∠CDE=2∠A.理由如下:连结OC,∵OA=OC,∴∠1=∠A,∵CD是⊙O的切线,∴OC⊥CD,∴∠OCD=90°,∴∠2+∠CDE=90°,∵OD⊥AB,∴∠2+∠3=90°,∴∠3=∠CDE.∵∠3=∠A+∠1=2∠A,∴∠CDE=2∠A.考点:切线的性质;探究型;和差倍分.20、见解析【解析】

利用角平分线的作法以及线段垂直平分线的作法分别得出进而求出其交点即可.【详解】如图所示:P点即为所求.【点睛】本题主要考查了复杂作图,熟练掌握角平分线以及线段垂直平分线的作法是解题的关键.21、(1)进价为1000元,标价为1500元;(2)该型号自行车降价80元出售每月获利最大,最大利润是26460元.【解析】分析:(1)设进价为x元,则标价是1.5x元,根据关键语句:按标价九折销售该型号自行车8辆的利润是1.5x×0.9×8-8x,将标价直降100元销售7辆获利是(1.5x-100)×7-7x,根据利润相等可得方程1.5x×0.9×8-8x=(1.5x-100)×7-7x,再解方程即可得到进价,进而得到标价;(2)设该型号自行车降价a元,利润为w元,利用销售量×每辆自行车的利润=总利润列出函数关系式,再利用配方法求最值即可.详解:(1)设进价为x元,则标价是1.5x元,由题意得:1.5x×0.9×8-8x=(1.5x-100)×7-7x,解得:x=1000,1.5×1000=1500(元),答:进价为1000元,标价为1500元;(2)设该型号自行车降价a元,利润为w元,由题意得:w=(51+×3)(1500-1000-a),=-(a-80)2+26460,∵-<0,∴当a=80时,w最大=26460,答:该型号自行车降价80元出售每月获利最大,最大利润是26460元.点睛:此题主要考查了二次函数的应用,以及元一次方程的应用,关键是正确理解题意,根据已知得出w与a的关系式,进而求出最值.22、见解析【解析】

易证△ABE≌△CDF,得AE=CF,即可证得△AEF≌△CFE,即可得证.【详解】在平行四边形ABCD中,AB∥CD,AB=CD∴∠ABE=∠CDF,又AE⊥BD,CF⊥BD∴△ABE≌△CDF(AAS),∴AE=CF又∠AEF=∠CFE,EF=FE,∴△AEF≌△CFE(SAS)∴AF=CE.【点睛】此题主要考查平行四边形的性质与全等三角形的判定与性质,解题的关键是熟知平行四边形的性质定理.23、(1)50;(2)①6;②1【解析】试题分析:(1)根据等腰三角形的性质和线段垂直平分线的性质即可得到结论;(2)①根据线段垂直平分线上的点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论