2022-2023学年湖南省娄底市涟源市中考数学考前最后一卷含解析_第1页
2022-2023学年湖南省娄底市涟源市中考数学考前最后一卷含解析_第2页
2022-2023学年湖南省娄底市涟源市中考数学考前最后一卷含解析_第3页
2022-2023学年湖南省娄底市涟源市中考数学考前最后一卷含解析_第4页
2022-2023学年湖南省娄底市涟源市中考数学考前最后一卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年中考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N作直线MN,交BC于点D,连结AD,则∠BAD的度数为()A.65° B.60°C.55° D.45°2.下列运算正确的是()A.(a2)3=a5 B.(a-b)2=a2-b2 C.3=3 D.=-33.某射击运动员练习射击,5次成绩分别是:8、9、7、8、x(单位:环).下列说法中正确的是()A.若这5次成绩的中位数为8,则x=8B.若这5次成绩的众数是8,则x=8C.若这5次成绩的方差为8,则x=8D.若这5次成绩的平均成绩是8,则x=84.如图是一个由4个相同的正方体组成的立体图形,它的左视图为()A. B. C. D.5.|–|的倒数是()A.–2 B.– C. D.26.如果一组数据6、7、x、9、5的平均数是2x,那么这组数据的方差为()A.4 B.3 C.2 D.17.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是()A.主视图 B.俯视图 C.左视图 D.一样大8.如图1,点E为矩形ABCD的边AD上一点,点P从点B出发沿BE→ED→DC运动到点C停止,点Q从点B出发沿BC运动到点C停止,它们运动的速度都是1cm/s.若点P、Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2),已知y与t之间的函数图象如图2所示.给出下列结论:①当0<t≤10时,△BPQ是等腰三角形;②S△ABE=48cm2;③14<t<22时,y=110﹣1t;④在运动过程中,使得△ABP是等腰三角形的P点一共有3个;⑤当△BPQ与△BEA相似时,t=14.1.其中正确结论的序号是()A.①④⑤ B.①②④ C.①③④ D.①③⑤9.关于的不等式的解集如图所示,则的取值是A.0 B. C. D.10.如图,将函数的图象沿y轴向上平移得到一条新函数的图象,其中点A(-4,m),B(-1,n),平移后的对应点分别为点A'、B'.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是()A. B. C. D.二、填空题(共7小题,每小题3分,满分21分)11.某商场对今年端午节这天销售A、B、C三种品牌粽子的情况进行了统计,绘制了如图1和图2所示的统计图,则B品牌粽子在图2中所对应的扇形的心角的度数是_____.12.如图,在△ABC中,点E,F分别是AC,BC的中点,若S四边形ABFE=9,则S三角形EFC=________.13.如图,用黑白两种颜色的纸片,按黑色纸片数逐渐增加1的规律拼成如图图案,则第4个图案中有__________白色纸片,第n个图案中有__________张白色纸片.14.如图,某数学兴趣小组为了测量河对岸l1的两棵古树A、B之间的距离,他们在河这边沿着与AB平行的直线l2上取C、D两点,测得∠ACB=15°,∠ACD=45°,若l1、l2之间的距离为50m,则古树A、B之间的距离为_____m.15.已知点A(2,4)与点B(b﹣1,2a)关于原点对称,则ab=_____.16.中国古代的数学专著《九章算术》有方程组问题“五只雀,六只燕,共重1斤(等于16两),雀重燕轻.互换其中一只,恰好一样重.”设每只雀、燕的重量各为x两,y两,则根据题意,可得方程组为___.17.若点与点关于原点对称,则______.三、解答题(共7小题,满分69分)18.(10分)已知:如图,点A,F,C,D在同一直线上,AF=DC,AB∥DE,AB=DE,连接BC,BF,CE.求证:四边形BCEF是平行四边形.19.(5分)如图,矩形ABCD中,AB=4,BC=6,E是BC边的中点,点P在线段AD上,过P作PF⊥AE于F,设PA=x.(1)求证:△PFA∽△ABE;(2)当点P在线段AD上运动时,设PA=x,是否存在实数x,使得以点P,F,E为顶点的三角形也与△ABE相似?若存在,请求出x的值;若不存在,请说明理由;(3)探究:当以D为圆心,DP为半径的⊙D与线段AE只有一个公共点时,请直接写出x满足的条件:.20.(8分)如图1,点P是平面直角坐标系中第二象限内的一点,过点P作PA⊥y轴于点A,点P绕点A顺时针旋转60°得到点P',我们称点P'是点P的“旋转对应点”.(1)若点P(﹣4,2),则点P的“旋转对应点”P'的坐标为;若点P的“旋转对应点”P'的坐标为(﹣5,16)则点P的坐标为;若点P(a,b),则点P的“旋转对应点”P'的坐标为;(2)如图2,点Q是线段AP'上的一点(不与A、P'重合),点Q的“旋转对应点”是点Q',连接PP'、QQ',求证:PP'∥QQ';(3)点P与它的“旋转对应点”P'的连线所在的直线经过点(,6),求直线PP'与x轴的交点坐标.21.(10分)计算:÷+8×2﹣1﹣(+1)0+2•sin60°.22.(10分)如图,二次函数的图像与轴交于、两点,与轴交于点,.点在函数图像上,轴,且,直线是抛物线的对称轴,是抛物线的顶点.求、的值;如图①,连接,线段上的点关于直线的对称点恰好在线段上,求点的坐标;如图②,动点在线段上,过点作轴的垂线分别与交于点,与抛物线交于点.试问:抛物线上是否存在点,使得与的面积相等,且线段的长度最小?如果存在,求出点的坐标;如果不存在,说明理由.23.(12分)在眉山市樱花节期间,岷江二桥一端的空地上有一块矩形的标语牌ABCD(如图).已知标语牌的高AB=5m,在地面的点E处,测得标语牌点A的仰角为30°,在地面的点F处,测得标语牌点A的仰角为75°,且点E,F,B,C在同一直线上,求点E与点F之间的距离.(计算结果精确到0.1m,参考数据:≈1.41,≈1.73)24.(14分)在锐角△ABC中,边BC长为18,高AD长为12如图,矩形EFCH的边GH在BC边上,其余两个顶点E、F分别在AB、AC边上,EF交AD于点K,求的值;设EH=x,矩形EFGH的面积为S,求S与x的函数关系式,并求S的最大值.

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】

根据线段垂直平分线的性质得到AD=DC,根据等腰三角形的性质得到∠C=∠DAC,求得∠DAC=30°,根据三角形的内角和得到∠BAC=95°,即可得到结论.【详解】由题意可得:MN是AC的垂直平分线,则AD=DC,故∠C=∠DAC,∵∠C=30°,∴∠DAC=30°,∵∠B=55°,∴∠BAC=95°,∴∠BAD=∠BAC-∠CAD=65°,故选A.【点睛】此题主要考查了线段垂直平分线的性质,三角形的内角和,正确掌握线段垂直平分线的性质是解题关键.2、D【解析】试题分析:A、原式=a6,错误;B、原式=a2﹣2ab+b2,错误;C、原式不能合并,错误;D、原式=﹣3,正确,故选D考点:完全平方公式;合并同类项;同底数幂的乘法;平方差公式.3、D【解析】

根据中位数的定义判断A;根据众数的定义判断B;根据方差的定义判断C;根据平均数的定义判断D.【详解】A、若这5次成绩的中位数为8,则x为任意实数,故本选项错误;B、若这5次成绩的众数是8,则x为不是7与9的任意实数,故本选项错误;C、如果x=8,则平均数为(8+9+7+8+8)=8,方差为[3×(8-8)2+(9-8)2+(7-8)2]=0.4,故本选项错误;D、若这5次成绩的平均成绩是8,则(8+9+7+8+x)=8,解得x=8,故本选项正确;

故选D.【点睛】本题考查中位数、众数、平均数和方差:一般地设n个数据,x1,x2,…xn的平均数为,则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.4、B【解析】

根据左视图的定义,从左侧会发现两个正方形摞在一起.【详解】从左边看上下各一个小正方形,如图故选B.5、D【解析】

根据绝对值的性质,可化简绝对值,根据倒数的意义,可得答案.【详解】|−|=,的倒数是2;∴|−|的倒数是2,故选D.【点睛】本题考查了实数的性质,分子分母交换位置是求一个数倒数的关键.6、A【解析】分析:先根据平均数的定义确定出x的值,再根据方差公式进行计算即可求出答案.详解:根据题意,得:=2x解得:x=3,则这组数据为6、7、3、9、5,其平均数是6,所以这组数据的方差为[(6﹣6)2+(7﹣6)2+(3﹣6)2+(9﹣6)2+(5﹣6)2]=4,故选A.点睛:此题考查了平均数和方差的定义.平均数是所有数据的和除以数据的个数.方差是一组数据中各数据与它们的平均数的差的平方的平均数.7、C【解析】如图,该几何体主视图是由5个小正方形组成,左视图是由3个小正方形组成,俯视图是由5个小正方形组成,故三种视图面积最小的是左视图,故选C.8、D【解析】

根据题意,得到P、Q分别同时到达D、C可判断①②,分段讨论PQ位置后可以判断③,再由等腰三角形的分类讨论方法确定④,根据两个点的相对位置判断点P在DC上时,存在△BPQ与△BEA相似的可能性,分类讨论计算即可.【详解】解:由图象可知,点Q到达C时,点P到E则BE=BC=10,ED=4故①正确则AE=10﹣4=6t=10时,△BPQ的面积等于∴AB=DC=8故故②错误当14<t<22时,故③正确;分别以A、B为圆心,AB为半径画圆,将两圆交点连接即为AB垂直平分线则⊙A、⊙B及AB垂直平分线与点P运行路径的交点是P,满足△ABP是等腰三角形此时,满足条件的点有4个,故④错误.∵△BEA为直角三角形∴只有点P在DC边上时,有△BPQ与△BEA相似由已知,PQ=22﹣t∴当或时,△BPQ与△BEA相似分别将数值代入或,解得t=(舍去)或t=14.1故⑤正确故选:D.【点睛】本题是动点问题的函数图象探究题,考查了三角形相似判定、等腰三角形判定,应用了分类讨论和数形结合的数学思想.9、D【解析】

首先根据不等式的性质,解出x≤,由数轴可知,x≤-1,所以=-1,解出即可;【详解】解:不等式,解得x<,由数轴可知,所以,解得;故选:.【点睛】本题主要考查了不等式的解法和在数轴上表示不等式的解集,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.10、D【解析】分析:过A作AC∥x轴,交B′B的延长线于点C,过A′作A′D∥x轴,交B′B的于点D,则C(-1,m),AC=-1-(-1)=3,根据平移的性质以及曲线段AB扫过的面积为9(图中的阴影部分),得出AA′=3,然后根据平移规律即可求解.详解:过A作AC∥x轴,交B′B的延长线于点C,过A′作A′D∥x轴,交B′B的于点D,则C(-1,m),∴AC=-1-(-1)=3,∵曲线段AB扫过的面积为9(图中的阴影部分),∴矩形ACDA′的面积等于9,∴AC·AA′=3AA′=9,∴AA′=3,∴新函数的图是将函数y=(x-2)2+1的图象沿y轴向上平移3个单位长度得到的,∴新图象的函数表达式是y=(x-2)2+1+3=(x-2)2+1.故选D.点睛:此题主要考查了二次函数图象变换以及矩形的面积求法等知识,根据已知得出AA′的长度是解题关键.二、填空题(共7小题,每小题3分,满分21分)11、120°【解析】

根据图1中C品牌粽子1200个,在图2中占50%,求出三种品牌粽子的总个数,再求出B品牌粽子的个数,从而计算出B品牌粽子占粽子总数的比例,从而求出B品牌粽子在图2中所对应的圆心角的度数.【详解】解:∵三种品牌的粽子总数为1200÷50%=2400个,又∵A、C品牌的粽子分别有400个、1200个,∴B品牌的粽子有2400-400-1200=800个,则B品牌粽子在图2中所对应的圆心角的度数为360×.故答案为120°.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.12、3【解析】分析:由已知条件易得:EF∥AB,且EF:AB=1:2,从而可得△CEF∽△CAB,且相似比为1:2,设S△CEF=x,根据相似三角形的性质可得方程:,解此方程即可求得△EFC的面积.详解:∵在△ABC中,点E,F分别是AC,BC的中点,∴EF是△ABC的中位线,∴EF∥AB,EF:AB=1:2,∴△CEF∽△CAB,∴S△CEF:S△CAB=1:4,设S△CEF=x,∵S△CAB=S△CEF+S四边形ABFE,S四边形ABFE=9,∴,解得:,经检验:是所列方程的解.故答案为:3.点睛:熟悉三角形的中位线定理和相似三角形的面积比等于相似比的平方是正确解答本题的关键.13、133n+1【解析】分析:观察图形发现:白色纸片在4的基础上,依次多3个;根据其中的规律得出第n个图案中有白色纸片即可.详解:∵第1个图案中有白色纸片3×1+1=4张第2个图案中有白色纸片3×2+1=7张,第3图案中有白色纸片3×3+1=10张,∴第4个图案中有白色纸片3×4+1=13张第n个图案中有白色纸片3n+1张,故答案为:13、3n+1.点睛:考查学生的探究能力,解题时必须仔细观察规律,通过归纳得出结论.14、(50﹣).【解析】

过点A作AM⊥DC于点M,过点B作BN⊥DC于点N.则AM=BN.通过解直角△ACM和△BCN分别求得CM、CN的长度,则易得MN=AB.【详解】解:如图,过点A作AM⊥DC于点M,过点B作BN⊥DC于点N,则AB=MN,AM=BN.在直角△ACM,∵∠ACM=45°,AM=50m,∴CM=AM=50m.∵在直角△BCN中,∠BCN=∠ACB+∠ACD=60°,BN=50m,∴CN===(m),∴MN=CM−CN=50−(m).则AB=MN=(50−)m.故答案是:(50−).【点睛】本题考查了解直角三角形的应用.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.15、1.【解析】由题意,得b−1=−1,1a=−4,解得b=−1,a=−1,∴ab=(−1)×(−1)=1,故答案为1.16、【解析】设每只雀、燕的重量各为x两,y两,由题意得:故答案是:或.17、1【解析】∵点P(m,﹣2)与点Q(3,n)关于原点对称,∴m=﹣3,n=2,则(m+n)2018=(﹣3+2)2018=1,故答案为1.三、解答题(共7小题,满分69分)18、证明见解析【解析】

首先证明△ABC≌△DEF(ASA),进而得出BC=EF,BC∥EF,进而得出答案.【详解】∵AB∥DE,∴∠A=∠D,∵AF=CD,∴AC=DF,在△ABC和△DEF中,,∴△ABC≌△DEF,∴BC=EF,∠ACB=∠DFE,∴BC∥EF,∴四边形BCEF是平行四边形.【点睛】本题考查了全等三角形的判定与性质与平行四边形的判定,解题的关键是熟练的掌握全等三角形的判定与性质与平行四边形的判定.19、(1)证明见解析;(2)3或.(3)或0<【解析】

(1)根据矩形的性质,结合已知条件可以证明两个角对应相等,从而证明三角形相似;

(2)由于对应关系不确定,所以应针对不同的对应关系分情况考虑:当时,则得到四边形为矩形,从而求得的值;当时,再结合(1)中的结论,得到等腰.再根据等腰三角形的三线合一得到是的中点,运用勾股定理和相似三角形的性质进行求解.

(3)此题首先应针对点的位置分为两种大情况:①与AE相切,②与线段只有一个公共点,不一定必须相切,只要保证和线段只有一个公共点即可.故求得相切时的情况和相交,但其中一个交点在线段外的情况即是的取值范围.【详解】(1)证明:∵矩形ABCD,∴AD∥BC.∴∠PAF=∠AEB.又∵PF⊥AE,∴△PFA∽△ABE.(2)情况1,当△EFP∽△ABE,且∠PEF=∠EAB时,则有PE∥AB∴四边形ABEP为矩形,∴PA=EB=3,即x=3.情况2,当△PFE∽△ABE,且∠PEF=∠AEB时,∵∠PAF=∠AEB,∴∠PEF=∠PAF.∴PE=PA.∵PF⊥AE,∴点F为AE的中点,即∴满足条件的x的值为3或(3)或【点睛】两组角对应相等,两三角形相似.20、(1)(﹣2,2+2),(﹣10,16﹣5),(,b﹣a);(2)见解析;(3)直线PP'与x轴的交点坐标(﹣,0)【解析】

(1)①当P(-4,2)时,OA=2,PA=4,由旋转知,∠P'AH=30°,进而P'H=P'A=2,AH=P'H=2,即可得出结论;②当P'(-5,16)时,确定出P'A=10,AH=5,由旋转知,PA=PA'=10,OA=OH-AH=16-5,即可得出结论;③当P(a,b)时,同①的方法得,即可得出结论;(2)先判断出∠BQQ'=60°,进而得出∠PAP'=∠PP'A=60°,即可得出∠P'QQ'=∠PAP'=60°,即可得出结论;(3)先确定出yPP'=x+3,即可得出结论.【详解】解:(1)如图1,①当P(﹣4,2)时,∵PA⊥y轴,∴∠PAH=90°,OA=2,PA=4,由旋转知,P'A=4,∠PAP'=60°,∴∠P'AH=30°,在Rt△P'AH中,P'H=P'A=2,∴AH=P'H=2,∴OH=OA+AH=2+2,∴P'(﹣2,2+2),②当P'(﹣5,16)时,在Rt△P'AH中,∠P'AH=30°,P'H=5,∴P'A=10,AH=5,由旋转知,PA=PA'=10,OA=OH﹣AH=16﹣5,∴P(﹣10,16﹣5),③当P(a,b)时,同①的方法得,P'(,b﹣a),故答案为:(﹣2,2+2),(﹣10,16﹣5),(,b﹣a);(2)如图2,过点Q作QB⊥y轴于B,∴∠BQQ'=60°,由题意知,△PAP'是等边三角形,∴∠PAP'=∠PP'A=60°,∵QB⊥y轴,PA⊥y轴,∴QB∥PA,∴∠P'QQ'=∠PAP'=60°,∴∠P'QQ'=60°=∠PP'A,∴PP'∥QQ';(3)设yPP'=kx+b',由题意知,k=,∵直线经过点(,6),∴b'=3,∴yPP'=x+3,令y=0,∴x=﹣,∴直线PP'与x轴的交点坐标(﹣,0).【点睛】此题是几何变换综合题,主要考查了含30度角的直角三角形的性质,旋转的性质,等边三角形的判定和性质,待定系数法,解本题的关键是理解新定义.21、6+.【解析】

利用负整数指数幂、零指数幂的意义和特殊角的三角函数值进行计算.【详解】解:原式=+8×﹣1+2×=3+4﹣1+=6+.【点睛】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.22、(1),;(2)点的坐标为;(3)点的坐标为和【解析】

(1)根据二次函数的对称轴公式,抛物线上的点代入,即可;(2)先求F的对称点,代入直线BE,即可;(3)构造新的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论