版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年中考数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(共10小题,每小题3分,共30分)1.a≠0,函数y=与y=﹣ax2+a在同一直角坐标系中的大致图象可能是()A. B.C. D.2.如图,小明将一张长为20cm,宽为15cm的长方形纸(AE>DE)剪去了一角,量得AB=3cm,CD=4cm,则剪去的直角三角形的斜边长为()A.5cm B.12cm C.16cm D.20cm3.二次函数y=3(x﹣1)2+2,下列说法正确的是()A.图象的开口向下B.图象的顶点坐标是(1,2)C.当x>1时,y随x的增大而减小D.图象与y轴的交点坐标为(0,2)4.计算(﹣5)﹣(﹣3)的结果等于()A.﹣8B.8C.﹣2D.25.下列实数中,无理数是()A.3.14 B.1.01001 C. D.6.在2014年5月崇左市教育局举行的“经典诗朗诵”演讲比赛中,有11名学生参加决赛,他们决赛的成绩各不相同,其中的一名学生想知道自己能否进入前6名,不仅要了解自己的成绩,还要了解这11名学生成绩的()A.众数 B.中位数 C.平均数 D.方差7.一次函数y=2x+1的图像不经过(
)A.第一象限B.第二象限C.第三象限D.第四象限8.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,则图中相似三角形共有()A.1对 B.2对 C.3对 D.4对9.抛物线y=–x2+bx+c上部分点的横坐标x、纵坐标y的对应值如下表所示:x…–2–1012…y…04664…从上表可知,下列说法错误的是A.抛物线与x轴的一个交点坐标为(–2,0) B.抛物线与y轴的交点坐标为(0,6)C.抛物线的对称轴是直线x=0 D.抛物线在对称轴左侧部分是上升的10.下列方程中,没有实数根的是()A.x2﹣2x=0 B.x2﹣2x﹣1=0 C.x2﹣2x+1=0 D.x2﹣2x+2=0二、填空题(本大题共6个小题,每小题3分,共18分)11.写出一个大于3且小于4的无理数:___________.12.亚洲陆地面积约为4400万平方千米,将44000000用科学记数法表示为_____.13.分式方程+=1的解为________.14.用换元法解方程,设y=,那么原方程化为关于y的整式方程是_____.15.观察下列一组数,,,,,…探究规律,第n个数是_____.16.计算2x3·x2的结果是_______.三、解答题(共8题,共72分)17.(8分)如图,已知⊙O经过△ABC的顶点A、B,交边BC于点D,点A恰为的中点,且BD=8,AC=9,sinC=,求⊙O的半径.18.(8分)已知:如图,在△ABC中,AB=13,AC=8,cos∠BAC=,BD⊥AC,垂足为点D,E是BD的中点,联结AE并延长,交边BC于点F.(1)求∠EAD的余切值;(2)求的值.19.(8分)某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如表:x/元…152025…y/件…252015…已知日销售量y是销售价x的一次函数.求日销售量y(件)与每件产品的销售价x(元)之间的函数表达式;当每件产品的销售价定为35元时,此时每日的销售利润是多少元?20.(8分)已知:如图,□ABCD中,BD是对角线,AE⊥BD于E,CF⊥BD于F.求证:BE=DF.21.(8分)如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE,CF相交于点D.求证:BE=CF;当四边形ACDE为菱形时,求BD的长.22.(10分)计算:(﹣1)2﹣2sin45°+(π﹣2018)0+|﹣2|23.(12分)如图,小华和同伴在春游期间,发现在某地小山坡的点E处有一棵盛开的桃花的小桃树,他想利用平面镜测量的方式计算一下小桃树到山脚下的距离,即DE的长度,小华站在点B的位置,让同伴移动平面镜至点C处,此时小华在平面镜内可以看到点E,且BC=2.7米,CD=11.5米,∠CDE=120°,已知小华的身高为1.8米,请你利用以上的数据求出DE的长度.(结果保留根号)24.正方形ABCD中,点P为直线AB上一个动点(不与点A,B重合),连接DP,将DP绕点P旋转90°得到EP,连接DE,过点E作CD的垂线,交射线DC于M,交射线AB于N.问题出现:(1)当点P在线段AB上时,如图1,线段AD,AP,DM之间的数量关系为;题探究:(2)①当点P在线段BA的延长线上时,如图2,线段AD,AP,DM之间的数量关系为;②当点P在线段AB的延长线上时,如图3,请写出线段AD,AP,DM之间的数量关系并证明;问题拓展:(3)在(1)(2)的条件下,若AP=,∠DEM=15°,则DM=.
参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】
分a>0和a<0两种情况分类讨论即可确定正确的选项【详解】当a>0时,函数y=的图象位于一、三象限,y=﹣ax2+a的开口向下,交y轴的正半轴,没有符合的选项,当a<0时,函数y=的图象位于二、四象限,y=﹣ax2+a的开口向上,交y轴的负半轴,D选项符合;故选D.【点睛】本题考查了反比例函数的图象及二次函数的图象的知识,解题的关键是根据比例系数的符号确定其图象的位置,难度不大.2、D【解析】
解答此题要延长AB、DC相交于F,则BFC构成直角三角形,再用勾股定理进行计算.【详解】延长AB、DC相交于F,则BFC构成直角三角形,运用勾股定理得:BC2=(15-3)2+(1-4)2=122+162=400,所以BC=1.则剪去的直角三角形的斜边长为1cm.故选D.【点睛】本题主要考查了勾股定理的应用,解答此题要延长AB、DC相交于F,构造直角三角形,用勾股定理进行计算.3、B【解析】
由抛物线解析式可求得其开口方向、顶点坐标、最值及增减性,则可判断四个选项,可求得答案.【详解】解:A、因为a=3>0,所以开口向上,错误;B、顶点坐标是(1,2),正确;C、当x>1时,y随x增大而增大,错误;D、图象与y轴的交点坐标为(0,5),错误;故选:B.【点睛】考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x﹣h)2+k中,对称轴为x=h,顶点坐标为(h,k).4、C【解析】分析:减去一个数,等于加上这个数的相反数.依此计算即可求解.详解:(-5)-(-3)=-1.故选:C.点睛:考查了有理数的减法,方法指引:①在进行减法运算时,首先弄清减数的符号;②将有理数转化为加法时,要同时改变两个符号:一是运算符号(减号变加号);二是减数的性质符号(减数变相反数).5、C【解析】
先把能化简的数化简,然后根据无理数的定义逐一判断即可得.【详解】A、3.14是有理数;B、1.01001是有理数;C、是无理数;D、是分数,为有理数;故选C.【点睛】本题主要考查无理数的定义,属于简单题.6、B【解析】
解:11人成绩的中位数是第6名的成绩.参赛选手要想知道自己是否能进入前6名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.故选B.【点睛】本题考查统计量的选择,掌握中位数的意义是本题的解题关键.7、D【解析】
根据一次函数的系数判断出函数图象所经过的象限,由k=2>0,b=1>0可知,一次函数y=2x+1的图象过一、二、三象限.另外此题还可以通过直接画函数图象来解答.【详解】∵k=2>0,b=1>0,∴根据一次函数图象的性质即可判断该函数图象经过一、二、三象限,不经过第四象限.故选D.【点睛】本题考查一次函数图象与系数的关系,解决此类题目的关键是确定k、b的正负.8、C【解析】∵∠ACB=90°,CD⊥AB,∴△ABC∽△ACD,△ACD∽CBD,△ABC∽CBD,所以有三对相似三角形.故选C.9、C【解析】当x=-2时,y=0,
∴抛物线过(-2,0),
∴抛物线与x轴的一个交点坐标为(-2,0),故A正确;
当x=0时,y=6,
∴抛物线与y轴的交点坐标为(0,6),故B正确;
当x=0和x=1时,y=6,
∴对称轴为x=,故C错误;
当x<时,y随x的增大而增大,
∴抛物线在对称轴左侧部分是上升的,故D正确;
故选C.10、D【解析】
分别计算各方程的根的判别式的值,然后根据判别式的意义判定方程根的情况即可.【详解】A、△=(﹣2)2﹣4×1×0=4>0,方程有两个不相等的实数根,所以A选项错误;B、△=(﹣2)2﹣4×1×(﹣1)=8>0,方程有两个不相等的实数根,所以B选项错误;C、△=(﹣2)2﹣4×1×1=0,方程有两个相等的实数根,所以C选项错误;D、△=(﹣2)2﹣4×1×2=﹣4<0,方程没有实数根,所以D选项正确.故选D.二、填空题(本大题共6个小题,每小题3分,共18分)11、如等,答案不唯一.【解析】
本题考查无理数的概念.无限不循环小数叫做无理数.介于和之间的无理数有无穷多个,因为,故而9和16都是完全平方数,都是无理数.12、4.4×1【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.详解:44000000=4.4×1,故答案为4.4×1.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13、【解析】
根据解分式方程的步骤,即可解答.【详解】方程两边都乘以,得:,解得:,检验:当时,,所以分式方程的解为,故答案为.【点睛】考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解解分式方程一定注意要验根.14、6y2-5y+2=0【解析】
根据y=,将方程变形即可.【详解】根据题意得:3y+,得到6y2-5y+2=0故答案为6y2-5y+2=0【点睛】此题考查了换元法解分式方程,利用了整体的思想,将方程进行适当的变形是解本题的关键.15、【解析】
根据已知得出数字分母与分子的变化规律,分子是连续的正整数,分母是连续的奇数,进而得出第n个数分子的规律是n,分母的规律是2n+1,进而得出这一组数的第n个数的值.【详解】解:因为分子的规律是连续的正整数,分母的规律是2n+1,
所以第n个数就应该是:,
故答案为.【点睛】此题主要考查了数字变化规律,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.解题的关键是把数据的分子分母分别用组数n表示出来.16、【解析】试题分析:根据单项式乘以单项式,结合同底数幂相乘,底数不变,指数相加,可知2x3·x2=2x3+2=2x5.故答案为:2x5三、解答题(共8题,共72分)17、⊙O的半径为.【解析】
如图,连接OA.交BC于H.首先证明OA⊥BC,在Rt△ACH中,求出AH,设⊙O的半径为r,在Rt△BOH中,根据BH2+OH2=OB2,构建方程即可解决问题。【详解】解:如图,连接OA.交BC于H.∵点A为的中点,∴OA⊥BD,BH=DH=4,∴∠AHC=∠BHO=90°,∵,AC=9,∴AH=3,设⊙O的半径为r,在Rt△BOH中,∵BH2+OH2=OB2,∴42+(r﹣3)2=r2,∴r=,∴⊙O的半径为.【点睛】本题考查圆心角、弧、弦的关系、垂径定理、勾股定理、锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.18、(1)∠EAD的余切值为;(2)=.【解析】
(1)在Rt△ADB中,根据AB=13,cos∠BAC=,求出AD的长,由勾股定理求出BD的长,进而可求出DE的长,然后根据余切的定义求∠EAD的余切即可;(2)过D作DG∥AF交BC于G,由平行线分线段成比例定理可得CD:AD=CG:FG=3:5,从而可设CD=3x,AD=5x,再由EF∥DG,BE=ED,可知BF=FG=5x,然后可求BF:CF的值.【详解】(1)∵BD⊥AC,∴∠ADE=90°,Rt△ADB中,AB=13,cos∠BAC=,∴AD=5,由勾股定理得:BD=12,∵E是BD的中点,∴ED=6,∴∠EAD的余切==;(2)过D作DG∥AF交BC于G,∵AC=8,AD=5,∴CD=3,∵DG∥AF,∴=,设CD=3x,AD=5x,∵EF∥DG,BE=ED,∴BF=FG=5x,∴==.【点睛】本题考查了勾股定理,锐角三角函数的定义,平行线分线段成比例定理.解(1)的关键是熟练掌握锐角三角函数的概念,解(2)的关键是熟练掌握平行线分线段成比例定理.19、();()此时每天利润为元.【解析】试题分析:(1)根据题意用待定系数法即可得解;(2)把x=35代入(1)中的解析式,得到销量,然后再乘以每件的利润即可得.试题解析:()设,将,和,代入,得:,解得:,∴;()将代入()中函数表达式得:,∴利润(元),答:此时每天利润为元.20、(1)证明:∵ABCD是平行四边形∴AB=CDAB∥CD∴∠ABE=∠CDF又∵AE⊥BD,CF⊥BD∴∠AEB=∠CFD=90∴△ABE≌△CDF∴BE=DF【解析】证明:在□ABCD中∵AB∥CD∴∠ABE=∠CDF…………4分∵AE⊥BDCF⊥BD∴∠AEB=∠CFD=900……………………5分∵AB=CD∴△ABE≌△CDF…………6分∴BE=DF21、(1)证明见解析(2)-1【解析】
(1)先由旋转的性质得AE=AB,AF=AC,∠EAF=∠BAC,则∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,利用AB=AC可得AE=AF,得出△ACF≌△ABE,从而得出BE=CF;(2)由菱形的性质得到DE=AE=AC=AB=1,AC∥DE,根据等腰三角形的性质得∠AEB=∠ABE,根据平行线得性质得∠ABE=∠BAC=45°,所以∠AEB=∠ABE=45°,于是可判断△ABE为等腰直角三角形,所以BE=AC=,于是利用BD=BE﹣DE求解.【详解】(1)∵△AEF是由△ABC绕点A按顺时针方向旋转得到的,∴AE=AB,AF=AC,∠EAF=∠BAC,∴∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,在△ACF和△ABE中,△ACF≌△ABEBE=CF.(2)∵四边形ACDE为菱形,AB=AC=1,∴DE=AE=AC=AB=1,AC∥DE,∴∠AEB=∠ABE,∠ABE=∠BAC=45°,∴∠AEB=∠ABE=45°,∴△ABE为等腰直角三角形,∴BE=AC=,∴BD=BE﹣DE=.考点:1.旋转的性质;2.勾股定理;3.菱形的性质.22、1【解析】
原式第一项利用乘方法则计算,第二项利用特殊角的三角函数值计算,第三项利用零指数幂法则计算,最后一项利用绝对值的代数意义化简即可得到结果.【详解】解:原式=1﹣1×22+1+2=1﹣2+1+2【点睛】此题考查了含有特殊角的三角函数值的运算,熟练掌握各运算法则是解题的关键.23、DE的长度为6+1.【解析】
根据相似三角形的判定与性质解答即可.【详解】解:过E作EF⊥BC,∵∠CDE=120°,∴∠EDF=60°,设EF为x,DF=x,∵∠B=∠EFC=90°,∵∠ACB=∠ECD,∴△ABC∽△EFC,∴,即,解得:x=9+2,∴DE==6+1,答:DE的长度为6+1.【点睛】本题考查相似三角形性质的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.24、(1)DM=AD+AP;(2)①DM=AD﹣AP;②DM=AP﹣AD;(3)3﹣或﹣1.【解析】
(1)根据正方形的性质和全等三角形的判定和性质得出△ADP≌△PFN,进而解答即可;(2)①根据正方形的性质和全等三角形的判定和性质得出△ADP≌△PFN,进而解答即可;②根据正方形的性质和全等三角形的判定和性质得出△ADP≌△PFN,进而解答即可;(3)分两种情况利用勾股定理和三角函数解答即可.【详解】(1)DM=AD+AP,理由如下:∵正方形ABCD,∴DC=AB,∠DAP=90°,∵将DP绕点P旋转90°
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年超市季节性促销员劳动合同3篇
- 二零二五版智能家居砌墙装修承包合同范本2篇
- 二零二五版3海上货物运输合同-海上货物运输事故处理及赔偿协议2篇
- 二零二五版综合性博士后研究人员聘用合同书3篇
- 二零二五版物联网技术培训服务合同样本2篇
- 二零二五年度版权买卖合同(图书)5篇
- 二零二五版劳动合同法下社保购买期限及权益保障协议3篇
- 二零二五年度餐厅线上线下融合推广承包合同2篇
- 二零二五年网络广告投放合同封面素材2篇
- 二零二五版电影IP授权与赞助合同3篇
- 税前工资反算表模板
- 广东省深圳市2023年中考英语试题(含答案与解析)
- MOOC 电工学(电气工程学概论)-天津大学 中国大学慕课答案
- 2019级水电站动力设备专业三年制人才培养方案
- 室内装饰装修施工组织设计方案
- 洗浴中心活动方案
- 送电线路工程施工流程及组织措施
- 肝素诱导的血小板减少症培训课件
- 韩国文化特征课件
- 抖音认证承诺函
- 清洁剂知识培训课件
评论
0/150
提交评论